
 Counters are sequential circuits which "count" through a
specific state sequence.
• They can count up, count down, or count through other fixed sequences.

 Two distinct types are in common usage:
• Ripple Counters

 Clock connected to the flip-flop clock input on the LSB bit flip-flop
 For all other bits, a flip-flop output is connected to the clock input,

thus circuit is not truly synchronous!
 Output change is delayed more for each bit toward the MSB.
 Resurgent because of low power consumption

• Synchronous Counters
 Clock is directly connected to the flip-flop clock inputs
 Logic is used to implement the desired state sequencing

Counters

 How does it work?
• When there is a positive edge

on the clock input of A, A
complements

• The clock input for flip-flop B
is the complemented output of
flip-flop A

Reset

Clock

D

D B

A

Ripple Counter

CP

B

A

0 1 2 3 0 1

• When flip A changes from 1 to 0, there is a positive edge on
the clock input of B causing B to complement

Clock

 The arrows show the
cause-effect relation-
ship from the prior
slide

 The corresponding
sequence of states

(B,A) = (0,0),

 Each additional bit, C, D, …behaves like bit B, changing
half as frequently as the bit before it.

 For 3 bits: (C,B,A) = (0,0,0), (0,0,1), (0,1,0), (0,1,1),
(1,0,0), (1,0,1), (1,1,0), (1,1,1), (0,0,0), …

Ripple Counter (continued)

(1,0),(0,1), (0,1), …(0,0),(1,1),

CP

B

A

0 1 2 3 0 1

 These circuits are called ripple counters because
each edge sensitive transition (positive in the
example) causes a change in the next flip-flop’s
state.

 The changes ripple upward through the chain of
flip-flops, i. e., each transition occurs after a
clock-to-output delay from the stage before.

Ripple Counter (continued)

 Starting with C = B = A = 1, equivalent to (C,B,A) =
7 base 10, the next clock increments the count to
(C,B,A) = 0 base 10. In fine timing detail:
• The clock to output delay

tPHL causes an increasing
delay from clock edge for
each stage transition.

• Thus, the count “ripples”
from least to most
significant bit.

• For n bits, total worst case
delay is n tPHL.

Ripple Counter (continued)

CP 1

A 1

B 1

C 1

tPHL

tPHL

tpHL

0

0

0

0

Synchronous Counters

 To eliminate the "ripple" effects, use a common
clock for each flip-flop and a combinational circuit
to generate the next state.

 For an up-counter,
use an incrementer

D3 Q3

D2 Q2

D1 Q1

D0 Q0

Clock

Incre-
menter

A3

A2

A1

A0

S3

S2

S1

S0

 Internal details
 Internal Logic

• XOR complements each bit
• AND chain causes complement

of a bit if all bits toward LSB
from it equal 1

 Count Enable
• Forces all outputs of AND

chain to 0 to “hold” the state
 Carry Out

• Added as part of incrementer
• Connect to Count Enable of

additional 4-bit counters to
form larger counters

Synchronous Counters (continued)

Incrementer

(a) Logic Diagram-Serial Gating

D
C

D
C

D
C

D
C

Count enable EN

Clock

Carry
output CO

Q0

Q1

Q2

Q3

 Carry chain
• series of AND gates through which the

carry “ripples”
• Yields long path delays
• Called serial gating

 Replace AND carry chain with ANDs in parallel
• Reduces path delays
• Called parallel gating
• Like carry lookahead
• Lookahead can be used on COs

and ENs to prevent long paths in
large counters

 Symbol for Synchronous Counter

Synchronous Counters (continued)

Symbol

CTR 4
EN

Q1
Q2
Q3
CO

Q0

Logic Diagram-Parallel Gating

EN

Q0

Q1

C1

Q2

C2

C3

CO

Q3

Other Counters

 Counters:
• Down Counter - counts downward instead of upward
• Up-Down Counter - counts up or down depending on value a

control input such as Up/Down
• Parallel Load Counter - Has parallel load of values available

depending on control input such as Load

 Divide-by-n (Modulo n) Counter
• Count is remainder of division by n; n may not be a power

of 2
• Count is arbitrary sequence of n states specifically

designed state-by-state
• Includes modulo 10 which is the BCD counter

 Add path for input data
• enabled for Load = 1

 Add logic to:
• disable count logic for Load = 1
• disable feedback from outputs

for Load = 1
• enable count logic for Load = 0

and Count = 1
 The resulting function table:

D0 D

C

Q0

D1 D

C

Q1

D2 D

C

Q2

D3 D

C

Q3

Load

Count

Clock

Carry
Output CO

Counter with Parallel Load

Load Count Action
0 0 Hold Stored Value
0 1 Count Up Stored Value
1 X Load D

Design Example: Synchronous BCD

 Use the sequential logic model to design a synchronous BCD counter
with D flip-flops

 Input combinations 1010 through 1111 are don’t cares

Current State
Q8 Q4 Q2 Q1

Next State
Q8 Q4 Q2 Q1

0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 1
0 0 1 1 0 1 0 0
0 1 0 0 0 1 0 1
0 1 0 1 0 1 1 0
0 1 1 0 0 1 1 1
0 1 1 1 1 0 0 0
1 0 0 0 1 0 0 1
1 0 0 1 0 0 0 0

Synchronous BCD (continued)

 Use K-Maps to two-level optimize the next state equations:

D1 = Q1
D2 = Q8Q2Q1+ Q2Q1
D4 = Q4Q2Q1+ Q4Q2+ Q4Q1
D8 = Q8Q1 + Q4Q2Q1

 The logic diagram can be draw from these equations
• An asynchronous or synchronous reset should be added

 What happens if the counter is perturbed by a power
disturbance or other interference and it enters a state
other than 0000 through 1001?

 Find the actual values of the six
next states for the don’t care
combinations from the equations

 Find the overall state diagram
to assess behavior for the don’t
care states (states in decimal)

Synchronous BCD (continued)

Present State Next State
Q8 Q4 Q2 Q1 Q8 Q4 Q2 Q1
1 0 1 0 1 0 1 1
1 0 1 1 0 1 0 0
1 1 0 0 1 1 0 1
1 1 0 1 0 1 0 0
1 1 1 0 1 1 0 1
1 1 1 1 1 0 0 0

0
1

8

7

6
5

4

3

2

9

10

11

14
15 12

13

D1 = Q1
D2 = Q8Q2Q1+ Q2Q1
D4 = Q4Q2Q1+ Q4Q2+ Q4Q1
D8 = Q8Q1 + Q4Q2Q1

 For the BCD counter design, if an invalid state is entered,
return to a valid state occurs within two clock cycles

 Is this adequate? If not:
• Is a signal needed that indicates that an invalid state has been

entered? What is the equation for such a signal?
• Does the design need to be modified to return from an invalid

state to a valid state in one clock cycle?
• Does the design need to be modified to return from a invalid

state to a specific state (such as 0)?
 The action to be taken depends on:

• the application of the circuit
• design group policy

Synchronous BCD (continued)

 The following techniques use an n-bit binary counter with
asynchronous or synchronous clear and/or parallel load:
• Detect a terminal count of N in a Modulo-N count sequence to

asynchronously Clear the count to 0 or asynchronously Load in value 0
• Detect a terminal count of N - 1 in a Modulo-N count sequence to

Clear the count synchronously to 0
• Detect a terminal count of N - 1 in a Modulo-N count sequence to

synchronously Load in value 0
• Detect a terminal count and use Load to preset a count of the

terminal count value minus (N - 1)
 Alternatively, custom design a modulo N counter as done for BCD

Counting Modulo N

 A synchronous 4-bit binary
counter with a synchronous
load and an asynchronous
clear is used to make a
Modulo 7 counter

 Use the Load feature to
detect the count "6" and
load in "zero". This gives
a count of 0, 1, 2, 3, 4, 5, 6,
0, 1, 2, 3, 4, 5, 6, 0, ...

 Using don’t cares for states
above 0110

Counting Modulo 7: Synchronously Load on
Terminal Count of 6

D3 Q3

D2 Q2

D1 Q1

D0 Q0

CLEAR

CP
LOAD

Clock

0
0
0
0

Reset

 A synchronous, 4-bit binary
counter with a synchronous
Load is to be used to make a
Modulo 6 counter.

 Use the Load feature to
preset the count to 9 on
Reset and detection of
count 14.

 This gives a count of 9, 10, 11, 12, 13, 14, 9, 10, 11, 12, 13, 14,
9, …

 If the terminal count is 15 detection is usually built in as
Carry Out (CO)

Clock

D3 Q3

D2 Q2

D1 Q1

D0 Q0

CLEAR

CP
LOAD

0
0

1

1

Counting Modulo 6: Synchronously Preset 9
on Reset and Load 9 on Terminal Count 14

Reset

1

Example 4: Design a modulo-8 up-counter which
counts in the way specified below, use J-K FF

18

19

present state next state

Example 4: TRUTH TABLE

20

Y3

Example 4: Gray code counter

21

Example 4: Gray code counter

Y2

22

Example 4: Gray code counter

Y1

Objective: Eliminate redundant states

 Reduce the number of states in the state table to
the minimum.
• Remove redundant states
• Use don’t cares effectively

 Reduction to the minimum number of states
reduces
• The number of F/Fs needed
• Reduces the number of next states that has to be

generated Reduced logic.

23

An example circuit

 A sequential circuit has one input X and one output
Z.

 The circuit looks at the groups of four consecutive
inputs and sets Z=1 if the input sequence 0101 or
1001 occurs.

 The circuit returns to the reset state after four
inputs.

 Design the Mealy machine.

24
2012 - Joanne DeGroat, ECE, OSU

X = 0101 0010 1001 0100 Z = 0001 0000 0001 0000

Elimination of Redundant States

/0 /0 /0 /0
/0 /0 /0

/0
/0 /0 /0 /0

/0

/0 /0 /0 /0 /0 /0 /0 /0

/0 /0/0 /0

/0 /0

State diagram

/1
/0

/1

 When first setting up the state table, we will not be overly concerned with inclusion of
extra states, and when the table is complete, we will eliminate any redundant states.

State table

 Set up a table for
all the possible
input combinations

 For the two
sequences when
the last bit is a 1
return to reset
with Z=1.

2012 - Joanne DeGroat, ECE, OSU

Note on state table generation

 When generated by looking at all combinations of inputs the state
table is far from minimal.

 First step is to remove redundant states.
• There are states that you cannot tell apart

 Such as H and I – both have A with Z=0 as output.
 State H is equivalent to State I and state I can be removed from the table.
 Examining table shows states K, M, N and P are also the same – they can be

deleted.
 States J and L are also equivalent.

2012 - Joanne DeGroat, ECE, OSU

Reduction continued

 Having made these
reductions move up to
the D E F G section
where the next state
entries have been
changed.

 Note that State D and
State G are equivalent.

 State E is equivalent to
F.

 The result in a reduced
state table.

28
2012 - Joanne DeGroat, ECE, OSU

The result

 Reduced state table and graph

 Original – 15 states – reduced 7 states

2012 - Joanne DeGroat, ECE, OSU

Elimination of Redundant States

/0 /0 /0 /0
/0 /0 /0 /0

/0
/1 /1 /1 /1

/1

/0 /0 /0 /0 /0 /0 /0 /0

/0 /0/0 /0

/0 /0

State diagram

/0

 Design a binary checker that has in input a sequence of BCD numbers and for every
four bits (LSB order) has output 0 if the number is 0≤N≤9 and 1 if 10≤N≤15

Elimination of Redundant States

 Design a binary checker that has in input a sequence of BCD numbers and for every
four bits (LSB order) has output 0 if the number is 0≤N≤9 and 1 if 10≤N≤15

Elimination of Redundant States

A

B C

D E F G

H I

0/0 1/0

0/0

0/0

0/0 1/0

0/0

0/01/0 1/0 1/0

1/0

1/00/0

0/0

1/0

0/0 1/1

State diagram

0
0 1

0 2 1 3

2,3,4,5,6,70,1

0,1 8,9 2,3,4,5,6,7 10,11,12,13,14,15

{D,F}, {E,G}

Elimination of Redundant States

State table

0
0
1
0
2
1
3

0,1
2,3,4,5,6,7

,{B,C}

A

B

D E

H I

0/0 1/0

0/0

0/0

0/0 1/0

1/0

1/0

1/00/0

0/0 1/1

Elimination of Redundant States

State diagram

Equivalence

 Two states are equivalent is there is no way of telling them apart
through observation of the circuit inputs and outputs.

 Formal definition:
• Let N1 and N2 be sequential circuits (not necessarily different).

Let X represent a sequence of inputs of arbitrary length. Then
state p in N1 is equivalent to state q in N2 iff λ1 (p,X) = λ2 (q,X)
for every possible input sequence X.

 The definition is not practical to apply in practice. Theorem:
• Two states p and q of a sequential circuit are equivalent iff for

every single input X, the outputs are the same and the next
states are equivalent, that is, λ (p,X)=λ (q,X) and δ (p,X)=δ(q,X)
where λ (p,X) is the output given present state p and input X,
and δ (p,X) is the next state given the present state p and input
X.

 So the outputs have to be the same and the next states equivalent.

2012 - Joanne DeGroat, ECE, OSU

Implication Tables

 A procedure for finding all the equivalent states in a state
table.

 Use an implication table – a chart that has a square for each
pair of states.

36
2012 - Joanne DeGroat, ECE, OSU

Step 1

 Use a X in the square to eliminate output incompatible
states.

 1st output of a differes from c, e, f, and h

37

Step 1 continued

 Continue to remove output incompatible states

38

Now what?

 Implied pair are now entered into each non X square.
 Here ab iff df and ch

39

Self redundant pairs

 Self redundant pairs are removed, i.e., in square a-d it
contains a-d.

40

Next pass

 X all squares with implied pairs that are not compatible.
 Such as in a-b have d-f which has an X in it.
 Run through the chart until no further X’s are found.

41

Final step

 Note that a-d is not X and is equivalent if ce, and
the same for is c-e: is not X and is equivalent if ad.
We can conclude that ad., i.e. and ce.

42

Reduced table

 Removing equivalent states.

43
2012 - Joanne DeGroat, ECE, OSU

Summary of method

 Construct a chart with a square for each pair of
states.

 Compare each pair of rows in the state table. X a
square if the outputs are different. If the output
is the same enter the implied pairs. Remove
redundant pairs. If the implied pair is the same
place a check mark as ij.

 Go through the implied pairs and X the square
when an implied pair is incompatible.

 Repeat until no more Xs are added.
 For any remaining squares not Xed, ij.

44

Another example

 Consider the state diagram:

 NEXT STATE OUTPUT
Present State X=0 X=1 X=0 X=1

S0 S1 S4 0 0
S1 S1 S2 0 0
S2 S3 S4 1 0
S3 S5 S2 0 0
S4 S3 S4 0 0
S5 S1 S2 0 1

Set up Implication Chart

 Remove output incompatible states
 and indicate implied pairs

Check implied pairs and X
1st pass 2nd pass

 In this case the state table is minimal as no state reduction can be
done.

46

 NEXT STATE OUTPUT
Present State X=0 X=1 X=0 X=1

S0 S1 S4 0 0
S1 S1 S2 0 0
S2 S3 S4 1 0
S3 S5 S2 0 0
S4 S3 S4 0 0
S5 S1 S2 0 1

Implication Table (another example)

 Its clear that (e,d) are equivalent. And
this leads (a,b) and (e,g) to be equivalent
too.

 Finally we have [(a,b) , c , (e,d,g) , f] so
four states.

 So the original flow table can be reduced
to:

Implication Table

