Counters

- Counters are sequential circuits which "count" through a specific state sequence.
 - They can count up, count down, or count through other fixed sequences.
- ✓ Two distinct types are in common usage:
 - Ripple Counters
 - Clock connected to the flip-flop clock input on the LSB bit flip-flop
 - For all other bits, a flip-flop output is connected to the clock input, thus circuit is not truly synchronous!
 - Output change is delayed more for each bit toward the MSB.
 - Resurgent because of low power consumption
 - Synchronous Counters
 - Clock is directly connected to the flip-flop clock inputs
 - Logic is used to implement the desired state sequencing

Ripple Counter

✓ How does it work?

- When there is a positive edge on the clock input of A, A complements
- The clock input for flip-flop B is the complemented output of flip-flop A

• When flip A changes from 1 to 0, there is a positive edge on the clock input of B causing B to complement

Ripple Counter (continued)

- ✓ The arrows show the cause-effect relationship from the prior slide
- ✓ The corresponding sequence of states ⇒
 (B,A) = (0,0), (0,1),

(B,A) = (0,0), (0,1), (1,0), (1,1), (0,0), (0,1), ...

- Each additional bit, C, D, ...behaves like bit B, changing half as frequently as the bit before it.
- For 3 bits: (C,B,A) = (0,0,0), (0,0,1), (0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0), (1,1,1), (0,0,0), ...

Ripple Counter (continued)

- ✓ These circuits are called ripple counters because each edge sensitive transition (positive in the example) causes a change in the next flip-flop's <u>state</u>.
- ✓ The changes ripple upward through the chain of flip-flops, i. e., each transition occurs after a clock-to-output delay from the stage before.

Ripple Counter (continued)

- ✓ Starting with C = B = A = 1, equivalent to (C,B,A) = 7 base 10, the next clock increments the count to (C,B,A) = 0 base 10. In fine timing detail:
 - The clock to output delay t_{PHL} causes an increasing delay from clock edge for each stage transition.
 - Thus, the count "ripples" from least to most significant bit.
 - For n bits, total worst case delay is n t_{PHL}.

Synchronous Counters

- To eliminate the "ripple" effects, use a common clock for each flip-flop and a combinational circuit to generate the next state.
- ✓ For an up-counter, use an incrementer ⇒

Synchronous Counters (continued)

Synchronous Counters (continued)

Other Counters

✓ Counters:

- Down Counter counts downward instead of upward
- Up-Down Counter counts up or down depending on value a control input such as Up/Down
- Parallel Load Counter Has parallel load of values available depending on control input such as Load
- Divide-by-n (Modulo n) Counter
 - Count is remainder of division by n; n may not be a power of 2
 - Count is arbitrary sequence of *n* states specifically designed state-by-state
 - Includes modulo 10 which is the BCD counter

Counter with Parallel Load

- \checkmark Add path for input data
 - enabled for Load = 1
- ✓ Add logic to:
 - disable count logic for Load = 1

Load

Count

- disable feedback from outputs for Load = 1
- enable count logic for Load = 0 and Count = 1
- \checkmark The resulting function table:

Load	Count	Action
0	0	Hold Stored Value
0	1	Count Up Stored Value
1	X	Load D

Design Example: Synchronous BCD

- ✓ Use the sequential logic model to design a synchronous BCD counter with D flip-flops
- ✓ Input combinations 1010 through 1111 are don't cares

Synchronous BCD (continued)

✓ Use K-Maps to two-level optimize the next state equations:

 $D1 = \overline{Q1}$ $D2 = \overline{Q8}\overline{Q2}Q1 + Q2\overline{Q1}$ $D4 = \overline{Q4}\overline{Q2}Q1 + Q4\overline{Q2} + Q4\overline{Q1}$ $D8 = Q8\overline{Q1} + Q4Q2Q1$

 \checkmark The logic diagram can be draw from these equations

- An asynchronous or synchronous reset should be added
- ✓ What happens if the counter is perturbed by a power disturbance or other interference and it enters a state other than 0000 through 1001?

Synchronous BCD (continued)

8

15

6

- ✓ Find the actual values of the six next states for the don't care combinations from the equations
- ✓ Find the overall state diagram to assess behavior for the don't care states (states in decimal)

Present State			Next State			
Q4	Q2	Q1	Q8	Q4	Q2	Q1
0	1	0	1	0	1	1
0	1	1	0	1	0	0
1	0	0	1	1	0	1
1	0	1	0	1	0	0
1	1	0	1	1	0	1
1	1	1	1	0	0	0
	sen ⁻ Q4 0 1 1 1 1	sent St Q4 Q2 0 1 0 1 1 0 1 0 1 1 1 1	sent StateQ4Q2Q1010100101110111111	sent State N Q4 Q2 Q1 Q8 0 1 0 1 0 1 1 0 1 1 0 0 1 0 1 0 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1	Next Q4 Q2 Q1 Q8 Q4 0 1 0 1 0 0 1 1 0 1 1 1 0 0 1 1 1 1 0 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1	sent State Next State Q4 Q2 Q1 Q8 Q4 Q2 0 1 0 1 0 1 0 1 1 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 0 0

13

2

12

Synchronous BCD (continued)

- ✓ For the BCD counter design, if an invalid state is entered, return to a valid state occurs within two clock cycles
- ✓ Is this adequate? If not:
 - Is a signal needed that indicates that an invalid state has been entered? What is the equation for such a signal?
 - Does the design need to be modified to return from an invalid state to a valid state in one clock cycle?
 - Does the design need to be modified to return from a invalid state to a specific state (such as 0)?
- \checkmark The action to be taken depends on:
 - the application of the circuit
 - design group policy

Counting Modulo N

- ✓ The following techniques use an *n*-bit binary counter with asynchronous or synchronous clear and/or parallel load:
 - Detect a terminal count of N in a Modulo-N count sequence to asynchronously Clear the count to 0 or asynchronously Load in value 0
 - Detect a terminal count of N 1 in a Modulo-N count sequence to Clear the count synchronously to 0
 - Detect a terminal count of N 1 in a Modulo-N count sequence to synchronously Load in value 0
 - Detect a terminal count and use Load to preset a count of the terminal count value minus (N - 1)

✓ Alternatively, custom design a modulo N counter as done for BCD

Counting Modulo 7: Synchronously Load on Terminal Count of 6

- A synchronous 4-bit binary counter with a synchronous load and an asynchronous clear is used to make a Modulo 7 counter
- ✓ Use the Load feature to detect the count "6" and load in "zero". This gives a count of 0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 6, 0, ...
- ✓ Using don't cares for states above 0110

Counting Modulo 6: Synchronously Preset 9 on Reset and Load 9 on Terminal Count 14

- A synchronous, 4-bit binary counter with a synchronous Load is to be used to make a Modulo 6 counter.
- ✓ Use the Load feature to preset the count to 9 on Reset and detection of count 14.

- This gives a count of 9, 10, 11, 12, 13, 14, 9, 10, 11, 12, 13, 14, 9, ...
- ✓ If the terminal count is 15 detection is usually built in as Carry Out (CO)

Example 4: Design a modulo-8 up-counter which counts in the way specified below, use J-K FF

Decimal	Gray
0	000
1	001
2	011
3	010
4	110
5	111
6	101
7	100

Example 4: Gray code counter

20

УЗ

Example 4: Gray code counter

Y2

Example 4: Gray code counter

У1

$$\mathbf{J}_{\mathbf{y}\mathbf{1}} = \overline{\mathbf{y}}_{\mathbf{3}}\overline{\mathbf{y}}_{\mathbf{2}} + \mathbf{y}_{\mathbf{3}}\mathbf{y}_{\mathbf{2}} \qquad \qquad \mathbf{K}_{\mathbf{y}\mathbf{1}} = \overline{\mathbf{y}}_{\mathbf{2}}\mathbf{y}_{\mathbf{3}} + \mathbf{y}_{\mathbf{2}}\overline{\mathbf{y}}_{\mathbf{3}}$$

Objective: Eliminate redundant states

- ✓ Reduce the number of states in the state table to the minimum.
 - Remove redundant states
 - Use don't cares effectively
- Reduction to the minimum number of states reduces
 - The number of F/Fs needed
 - Reduces the number of next states that has to be generated ⇒ Reduced logic.

- A sequential circuit has one input X and one output Z.
- ✓ The circuit looks at the groups of four consecutive inputs and sets Z=1 if the input sequence 0101 or 1001 occurs.
- ✓ The circuit returns to the reset state after four inputs.
- ✓ Design the Mealy machine.

✓ When first setting up the state table, we will not be overly concerned with inclusion of extra states, and when the table is complete, we will eliminate any redundant states.

State table

✓	✓ Set up a table for	Input Sequence	Present State	Next S X = 0	tate $X = 1$	PresOut $X = 0$	sent put X = 1
	all the possible	reset	A	B	С	0	0
	input combinations	0	В	D	E	0	0
		1	С	F	G	0	0
		00	D	Н	1	0	0
		01	E	J	K	0	0
		10	F	L	M	0	0
		11	G	N	Р	0	0
\checkmark	For the two	000	H	A	Α	0	0
	sequences when	001	1	A	A	0	0
	the last bit is a 1	010	J	A	A	0	1
	return to reset with Z=1.	011	K	A	A	0	0
		100	L	A	A	0	1
		101	М	A	A	0	0
		110	N	A	A	0	0
		111	Р	A	A	0	0

Note on state table generation

- ✓ When generated by looking at all combinations of inputs the state table is far from minimal.
- \checkmark First step is to remove redundant states.
 - There are states that you cannot tell apart
 - Such as H and I both have A with Z=0 as output.
 - State H is equivalent to State I and state I can be removed from the table.
 - Examining table shows states K, M, N and P are also the same they can be deleted.
 - States J and L are also equivalent.

Input	Present	Next S	tate	Pres	ent put
Sequence	State	X = 0	<i>X</i> = 1	X = 0	<i>X</i> = 1
reset	A	B	С	0	0
0	В	D	E	0	0
1	С	F	G	0	0
00	D	Н	1	0	0
01	E	J	K	0	0
10	F	L	M	0	0
11	G	N	Р	0	0
000	H	A	A	0	0
001	1	A	A	0	0
010	J	A	A	0	1
011	K	A	A	0	0
100	L	A	A	0	1
101	м	A	A	0	0
110	N	A	A	0	0
111	Р	A	A	0	0

Reduction continued

- ✓ Having made these reductions move up to the D E F G section where the next state entries have been changed.
- ✓ Note that State D and State G are equivalent.
- ✓ State E is equivalent to F.
- ✓ The result in a reduced state table.

			Pres	ent
Present	Next	State	Out	put
State	<i>X</i> = 0	<i>X</i> = 1	<i>X</i> = 0	<i>X</i> = 1
A	В	С	0	0
В	D	E	0	0
C	F Ε	GD	0	0
D	Н	łН	0	0
E	J	КH	0	0
	<u> </u>	MH	0	0
G	NH	RH	0	0
Н	A	A	0	0
+	A	A	0	0
J	A	A	0	1
K	A	A	0	0
L	A	A	0	1
M	A	A	0	0
N	A	_A	0	0
P	A	A	0	0

The result

✓ Reduced state table and graph

Present State	Next $X = 0$	State $X = 1$	Out X = 0	put $X = 1$
A	В	С	0	0
В	D	Е	0	0
С	Ε	D	0	0
D	Н	Н	0	· 0
Ε	J	Н	0	0
Н	A	Α	0	0
J	A	A	0	1
		(a)		

✓ Original - 15 states - reduced 7 states

 ✓ Design a binary checker that has in input a sequence of BCD numbers and for every four bits (LSB order) has output 0 if the number is 0≤N≤9 and 1 if 10≤N≤15

 ✓ Design a binary checker that has in input a sequence of BCD numbers and for every four bits (LSB order) has output 0 if the number is 0≤N≤9 and 1 if 10≤N≤15

				Pres	Present		
Input	Present	Next S	State	Out	put		
Sequence	State	<i>X</i> = 0	<i>X</i> = 1	<i>X</i> = 0	<i>X</i> = 1		
reset	А	В	С	0	0		
0	В	D	Е	0	0		
1	С	F	G	0	0		
00	D	Н	1	0	0		
01	Е	J	K	0	0		
10	F	L	М	0	0		
11	G	N	Р	0	0		
000	Н	A	А	0	0		
001	1	A	А	0	1		
010	J	A	А	0	1		
011	K	A	А	0	1		
100	L	A	А	0	0		
101	М	A	А	0	1		
110	N	A	А	0	1		
111	Р	A	А	0	1		

					Pres	ent
	Input	Present	Next S	state	Out	put
	Sequence	State	<i>X</i> = 0	<i>X</i> = 1	<i>X</i> = 0	<i>X</i> = 1
0	reset	А	В	С	0	0
0	0	B	D	Ε	0	0
1		c	F	G	0	0
0	-00	– D	Н	1	0	0
2		- Ε	1	1	0	0
1	10	F	Н	1	0	0
3	11	G	1	- 1	0	0
0,1	000 100	Н	A	А	0	0
2,3,4,5,6,7	001 101	1	A	А	0	1
	010 110				I.	
	011 111]}),F}, {E, <i>G</i> }	,{ B , C }		

State table

State diagram

Equivalence

- Two states are equivalent is there is no way of telling them apart through observation of the circuit inputs and outputs.
- ✓ Formal definition:
 - Let N_1 and N_2 be sequential circuits (not necessarily different). Let <u>X</u> represent a sequence of inputs of arbitrary length. Then state p in N_1 is equivalent to state q in N_2 iff $\lambda_1(p,\underline{X}) = \lambda_2(q,\underline{X})$ for every possible input sequence <u>X</u>.
- \checkmark The definition is not practical to apply in practice. Theorem:
 - Two states p and q of a sequential circuit are equivalent iff for every single input X, the outputs are the same and the next states are equivalent, that is, $\lambda(p,\underline{X})=\lambda(q,\underline{X})$ and $\delta(p,\underline{X})=\delta(q,\underline{X})$ where $\lambda(p,\underline{X})$ is the output given present state p and input X, and $\delta(p,\underline{X})$ is the next state given the present state p and input X.
- ✓ So the outputs have to be the same and the next states equivalent.

Implication Tables

- ✓ A procedure for finding all the equivalent states in a state table.
- Use an implication table a chart that has a square for each pair of states.

Step 1

- Use a X in the square to eliminate output incompatible states.
- \checkmark 1st output of a differes from c, e, f, and h

Step 1 continued

✓ Continue to remove output incompatible states

Present	Next St	Present	
State	<i>X</i> = 0	1	Output
а	d	с	0
b	f	h	0
с	e	d	1
d	а	е	0
е	С	а	1
f	f	b	1
g	b	h	0
h	С	g	1

Now what?

- ✓ Implied pair are now entered into each non X square.
- \checkmark Here a=b iff d=f and c=h

Present	Next St	Present	
State	<i>X</i> = 0	1	Output
а	d	с	0
b	f	h	0
с	e	d	1
d	а	е	0
е	С	а	1
f	f	b	1
g	b	h	0
h	с	g	1

Self redundant pairs

Self redundant pairs are removed, i.e., in square a-d it contains a-d.

Next pass

- \checkmark X all squares with implied pairs that are not compatible.
- \checkmark Such as in a-b have d-f which has an X in it.
- \checkmark Run through the chart until no further X's are found.

Final step

✓ Note that a-d is not X and is equivalent if c=e, and the same for is c-e: is not X and is equivalent if a=d. We can conclude that a=d., i.e. and c=e.

Reduced table

✓ Removing equivalent states.

Present State	Next St $X = 0$	ate 1	Present Output	Present	Next St	ate	Present
а	d	С	0	State	X = 0	1	Output
b	f	h	0	а	а	с	0
с	e	d	1	b	f	h	0
d	а	е	0	с	с	а	1
е	C	а	1	f	f	b	1
f	f	b	1	a	b	h	0
g	b	h	0	h	C	a	1
h	с	g	1			9	

Summary of method

- Construct a chart with a square for each pair of states.
- ✓ Compare each pair of rows in the state table. X a square if the outputs are different. If the output is the same enter the implied pairs. Remove redundant pairs. If the implied pair is the same place a check mark as i=j.
- ✓ Go through the implied pairs and X the square when an implied pair is incompatible.
- \checkmark Repeat until no more Xs are added.
- ✓ For any remaining squares not Xed, i=j.

Another example

✓ Consider the state diagram:

	NEXT STATE		OUTPUT	
Present State	X=0	X=1	X=0	X=1
S0	S1	S4	0	0
S1	S1	S2	0	0
S2	S3	S4	1	0
S3	S5	S2	0	0
S4	S3	S4	0	0
S5	S1	S2	0	1

Set up Implication Chart

Remove output incompatible states
and indicate implied pairs

	NEXT	OUTPUT	
Present State	X=0	X=1	X=0 X=1
S0	S1	S4	0 0
S1	S1	S2	0 0
S2	S3	S4	1 0
S3	S5	S2	0 0
S4	S3	S4	0 0
S5	S1	S2	0 1

✓ In this case the state table is minimal as no state reduction can be done.

Implication Table (another example)

Present	Next State		Output		
State	X=0	X=1	X=0	X=1	
а	d	b	0	0	
Ь	е	а	0	0	
с	g	f	0	1	
d	а	d	1	0	
е	а	d	1	0	
f	С	Ь	0	0	
g	а	е	1	0	

- ✓ Its clear that (e,d) are equivalent. And this leads (a,b) and (e,g) to be equivalent too.
- ✓ Finally we have [(a,b) , c , (e,d,g) , f] so four states.
- ✓ So the original flow table can be reduced to:

Implication Table

Present	Next	State	Ou	tput	Ь	d , e √					
State	X=0	X=1	X=0	X=1	c	x	×				
а	d	Ь	0	0					1		
b	е	а	0	0	d	X	×	×			
с	g	f	0	1	е	×	×	×	√		
d	а	d	1	0	£	a d y	c,e x	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
е	а	d	1	0	,	<i>c</i> , <i>a</i> x	a, b	X	×	~	
f	С	b	0	0	g	×	×	×	d , e √	d , e √	×
g	а	е	1	0		a	b	с	d	е	f

Present	Next State		Out	tput
State	X=0	X=1	X=0	X=1
а	d	а	0	0
С	d	f	0	1
d	а	d	1	0
f	С	а	0	0