Counters

\checkmark Counters are sequential circuits which "count" through a specific state sequence.

- They can count up, count down, or count through other fixed sequences.
\checkmark Two distinct types are in common usage:
- Ripple Counters
- Clock connected to the flip-flop clock input on the LSB bit flip-flop
- For all other bits, a flip-flop output is connected to the clock input, thus circuit is not truly synchronous!
- Output change is delayed more for each bit toward the MSB.
- Resurgent because of low power consumption
- Synchronous Counters
- Clock is directly connected to the flip-flop clock inputs
- Logic is used to implement the desired state sequencing

Ripple Counter

\checkmark How does it work?

- When there is a positive edge on the clock input of A, A complements
- The clock input for flip-flop B is the complemented output of flip-flop A

- When flip A changes from 1 to 0 , there is a positive edge on the clock input of B causing B to complement

Ripple Counter (continued)

\checkmark The arrows show the cause-effect relationship from the prior slide
\checkmark The corresponding sequence of states \Rightarrow

\checkmark Each additional bit, C, D, ...behaves like bit B, changing half as frequently as the bit before it.
\checkmark For 3 bits: $(C, B, A)=(0,0,0),(0,0,1),(0,1,0),(0,1,1)$, $(1,0,0),(1,0,1),(1,1,0),(1,1,1),(0,0,0), \ldots$

Ripple Counter (continued)

\checkmark These circuits are called ripple counters because each edge sensitive transition (positive in the example) causes a change in the next flip-flop's state.
\checkmark The changes ripple upward through the chain of flip-flops, i. e., each transition occurs after a clock-to-output delay from the stage before.

Ripple Counter (continued)

\checkmark Starting with $C=B=A=1$, equivalent to $(C, B, A)=$ 7 base 10, the next clock increments the count to $(C, B, A)=0$ base 10. In fine timing detail:

- The clock to output delay $\dagger_{\text {PHL }}$ causes an increasing delay from clock edge for each stage transition.
- Thus, the count "ripples" from least to most significant bit.
- For n bits, total worst case delay is $n t_{\text {PHL }}$.

Synchronous Counters

\checkmark To eliminate the "ripple" effects, use a common clock for each flip-flop and a combinational circuit to generate the next state.
\checkmark For an up-counter, use an incrementer \Rightarrow

Synchronous Counters (continued)

\checkmark Internal details \Rightarrow Incrementer
\checkmark Internal Logic

- XOR complements each bit
- AND chain causes complement of a bit if all bits toward LSB from it equal 1
\checkmark Count Enable
- Forces all outputs of AND chain to 0 to "hold" the state
\checkmark Carry Out
- Added as part of incrementer
- Connect to Count Enable of additional 4-bit counters to form larger counters

(a) Loaic Diaaram-Serial Gatina

Synchronous Counters (continued)

\checkmark Carry chain

- series of AND gates through which the carry "ripples"
- Yields long path delays
- Called serial gating
\checkmark Replace AND carry chain with ANDs \Rightarrow in parallel
- Reduces path delays
- Called parallel gating
- Like carry lookahead
- Lookahead can be used on COs and ENs to prevent long paths in large counters
\checkmark Symbol for Synchronous Counter

Other Counters

\checkmark Counters:

- Down Counter - counts downward instead of upward
- Up-Down Counter - counts up or down depending on value a control input such as Up/Down
- Parallel Load Counter - Has parallel load of values available depending on control input such as Load
\checkmark Divide-by-n (Modulo n) Counter
- Count is remainder of division by n; n may not be a power of 2
- Count is arbitrary sequence of n states specifically designed state-by-state
- Includes modulo 10 which is the BCD counter

Counter with Parallel Load

\checkmark Add path for input data

- enabled for Load $=1$
\checkmark Add logic to:
- disable count logic for Load = 1
- disable feedback from outputs for Load = 1
- enable count logic for Load $=0$ and Count = 1
\checkmark The resulting function table:

Load	Count	Action
0	0	Hold Stored Value
0	1	Count Up Stored Value
1	X	Load D

Design Example: Synchronous BCD

\checkmark Use the sequential logic model to design a synchronous BCD counter with D flip-flops
\checkmark Input combinations 1010 through 1111 are don't cares

Current State				Next State			
Q8 Q4 Q2 Q1		Q4 Q2 Q1					
0	0	0	0	0	0	0	1
0	0	0	1	0	0	1	0
0	0	1	0	0	0	1	1
0	0	1	1	0	1	0	0
0	1	0	0	0	1	0	1
0	1	0	1	0	1	1	0
0	1	1	0	0	1	1	1
0	1	1	1	1	0	0	0
1	0	0	0	1	0	0	1
1	0	0	1	0	0	0	0

Synchronous BCD (continued)

\checkmark Use K-Maps to two-level optimize the next state equations:

$$
\begin{aligned}
& D 1=\bar{Q} 1 \\
& D 2=\bar{Q} 8 \bar{Q} 2 Q 1+Q^{2} \bar{Q} 1 \\
& D 4=\bar{Q} 4 Q 2 Q 1+Q 4 \bar{Q} 2+Q 4 \bar{Q} 1 \\
& D 8=Q 8 \bar{Q} 1+Q 4 Q 2 Q 1
\end{aligned}
$$

\checkmark The logic diagram can be draw from these equations

- An asynchronous or synchronous reset should be added
\checkmark What happens if the counter is perturbed by a power disturbance or other interference and it enters a state other than 0000 through 1001?

Synchronous BCD (continued)

\checkmark Find the actual values of the six next states for the don't care combinations from the equations
\checkmark Find the overall state diagram to assess behavior for the don' \dagger care states (states in decimal)
$D 1=\bar{Q} 1$
$D 2=$ Q8Q2Q1+ Q2Q1
$D 4=\bar{Q} 4 Q 2 Q 1+Q 4 Q^{2}+Q 4 \overline{Q 1}$
D8 = Q8Q1 + Q4Q2Q1

Present State									Next State			
Q8		Q4	Q2	Q1	Q8							
1	0	1	0	1	0	1	1					
1	0	1	1	0	1	0	0					
1	1	0	0	1	1	0	1					
1	1	0	1	0	1	0	0					
1	1	1	0	1	1	0	1					
1	1	1	1	1	0	0	0					

Synchronous BCD (continued)

\checkmark For the BCD counter design, if an invalid state is entered, return to a valid state occurs within two clock cycles
\checkmark Is this adequate? If not:

- Is a signal needed that indicates that an invalid state has been entered? What is the equation for such a signal?
- Does the design need to be modified to return from an invalid state to a valid state in one clock cycle?
- Does the design need to be modified to return from a invalid state to a specific state (such as 0)?
\checkmark The action to be taken depends on:
- the application of the circuit
- design group policy

Counting Modulo N

\checkmark The following techniques use an n-bit binary counter with asynchronous or synchronous clear and/or parallel load:

- Detect a terminal count of N in a Modulo- N count sequence to asynchronously Clear the count to 0 or asynchronously Load in value 0
- Detect a terminal count of N-1 in a Modulo-N count sequence to Clear the count synchronously to 0
- Detect a terminal count of N-1 in a Modulo-N count sequence to synchronously Load in value 0
- Detect a terminal count and use Load to preset a count of the terminal count value minus ($\mathrm{N}-1$)
\checkmark Alternatively, custom design a modulo N counter as done for BCD

Counting Modulo 7: Synchronously Load on Terminal Count of 6

\checkmark A synchronous 4-bit binary counter with a synchronous load and an asynchronous clear is used to make a Modulo 7 counter
\checkmark Use the Load feature to detect the count "6" and load in "zero". This gives a count of $0,1,2,3,4,5,6$,

\checkmark Using don't cares for states above 0110

Counting Modulo 6: Synchronously Preset 9 on Reset and Load 9 on Terminal Count 14

\checkmark A synchronous, 4-bit binary counter with a synchronous Load is to be used to make a Modulo 6 counter.
\checkmark Use the Load feature to preset the count to 9 on Reset and detection of count 14.

\checkmark This gives a count of $9,10,11,12,13,14,9,10,11,12,13,14$, 9, ...
\checkmark If the terminal count is 15 detection is usually built in as Carry Out (CO)

Example 4: Design a modulo-8 up-counter which counts in the way specified below, use J-K FF

Decimal	Gray
0	000
1	001
2	011
3	010
4	110
5	111
6	101
7	100

Example 4: TRUTH TABLE

present state	next state				
y_{3}	y_{2}	y_{1}	y_{3+}	y_{2+}	$\mathrm{y}_{1+}+$
O	O	O	O	O	1
O	O	1	O	1	1
O	1	O	1	1	O
O	1	1	O	1	O
1	O	O	O	O	O
1	O	1	1	O	O
1	1	O	1	1	1
1	1	1	1	O	1

Example 4: Gray code counter

Y3

$K_{\mathrm{y} 3}=\overline{\mathbf{y}}_{2} \mathbf{y}_{1}$

Example 4: Gray code counter

y2

Example 4: Gray code counter

$\mathrm{J}_{\mathrm{y} 1}=\overline{\mathrm{y}}_{3} \overline{\bar{y}}_{2}+\mathrm{y}_{3} \mathrm{y}_{2}$
$\mathbf{K}_{\mathrm{y} 1}=\overline{\mathbf{y}}_{22} \mathbf{y}_{3}+\mathrm{y}_{2} \overline{\mathbf{y}}_{3}$

Objective: Eliminate redundant states

\checkmark Reduce the number of states in the state table to the minimum.

- Remove redundant states
- Use don't cares effectively
\checkmark Reduction to the minimum number of states reduces
- The number of F/Fs needed
- Reduces the number of next states that has to be generated \Rightarrow Reduced logic.

An example circuit

\checkmark A sequential circuit has one input X and one output Z.
\checkmark The circuit looks at the groups of four consecutive inputs and sets $Z=1$ if the input sequence 0101 or 1001 occurs.
\checkmark The circuit returns to the reset state after four inputs.
\checkmark Design the Mealy machine.

Elimination of Redundant States

\checkmark When first setting up the state table, we will not be overly concerned with inclusion of extra states, and when the table is complete, we will eliminate any redundant states.

State table

Set up a table for all the possible input combinations	Input Sequence	Present State	$\begin{aligned} & \text { Next } \\ & X=0 \end{aligned}$	$\begin{aligned} & \text { tate } \\ & X=1 \end{aligned}$	$\begin{gathered} \text { Present } \\ \text { Output } \\ X=0 \quad X=1 \end{gathered}$	
	reset	A	B	C	0	0
	0	B	D	E	0	0
	1	C	F	G	0	0
	00	D	H	1	0	0
	01	E	J	K	0	0
	10	F	L	M	0	0
	11	G	N	P	0	0
\checkmark For the two	000	Hi	A	A	0	0
sequences when	001	1	A	A	0	0
the last bit is a 1	010	J	A	A	0	1
return to reset	011	K	A	A	0	0
return to reset	100	L	A	A	0	1
with $\mathrm{Z}=1$.	101	M	A	A	0	0
	110	N	A	A	0	0
	111	P	A	A	0	0

Note on state table generation

\checkmark When generated by looking at all combinations of inputs the state table is far from minimal.
\checkmark First step is to remove redundant states.

- There are states that you cannot tell apart
- Such as H and I - both have A with Z=0 as output.
- State H is equivalent to State I and state I can be removed from the table.
- Examining table shows states K, M, N and P are also the same - they can be deleted.
- States J and L are also equivalent.

Input Sequence	Present State	Next State		Present Output	
		$X=0$	$x-1$	$x=0$	$x=1$
reset	A	B	C	0	0
0	B	D	E	0	0
1	C	F	G	0	0
00	D	H	1	0	0
01	E	J	K	0	0
10	F	L	M	0	0
11	G	N	P	0	0
000	Hi	A	A	0	0
001	1	A	A	0	0
010	J	A	A	0	1
011	K	A	A	0	0
100	L	A	A	0	1
101	M	A	A	0	0
110	N	A	A	0	0
111	P	A	A	0	0

Reduction continued

\checkmark Having made these reductions move up to the DEFG section where the next state entries have been changed.
\checkmark Note that State D and State G are equivalent.
\checkmark State E is equivalent to F.
\checkmark The result in a reduced state table.

Present State	Next State	Present Output	
	$X=0 \quad X=1$	$X=0$	$x=1$
A	$B \quad$ C	0	0
B	$D E$	0	0
C	EE GD	0	0
D	$H \quad X H$	0	0
E	$J \mathrm{KH}$	0	0
F	bJ MH		0
G	AH RH1	0	0
H	$A \quad A$	0	0
1	$A \quad A$		0
J	$A \quad A$	0	1
K	$A \quad A$	0	
L	$A \quad A$		
M	$\wedge \quad A$	0	
N	\wedge A		
P	$\wedge \quad A$	0	

The result

\checkmark Reduced state table and graph

Present State	Next State		Output	
A	B	$C=1$	$X=0 \quad X=1$	
B	D	E	0	0
C	E	D	0	0
D	H	H	0	0
E	J	H	0	0
H	A	A	0	0
J	A	A	0	1

(a)

\checkmark Original-15 states - reduced 7 states

Elimination of Redundant States

\checkmark Design a binary checker that has in input a sequence of BCD numbers and for every four bits (LSB order) has output 0 if the number is $0 \leq N \leq 9$ and 1 if $10 \leq N \leq 15$

Elimination of Redundant States

\checkmark Design a binary checker that has in input a sequence of BCD numbers and for every four bits (LSB order) has output 0 if the number is $0 \leq N \leq 9$ and 1 if $10 \leq N \leq 15$

Input Sequence	Present State	Next State		Present Output	
		$X=0$	$x=1$	$x=0$	$x=1$
reset	A	B	C	0	0
0	B	D	E	0	0
1	C	F	G	0	0
00	D	H	1	0	0
01	E	J	K	0	0
10	F	L	M	0	0
11	G	N	P	0	0
000	H	A	A	0	0
001	1	A	A	0	1
010	J	A	A	0	1
011	K	A	A	0	1
100	L	A	A	0	0
101	M	A	A	0	1
110	N	A	A	0	1
111	P	A	A	0	1

Elimination of Redundant States

Elimination of Redundant States

	Input Sequence	Present State	Next State $X=0 \quad X=1$	$\begin{array}{r} \text { Pre } \\ \text { Ou } \\ X=0 \end{array}$	ent put $x=1$
0	reset	A	$B \quad C$	0	0
0	0	B	$D \quad E$	0	0
1	1		F G	0	0
0	00	D	H	0	0
2	01	E	I	0	0
1	10		H 1	0	0
3	11	G	1 1	0	0
0,1	000100	H	$A \quad A$	0	0
2,3,4,5,6,7	001101	1	$A \quad A$	0	1
	010110				
	011111	$\{D, F\},\{E, G\},\{B, C\}$			
		State table			

Elimination of Redundant States

State diagram

Equivalence

\checkmark Two states are equivalent is there is no way of telling them apart through observation of the circuit inputs and outputs.
\checkmark Formal definition:

- Let N_{1} and N_{2} be sequential circuits (not necessarily different). Let \underline{X} represent a sequence of inputs of arbitrary length. Then state p in N_{1} is equivalent to state q in N_{2} iff $\Lambda_{1}(p, \underline{X})=\Lambda_{2}(q, \underline{X})$ for every possible input sequence \underline{X}.
\checkmark The definition is not practical to apply in practice. Theorem:
- Two states p and q of a sequential circuit are equivalent iff for every single input X, the outputs are the same and the next states are equivalent, that is, $\Lambda(p, \underline{X})=\Lambda(q, \underline{X})$ and $\delta(p, \underline{X})=\delta(q, \underline{X})$ where $\wedge(p, X)$ is the output given present state p and input X, and $\delta(p, \underline{X})$ is the next state given the present state p and input X.
\checkmark So the outputs have to be the same and the next states equivalent.

Implication Tables

\checkmark A procedure for finding all the equivalent states in a state table.
\checkmark Use an implication table - a chart that has a square for each pair of states.

Step 1

\checkmark Use a X in the square to eliminate output incompatible states.
$\checkmark 1^{\text {st }}$ output of a differes from c, e, f, and h

Present	Next State		Present
State	$X=0$	1	Output
a	d	c	0
b	f	h	0
c	e	d	1
d	a	e	0
e	c	a	1
f	f	b	1
g	b	h	0
h	c	g	1

37

Step 1 continued

\checkmark Continue to remove output incompatible states

Present	Next State		Present
State	$X=0$	1	Output
a	d	c	0
b	f	h	0
c	e	d	1
d	a	e	0
e	c	a	1
f	f	b	1
g	b	h	0
h	c	g	1

Now what?

\checkmark Implied pair are now entered into each non X square.
\checkmark Here $a \equiv b$ iff $d \equiv f$ and $c \equiv h$

Present	Next State		Present
State	$X=0$	1	Output
a	d	c	0
b	f	h	0
c	e	d	1
d	a	e	0
e	c	a	1
f	f	b	1
g	b	h	0
h	c	g	1

Self redundant pairs

\checkmark Self redundant pairs are removed, i.e., in square $a-d$ it contains a-d.

Next pass

$\checkmark X$ all squares with implied pairs that are not compatible.
\checkmark Such as in a-b have d-f which has an X in it.
\checkmark Run through the chart until no further X 's are found.

Final step

\checkmark Note that a-d is not X and is equivalent if $c \equiv e$, and the same for is c-e: is not X and is equivalent if $a \equiv d$. We can conclude that $a \equiv d$., i.e. and $c \equiv e$.

Reduced table

\checkmark Removing equivalent states.

Present	Next State		Present				
State	$X=0$	1	Output	Present	Next State		Present
a	d	c	0	State	$X=0$	1	Output
b	f	h	0	a	a	c	0
c	e	d	1	b	f	h	0
d	a	e	0	c	c	a	1
e	c	a	1	f	f	b	1
f	f	b	1	g	b	h	0
g	b	h	0	h	c	g	1
h	c	g	1				

Summary of method

\checkmark Construct a chart with a square for each pair of states.
\checkmark Compare each pair of rows in the state table. X a square if the outputs are different. If the output is the same enter the implied pairs. Remove redundant pairs. If the implied pair is the same place a check mark as $i \equiv j$.
\checkmark Go through the implied pairs and X the square when an implied pair is incompatible.
\checkmark Repeat until no more Xs are added.
\checkmark For any remaining squares not Xed, $i \equiv j$.

Another example

\checkmark Consider the state diagram:

Set up Implication Chart

\checkmark Remove output incompatible states \checkmark and indicate implied pairs

		NEXT STATE		OUTPUT	
Present State	$\mathbf{X}=\mathbf{0}$	$\mathbf{X}=\mathbf{1}$	$\mathbf{X = 0}$		
$\mathbf{X}=\mathbf{1}$					
S0	S 1	S 4	0	0	
S 1	S 1	S 2	0	0	
S 2	S 3	S 4	1	0	
S 3	S 5	S 2	0	0	
S 4	S 3	S 4	0	0	
S 5	S 1	S 2	0	1	

Check implied pairs and X
$1^{\text {st }}$ pass

\checkmark In this case the state table is minimal as no state reduction can be done.

Implication Table (another example)

Present State	Next State		Output	
	$\mathrm{X}=0$	$\mathrm{X}=1$	$\mathrm{X}=0$	$\mathrm{X}=1$
a	d	b	0	0
b	e	a	0	0
c	g	f	0	1
d	a	d	1	0
e	a	d	1	0
f	c	b	0	0
g	a	e	1	0

\checkmark Its clear that (e, d) are equivalent. And this leads (a, b) and (e, g) to be equivalent too.
\checkmark Finally we have $[(a, b), c,(e, d, g), f]$ so four states.
\checkmark So the original flow table can be reduced to:

Implication Table

Present State	Next State		Output	
	$\mathrm{X}=0$	$\mathrm{X}=1$	$\mathrm{X}=0$	$\mathrm{X}=1$
a	d	b	0	0
b	e	a	0	0
c	g	f	0	1
d	a	d	1	0
e	a	d	1	0
f	c	b	0	0
g	a	e	1	0

Present State	Next State		Output	
	$\mathrm{X}=0$	$\mathrm{X}=1$	$\mathrm{X}=0$	$\mathrm{X}=1$
a	d	a	0	0
c	d	f	0	1
d	a	d	1	0
f	c	a	0	0

