Combinational Logic Circuits

✓ Part 1 - Gate Circuits and Boolean Equations

- Binary Logic and Gates
- Boolean Algebra
- Standard Forms
- ✓ Part 2 Circuit Optimization
- ✓ Part 3 Additional Gates and Circuits

Binary Logic and Gates

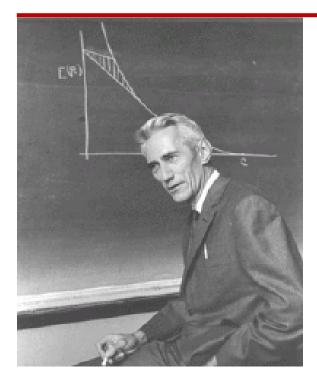
- ✓ Binary variables take on one of two values.
- Logical operators operate on binary values and binary variables.
- ✓ Basic logical operators are the logic functions AND, OR and NOT.
- ✓ Logic gates implement logic functions.
- Boolean Algebra: a mathematical system for specifying and transforming logic functions.
- We study Boolean algebra as a foundation for DESIGNING AND ANALYZING DIGITAL SYSTEMS!

George Boole (1815-1864)

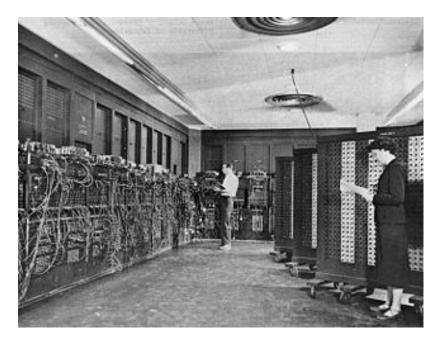


An Investigation of the Laws of Thought, on Which are founded the Mathematical Theories of Logic and Probabilities (1854)

Claude Shannon (1916-2001)



A Symbolic Analysis of Relay and Switching Circuits (1938) ENIAC (1946) (Electronic Numerical Integrator And Calculator)

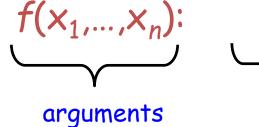


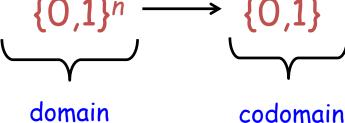
Binary Variables

- Recall that the two binary values have different names:
 - True/False
 - On/Off
 - Yes/No
 - 1/0
- \checkmark We use 1 and 0 to denote the two values.
- ✓ Variable identifier examples:
 - $A, B, y, z, \text{ or } X_1$ for now
 - RESET, START_IT, or ADD1 later

Boolean Functions

Boolean Function:



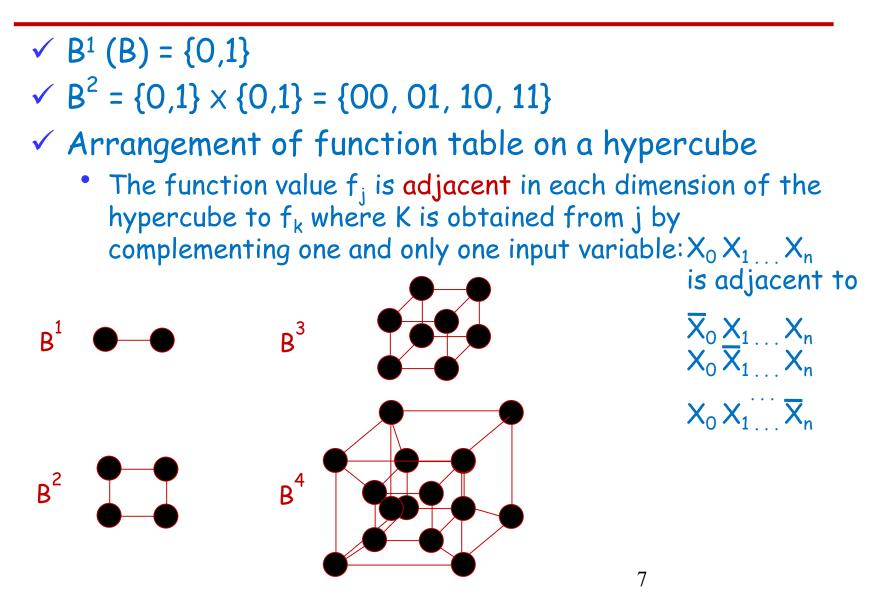


- x_1, x_2, \dots are variables
- $x_1, \overline{x}_1, x_2, \overline{x}_2, \dots$ are literals
- essentially: f maps each vertex of B^n to 0 or 1

Example:

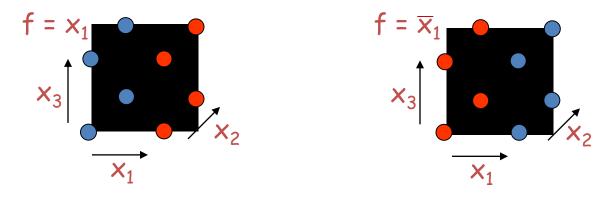
$$f = \{((x_1 = 0, x_2 = 0), 0), ((x_1 = 0, x_2 = 1), 1), ((x_1 = 1, x_2 = 1), 0)\} \xrightarrow{x_1} \xrightarrow{0}_{6} \xrightarrow{(0, 1)} \xrightarrow{(1, 1)}_{(0, 0)} \xrightarrow{(0, 0)}_{(1, 0)}$$

The Boolean n-cube Bⁿ



Boolean Functions

- The Onset of f is $\{x \mid f(x) = 1\} = f^{-1}(1) = f^{1}$
- The Offset of *f* is $\{x | f(x) = 0\} = f^{-1}(0) = f^{0}$
- if $f^1 = B^n$, f is the tautology. i.e. $f \equiv 1$
- if $f^0 = B^n (f^1 = \emptyset)$, f is not satisfyable, i.e. $f \equiv 0$
- if f(x) = g(x) for all $x \in B^n$, then f and g are equivalent
- we say f instead of f^1
- literals: A literal is a variable or its negation x, \overline{x} and represents a logic function



Logical Operations

- ✓ The three basic logical operations are:
 - AND
 - OR
 - NOT
- \checkmark AND is denoted by a dot (•).
- ✓ OR is denoted by a plus (+).
- ✓ NOT is denoted by an overbar ([−]), a single quote mark ([']) after, or (~) before the variable.
- \checkmark The order of evaluation in a Boolean expression is:
 - 1. Parentheses
 - 2. NOT
 - 3. AND
 - 4. OR
- ✓ Consequence: Parentheses appear around OR expressions
- ✓ Example: F = A(B + C)(C + D)

Fundamentals of Boolean Algebra

✓ Basic Postulates

- Postulate 1 (Definition): A Boolean algebra is a closed algebraic system containing a set K of two or more elements and the two operators • and +.
- Postulate 2 (Existence of 1 and 0 element):
 (a) a + 0 = a (identity for +), (b) a 1 = a (identity for •)
- *Postulate 3 (Commutativity)*:

 (a) a + b = b + a
 (b) a b = b a
- Postulate 4 (Associativity): (a) a + (b + c) = (a + b) + c (b) $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
- Postulate 5 (Distributivity): (a) $a + (b \cdot c) = (a + b) \cdot (a + c)$ (b) $a \cdot (b + c) = a \cdot b + a \cdot c$
- Postulate 6 (Existence of complement):
- (a) $\overline{a} + a = 1$ (b) $\overline{a} \cdot a = 0$

Normally • is omitted. <u>A switching algebra is a BA with F={0,1}</u>

Notation Examples

✓ Examples:

- Y = A B = A B is read "Y is equal to A AND B."
- z = x + y
- X = A

- is read "z is equal to x OR y."
- is read "X is equal to NOT A."

Note: The statement:

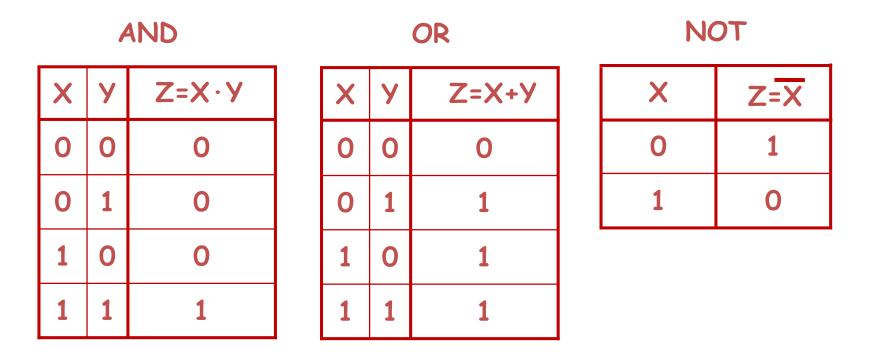
1 + 1 = 2 (read "one plus one equals two")

is not the same as

1 + 1 = 1 (read "1 or 1 equals 1").

Operator Definitions

✓ Operations are defined on the values "0" and "1" for each operator:



Properties of Identities

- ✓ Some properties:
 - Idempotence (a) a + a = a (b) $a \bullet a = a$
 - Existence of 0 and 1 (a) a + 1 = 1 (b) $a \cdot 0 = 0$
 - Involution $(a)\overline{\overline{a}} = a$
 - **DeMorgan's** (a) $\overline{a + b} = \overline{a} \cdot \overline{b}$ (b) $\overline{a \cdot b} = \overline{a} + \overline{b}$

Some Properties of Boolean Algebra

 \checkmark The dual of an algebraic expression is obtained by interchanging + and • and interchanging 0's and 1's. ✓ Unless it happens to be self-dual, the dual of an expression does not equal the expression itself. \checkmark Example: F = (A + C) \cdot B + 0 dual F = $((A \cdot \overline{C}) + B) \cdot 1 = A \cdot \overline{C} + B$ \checkmark Example: $G = X \cdot Y + (W + Z)$ dual $G = (X+Y) \cdot (W \cdot Z) = (X+Y) \cdot (W+\overline{Z})$ \checkmark Example: H = A \cdot B + A \cdot C + B \cdot C dual H = (A + B)(A + C)(B + C) = (A + AC + BA + BC)(B + C)= (A + BC)(B+C) = AB + AC + BC. So H is self-dual. \checkmark Are any of these functions self-dual?

Generalized De Morgan's theorems

$$\overline{X_1 X_2 \dots X_n} = \overline{X_1} + \overline{X_2} + \dots + \overline{X_n}$$

$$\overline{X_1 + X_2 + \dots + X_n} = \overline{X_1} \overline{X_2} \dots \overline{X_n}$$

 Proof Generalized De Morgan's theorems by general induction:

Two steps:

- Show that the statement is true for two variables
- Show that if is true for n variable , than is also true for n+1 variables:

Let
$$Z = X_1 + X_2 + \dots + X_n$$

 $(\overline{X_1} + \overline{X_2} + \dots + \overline{X_n} + \overline{X_{n+1}}) = (\overline{Z} + \overline{X_{n+1}}) = (\overline{Z} \cdot \overline{X_{n+1}}) =$
 $(\overline{X_1} \cdot \overline{X_2} \cdot \dots \cdot \overline{X_n}) \cdot \overline{X_{n+1}}$ by induction hypothesis

Others Properties of Boolean Algebra

- ✓ There can be more that 2 elements other than 1 and 0.
- ✓ What are some common useful Boolean algebras with more than 2 elements?
 - 1. Algebra of Sets
 - 2. Algebra of n-bit binary vectors
 - 3. Quantified Boolean Algebra (QBA)
- If B contains only 1 and 0, then B is called the Switching Algebra which is the algebra we use most often.

Quantified Boolean formulas (QBFs)

- ✓ Generalize (quantifier-free) Boolean formulas with the additional universal and existential quantifiers: ∀ and ∃, respectively.
- In writing a QBF, we assume that the precedences of the quantifiers are lower than those of the Boolean connectives.
- In a QBF, variables being quantified are called bound variables, whereas those not quantified are called free variables.
- Any QBF can be rewritten as a quantifier-free Boolean formula through quantifier elimination by formula expansion (among other methods), e.g.,

 $\forall x: f(x; y) = f(0; y) \bullet f(1; y)$ and

 $\exists x: f(x; y) = f(0; y) + f(1; y)$

- \checkmark Consequently, for any QBF ϕ , there exists an equivalent quantifier-free Boolean formula that refers only to the free variables of ϕ .
- ✓ QBFs are thus of the same expressive power as quantifier-free Boolean formulas, but can be more succinct.

Boolean Algebraic Proofs: Example 1

 \checkmark A + A·B = A Absorption Theorem Proof Steps Justification $A + A \cdot B$ $= \mathbf{A} \cdot \mathbf{1} + \mathbf{A} \cdot \mathbf{B}$ $X = X \cdot 1$ Identity for . $= A \cdot (1 + B)$ $X \cdot Y + X \cdot Z = X \cdot (Y + Z)$ Distributive Law $= A \cdot 1$ 1 + X = 1Existence of 1 = A $X \cdot 1 = X$ Identity for .

Example 2: Boolean Algebraic Proofs

 $\checkmark AB + AC + BC = AB + AC$ Proof Steps $AB + \overline{AC} + BC$ $= AB + \overline{AC} + BC$ $= AB + \overline{AC} + 1 \cdot BC$ $= AB + \overline{AC} + (A + \overline{A}) \cdot BC$ $= AB + \overline{AC} + ABC + \overline{ABC}$ $= AB + \overline{AC} + ABC + \overline{ABC}$ $= AB \cdot (1 + C) + \overline{AC} \cdot (1 + B)$ $= AB + \overline{AC}$

Consensus Theorem Justification

> Identity for • Existence of complement Distributive Law Distributive Law Existence of 1

 \checkmark (A+B) \cdot (\overline{A} +C) \cdot (B+C) = (A+B) \cdot (\overline{A} +C) Dual identity

 $\checkmark X \cdot Y + \overline{X} \cdot Y = Y$ (X + Y) $\cdot (\overline{X} + Y) = Y$ Minimization

- \checkmark X + X · Y = X X · (X + Y) = X Absorption
- $\checkmark X + \overline{X} \cdot Y = X + Y \quad X \cdot (\overline{X} + Y) = X \cdot Y$ Simplification

 $\checkmark X \cdot Y + \overline{X} \cdot Z + Y \cdot Z = X \cdot Y + \overline{X} \cdot Z$ Consensus (X + Y) $\cdot (\overline{X} + Z) \cdot (Y + Z) = (X + Y) \cdot (\overline{X} + Z)$

 $\sqrt{X + Y} = \overline{X} \cdot \overline{Y}$ $\overline{X \cdot Y} = \overline{X} + \overline{Y}$ De Morgan's Law

Example 3: Boolean Algebraic Proofs

✓
$$(\overline{X + Y})Z + X\overline{Y} = \overline{Y}(X + Z)$$
Proof Steps Justification
 $(\overline{X + Y})Z + X\overline{Y}$

- = X' Y' Z + X Y'= Y' X' Z + Y' X= Y' (X' Z + X)= Y' (X' + X)(Z + X) $= Y' \cdot 1 \cdot (Z + X)$ = Y' (X + Z)
- $(A + B)' = A' \cdot B'$ De Morgan's Law $A \cdot B = B \cdot A$ Commutative LawA(B + C) = AB + ACDistributive LawA + BC = (A + B)(A + C)Distributive LawA + A' = 1Existence of complement $1 \cdot A = A, A + B = B + A$ Commutative Law

Expression Simplification

- ✓ An application of Boolean algebra
- ✓ Simplify to contain the smallest number of literals (complemented and un-complemented variables):

AB+ACD+ABD+ACD+ABCD

15 literal, 2 levels

- $= AB + ABCD + \overline{A}CD + \overline{A}C\overline{D} + \overline{A}BD$
- = $AB+AB(CD)+\overline{A}C(D+\overline{D})+\overline{A}BD$
- $= AB + \overline{A}C + \overline{A}BD = B(A + \overline{A}D) + \overline{A}C$
- $= B(A+D)+\overline{AC} = BA + BD + \overline{AC}$ 5 literal, 3 levels 6 literals, 2 levels

Complementing Functions

- Use DeMorgan's Theorem to complement a function:
 - 1. Interchange AND and OR operators
- 2.Complement each constant value and literal \checkmark Example: Complement F = $\overline{X} \overline{Y} \overline{Z} + \overline{X} \overline{Y} \overline{Z}$ $\overline{F} = (x + \overline{y} + z)(\overline{x} + y + z)$
- ✓ Example: Complement $G = (\overline{a} + bc)\overline{d} + e$

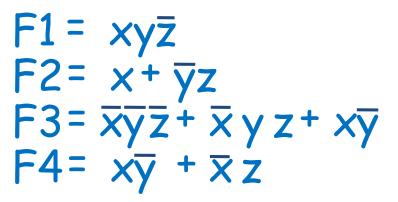
Boolean Function Evaluation

F1 =
$$xy\overline{z}$$

F2 = $x + \overline{y}z$
F3 = $\overline{xy}\overline{z} + \overline{x}yz + x\overline{y}$
F4 = $x\overline{y} + \overline{x}z$

×	У	Z	F1	F2	F3	F4
0	0	0	0	0		
0	0	1	0	1		
0	1	0	0	0		
0	1	1	0	0		
1	0	0	0	1		
1	0	1	0	1		
1	1	0	1	1		
1	1	1	0	1		

Boolean Function Evaluation



×	У	Z	F1	F2	F3	F4
0	0	0	0	0	1	0
0	0	1	0	1	0	1
0	1	0	0	0	0	0
0	1	1	0	0	1	1
1	0	0	0	1	1	1
1	0	1	0	1	1	1
1	1	0	1	1	0	0
1	1	1	0	1	0	0

Shannon Expansion

✓ Let f:Bⁿ→B be a Boolean function, and x=(x₁,x₂, ...,x_n) the variables in the support of f. The cofactor (residual) f_a of f by a literal a=x_i or a= \overline{x}_i is: $f_{x_i} (x_1, x_2, ..., x_n) = f (x_1, ..., x_{i-1}, 1, x_{i+1}, ..., x_n)$ $f_{\overline{x}_i} (x_1, x_2, ..., x_n) = f (x_1, ..., x_{i-1}, 0, x_{i+1}, ..., x_n)$ ✓ Shannon theorem: $f=x_i f_{x_i} + \overline{x}_i f_{\overline{x}_i}$ $f=[x_i + f_{\overline{x}_i}] [\overline{x}_i + f_{x_i}]$

✓ We say that f is expanded about x_i. x_i is called the splitting variable.

Boolean difference

✓ Universal and existential quantifications can be expressed in terms of cofactor, with

 $\forall x_i.f = f_{x_i} \cdot f_{\overline{x_i}}$ and $\exists x_i.f = f_{x_i} + f_{\overline{x_i}}$

✓ Moreover, the Boolean difference $\partial f / \partial x_i$ of f with respect to variable x_i is defined as

$$\partial f / \partial x_i = \overline{f_{x_i}} \equiv f_{\overline{x_i}} = f_{x_i} \oplus f_{\overline{x_i}}$$

where \oplus denotes an *exclusive-or* (xor) operator.

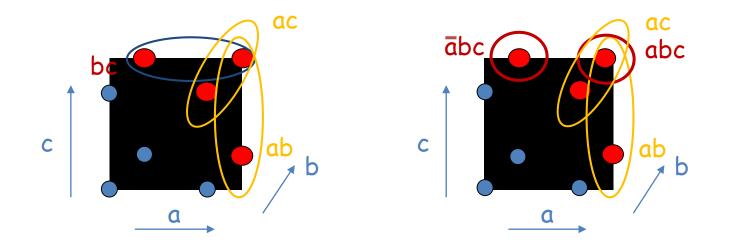
- ✓ Using the Boolean difference operation, we can tell whether a Boolean function functionally depends on a variable. If $\partial f / \partial x_i$ equals constant 0, then the valuation of f does not depend on x_i , that is, x_i is a redundant variable for f.
- We call that x_i is a functional support variable of f if x_i is not a redundant variable.

Example

$$F = ab + ac + bc$$

$$F = a F_a + \overline{a} F_{\overline{a}}$$

$$F = ab + ac + abc + \overline{a}bc$$



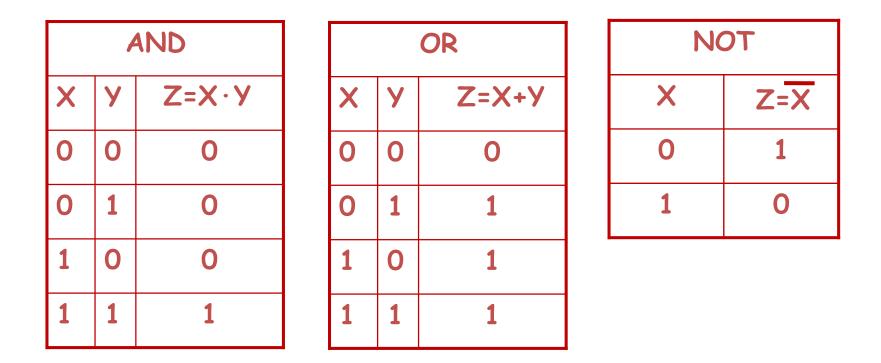
Cube bc got split into two cubes abc and abc

Representation of Boolean Functions

- We need representations for Boolean Functions for two reasons:
 - to represent and manipulate the actual circuit we are "synthesizing"
 - as mechanism to do efficient Boolean reasoning
- Forms to represent Boolean Functions
 - Truth table
 - List of cubes (Sum of Products, Disjunctive Normal Form (DNF))
 - List of conjuncts (Product of Sums, Conjunctive Normal Form (CNF))
 - Boolean formula
 - Binary Decision Tree, Binary Decision Diagram
 - Circuit (network of Boolean primitives)

Truth Tables

 Truth table – a tabular listing of the values of a function for all possible combinations of values on its arguments
 Example: Truth tables for the basic logic operations:



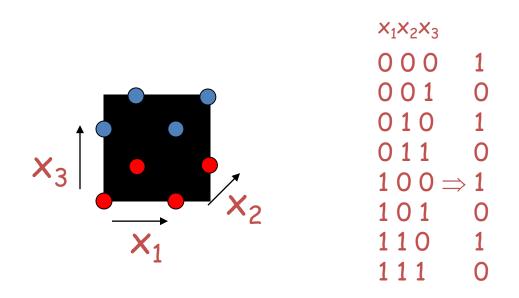
Truth Table

✓ Truth table (Function Table): The <u>truth table</u> of a function $f : B^n \to B$ is a tabulation of its value at each of the 2ⁿ vertices of Bⁿ.

✓ In other words the truth table lists all minterms Example: f = abcd + aabcd f abcd f 0 0000 1 8 1000 abcd + abcd + abcd + 1 0001 1 9 1001 0 2 0010 1 10 1010 1 abcd + abcd3 0011 0 11 1011 0 The truth table representation is 4 0100 1 12 1100 1 0101 0 13 1101 0 - intractable for large n 0110 14 1110 1 15 1111 0 - canonical 7 0111 **0**

Canonical means that if two functions are the same, then the canonical representations of each are isomorphic.

Truth Table or Function table



- \checkmark There are 2ⁿ vertices in input space Bⁿ
- ✓ There are 2^{2^n} distinct logic functions.
 - Each subset of vertices is a distinct logic function: $f \subseteq B^n$

Boolean Formula

A <u>Boolean formula</u> is defined as an expression with the following syntax:

formula ::=	'(' formula ')'				
	<variable></variable>				
	formula "+" formula	(OR operator)			
	formula "·" formula	(AND operator)			
	~ formula	(complement)			

Example:

$$f = (x_1 \cdot x_2) + (x_3) + (x_4 \cdot (\sim x_1))$$

typically the " \cdot " is omitted and the '(' and '~'are simply reduced by priority,

e.g.

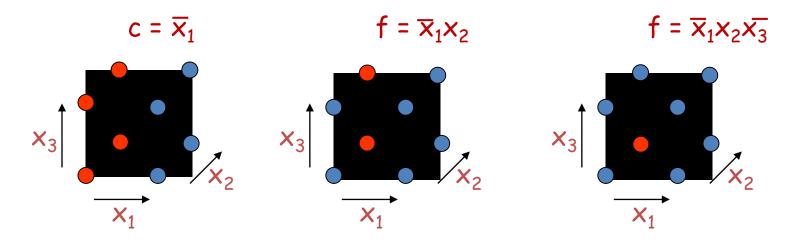
$$f = x_1 x_2 + x_3 + x_4 \sim x_1 = x_1 x_2 + x_3 + x_4 \overline{x_1}$$
33

Cubes

 A cube is defined as the AND of a set of literal functions ("conjunction" of literals).

Example:

 $C = \overline{x}_1 x_2 \overline{x}_3$ represents the following function $f = (x_1=0)(x_2=1)(x_3=0)$



✓ If $C \subseteq f$, C a cube, then C is an implicant of f.

✓ If $C \subseteq B^n$, and C has k literals, then |C| covers 2^{n-k} vertices.

Example: $C = x\overline{y} \subseteq B^{3}$ k = 2, $n = 3 \implies |C| = 2 = 2^{3-2}$ $C = \{100, 101\}$

 \checkmark An implicant with n literals is a minterm.

List of Cubes

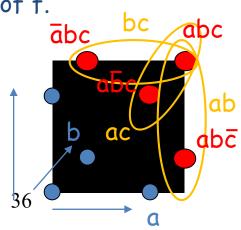
✓ Sum of Products (SOP):

• A function can be represented by a sum of products (cubes):

f = ab + ac + bc

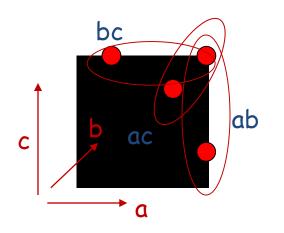
Since each cube is a product of literals, this is a "sum of products" (SOP) representation

- A SOP can be thought as a set of cubes F
 F = {ab, ac, bc}
- A set of cubes that represents f is called a COVER of f. F₁={ab, ac, bc} and F₂={abc,abc,abc,abc} are covers of f = ab + ac + bc.



С

SOP



 = onset minterm
 Note that each onset minterm is "covered" by at least one of the cubes, and covers no offset minterm.

- ✓ Covers (SOP's) can efficiently represent many logic functions (i.e. for many, there exist small covers).
- Two-level minimization seeks the minimum size cover (least number of cubes)

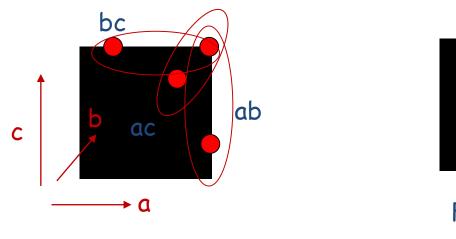
Irredundant

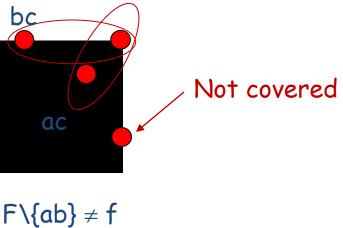
✓ Let F = {c₁, c₂, ..., c_k} be a cover for f.

$$f = \sum_{i=1}^{k} c_i$$

A cube $c_i \in F$ is IRREDUNDANT if $F \setminus \{c_i\} \neq f$

Example 2: f = ab + ac + bc





38

Prime

✓ A literal j of cube $c_i \in F$ (=f) is PRIME if $(F \setminus \{c_i\}) \cup \{c'_i\} \neq f$ where c'_i is c_i with literal j of c_i deleted. \checkmark A cube of F is prime if all its literals are prime. Example 3 F=ac + bc + a =f = ab + ac + bc $F \setminus \{c_i\} \cup \{c'_i\}$ $c_i = ab; c'_i = a$ (literal b deleted) bc $F \setminus \{c_i\} \cup \{c'_i\} = a + ac + bc$ Δ Not equal to f since this _ С

a

offset vertex is covered

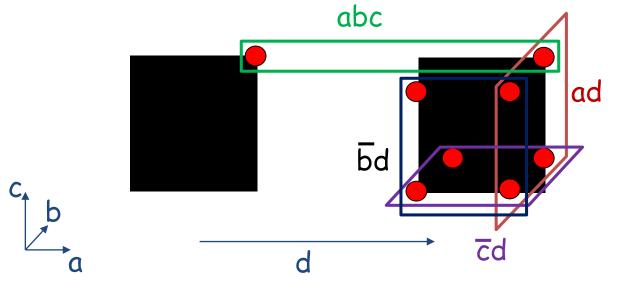
Prime and Irredundant Covers

- Definition 1 A cover is prime (irredundant) if all its cubes are prime (irredundant).
- ✓ Definition 2 A prime of f is essential (essential prime) if there is a minterm (essential vertex) in that prime but in no other prime.

Prime and Irredundant Covers

 $f = abc + \overline{b}d + \overline{c}d$ is prime and irredundant.

abc is essential since $abcd \in abc$, but not in $\overline{b}d$ or $\overline{c}d$ or ad

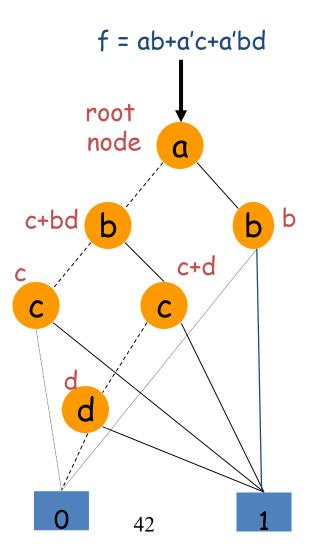


What other cube is essential? What prime is not essential?

Binary Decision Diagram (BDD)

0

- Graph representation of a Boolean function f
 - vertices represent decision nodes for variables
 - two children represent the two subfunctions
 - f(x = 0) and f(x = 1) (cofactors)
 - restrictions on ordering and reduction rules can make a BDD representation canonical



Logic Functions

There are infinite number of equivalent logic formulas

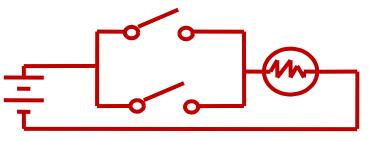
f = x + y= $\overline{x}y + xy + x\overline{y}$ = $\overline{x}x + x\overline{y} + y$ = $(x + y)(x + y) + x\overline{y}$ \checkmark Synthesis = Find the best formula (or "representation")

Logic Function Implementation

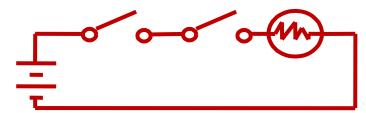
✓ Using Switches

- For inputs:
 - logic 1 is switch closed
 - Iogic 0 is <u>switch open</u>
- For outputs:
 - logic 1 is <u>light on</u>
 - Iogic 0 is <u>light off</u>.

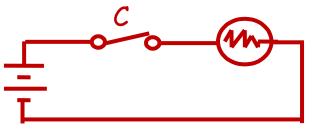
Switches in parallel ⇒ OR



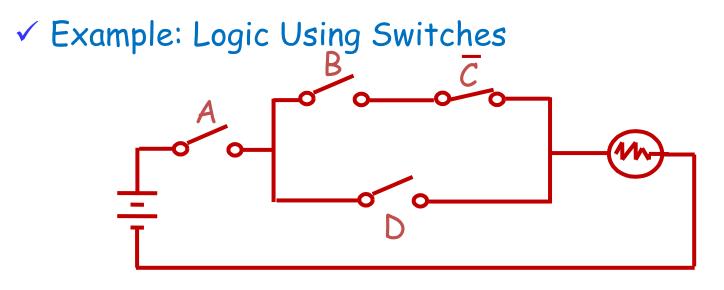
Switches in series ⇒ AND



- NOT uses a switch such Normally-closed switch ⇒ NOT that:
 - logic 1 is <u>switch open</u>
 - Iogic 0 is switch closed



Logic Function Implementation (Continued)



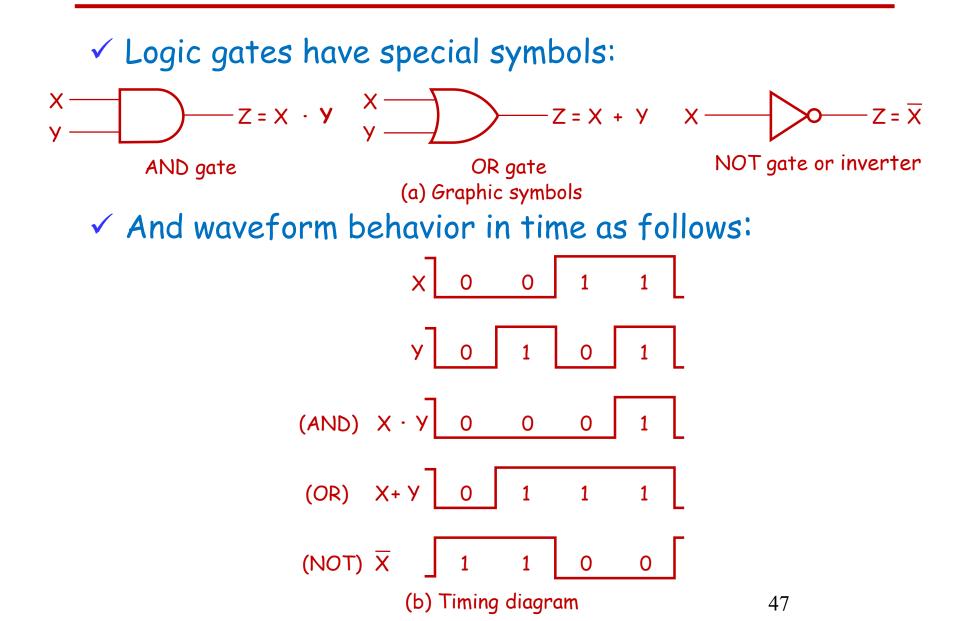
✓ Light is on (L = 1) for L(A, B, C, D) = AD+ABC and off (L = 0), otherwise.

✓ Useful model for relay circuits and for CMOS gate circuits, the foundation of current digital logic technology

Logic Gates

- In the earliest computers, switches were opened and closed by magnetic fields produced by energizing coils in *relays*. The switches in turn opened and closed the current paths.
- Later, vacuum tubes that open and close current paths electronically replaced relays.
- Today, transistors are used as electronic switches that open and close current paths.

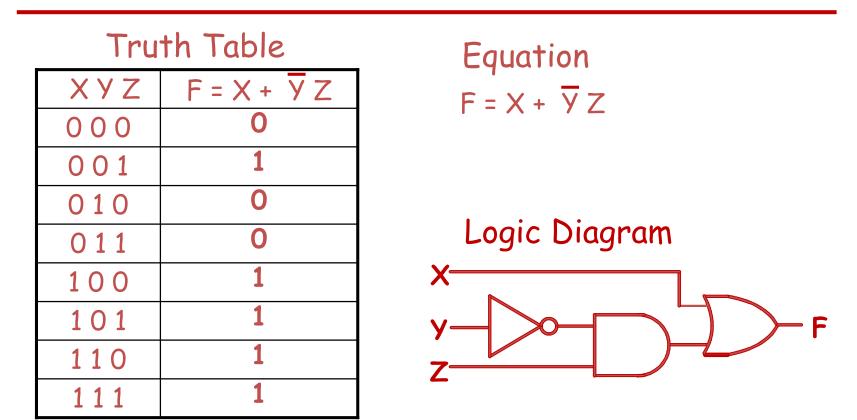
Logic Gate Symbols and Behavior



Gate Delay

- ✓ In actual physical gates, if one or more input changes causes the output to change, the output change does not occur instantaneously.
- ✓ The delay between an input change(s) and the resulting output change is the gate delay denoted by t_G :

Logic Diagrams and Expressions



- ✓ Boolean equations, truth tables and logic diagrams describe the same function!
- Truth tables are unique; expressions and logic diagrams are not. This gives flexibility in implementing functions.

Definitions

Definition:

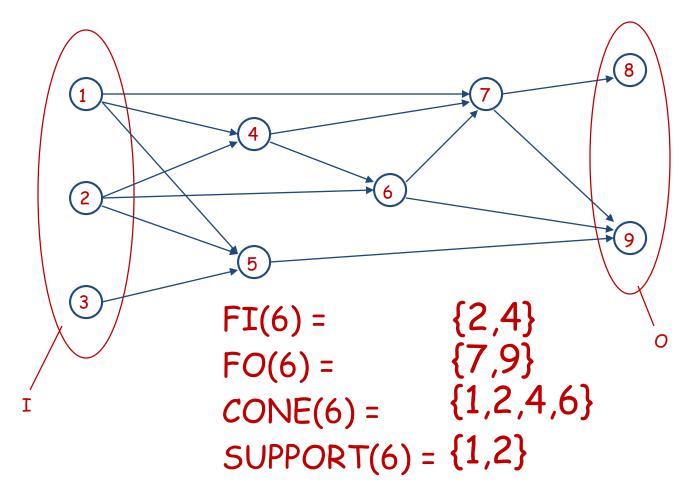
- ✓ A Boolean circuit is a directed graph C(G,N) where G are the gates and N \subseteq G×G is the set of directed edges (nets) connecting the gates.
- ✓ Some of the vertices are designated: Inputs: $I \subseteq G$ Outputs: $O \subseteq G, I \cap O = \emptyset$
- ✓ Each gate g is assigned a Boolean function f_g which computes the output of the gate in terms of its inputs.

✓ The fanout FO(g) of a gate g are all successor vertices of g: FO(g) = $\{g' \mid (g,g') \in N\}$

✓ The fanin FI(g) of a gate g are all predecessor vertices of g: FI(g) = {g' | (g',g) ∈ N}

 The cone CONE(g) of a gate g is the transitive fanin of g and g itself.

✓ The support SUPPORT(g) of a gate g are all inputs in its cone:
 SUPPORT(g) = CONE(g) ∩ I



Circuit Representations

✓ For efficient Boolean reasoning :

- Vertices have fixed number of inputs
- Vertex function is stored as label, well defined set of possible function labels (e.g. OR, AND,OR)
- Circuits are often non-canonical

✓ It is useful to specify Boolean functions in a form that:

- Allows comparison for equality.
- Has an immediate correspondence to the truth tables
- ✓ Canonical Forms in common usage:
 - Sum of Minterms (SOM)
 - Product of Maxterms (POM)

minterms

- minterms are AND terms with every variable present in either true or complemented form.
- Given that each binary variable may appear normal (e.g., X) or complemented (e.g., \overline{X}), there are 2^n minterms for *n* variables.
- ✓ Example: Two variables (X and Y)produce $2 \times 2 = 4$ combinations:
 - (both normal)

 - $\begin{array}{c} X \ \overline{Y} \\ \overline{X} \ \overline{Y} \\ \overline{X} \ \overline{Y} \\ \overline{X} \ \overline{Y} \\ \overline{X} \ \overline{Y} \\ \overline{Y} \\ (both \ complemented) \end{array}$
- \checkmark Thus there are four minterms of two variables.

Maxterms

X+Y

- Maxterms are OR terms with every variable in true or complemented form.
- ✓ Given that each binary variable may appear normal (e.g., x) or complemented (e.g., \overline{x}), there are 2^n maxterms for *n* variables.
- ✓ Example: Two variables (X and Y) produce $2 \times 2 = 4$ combinations:
 - (both normal)
 - $X+\overline{Y}$ (x normal, y complemented)
 - $\overline{X} + \overline{Y}$ (x complemented, y normal) $\overline{X} + \overline{Y}$ (both complemented)
 - (both complemented)

Maxterms and Minterms

✓ Examples: Two variable minterms and maxterms.

Index	minterm	Maxterm
0 [00]	xγ	x + y
1 [01]	xγ	x + y
2 [10]	× y	x + γ
3 [11]	ХУ	$\overline{\mathbf{X}} + \overline{\mathbf{y}}$

✓ The index is important for describing which variables in the terms are true and which are complemented.

Standard Order

- Minterms and maxterms are designated with a subscript
- The subscript (index) is a number, corresponding to a binary pattern
- ✓ The bits in the pattern represent the complemented or normal state of each variable listed in a standard order.
- ✓ All variables will be present in a minterm or maxterm and will be listed in the same order (usually alphabetically)
- ✓ Example: For variables a, b, c:
 - Maxterms: $(a + b + \overline{c})$, (a + b + c)
 - Terms: (b + a + c), ā c b, and (c + b + a) are NOT in standard order.
 - minterms: $a b \overline{c}$, a b c, $\overline{a} \overline{b} c$
 - Terms: (a + c), b c, and $(\overline{a} + b)$ do not contain all variables

Purpose of the Index

- The index for the minterm or maxterm, expressed as a binary number, is used to determine whether the variable is shown in the true form or complemented form.
- ✓ For minterms:
 - 1 means the variable is Not Complemented
 - O means the variable is Complemented.
- For Maxterms:
 - O means the variable is Not Complemented
 - 1 means the variable is Complemented

Index Example in Three Variables

- \checkmark Assume the variables are called X, Y, and Z.
- \checkmark The standard order is X, then Y, then Z.
- ✓ The Index 0 (base 10) = 000 (base 2) for three variables). All three variables are complemented for minterm 0 (x̄,ȳ,z̄) and no variables are complemented for Maxterm 0 (x,y,z).
 - minterm 0, called m_0 is $\overline{x} \overline{y} \overline{z}$.
 - Maxterm 0, called M_0 is (x + y + z).
 - minterm 6? $m_6 = x y \overline{z}$
 - Maxterm 6 ? $M_6 = (\overline{x} + \overline{y} + z)$

Index Examples - Four Variables

Index	Binary	minterm	Maxterm
i	Pattern	mi	Mi
0	0000	abcd	a + b + c + d
1	0001	abcd	$a + b + c + \overline{d}$
3	0011	?	?
5	010 1	abcd	$a + \overline{b} + c + \overline{d}$
7	0111	?	$a + \overline{b} + \overline{c} + \overline{d}$
10	10 10	abcd	\overline{a} + b + \overline{c} + d
13	1 101	?	$\overline{a} + \overline{b} + c + \overline{d}$
15	1 1 11	abcd	$\bar{a} + \bar{b} + \bar{c} + \bar{d}$

Minterm and Maxterm Relationship

✓ Review: DeMorgan's Theorem
$$\overline{x \cdot y} = \overline{x} + \overline{y}$$
 and $\overline{x + y} = \overline{x} \cdot \overline{y}$

✓ Two-variable example: $M_2 = \overline{x} + y$ and $m_2 = x \cdot \overline{y}$ Thus M_2 is the complement of m_2 and viceversa.

 Since DeMorgan's Theorem holds for n variables, the above holds for terms of n variables giving:

 $M_i = \overline{m}_i$ and $M_i = M_i$ Thus M_i is the complement of m_i .

Function Tables for Both

✓ minterms of				Maxterms of								
2 variables						2	2 vai	riable	es			
		xy	хy	xy	хү				x+y	x+y	x +y	$\overline{X}+\overline{Y}$
	ху	mo	\mathbf{m}_1	m ₂	m ₃		X	Y	Mo	M_1	M ₂	M 3
	00	1	0	0	0		0	0	0	1	1	1
	01	0	1	0	0		0	1	1	0	1	1
	10	0	0	1	0		1	0	1	1	0	1
	1 1	0	0	0	1		1	1	1	1	1	0

 Each column in the maxterm function table is the complement of the column in the minterm function table since M_i is the complement of m_i.

Observations

- ✓ In the function (truth) tables:
 - Each <u>min</u>term has one and only one 1 present in the 2n terms (a <u>minimum</u> of 1s). All other entries are 0.
 - Each <u>Max</u>term has one and only one 0 present in the 2n terms. All other entries are 1 (a <u>maximum</u> of 1s)
- ✓ We can implement any function by "ORing" the minterms corresponding to "1" entries in the function table. These are called the minterms of the function
- ✓ We can implement any function by "ANDing" the Maxterms corresponding to "0" entries in the function table. These are called the maxterms of the function
- This gives us two <u>canonical forms</u>:
 <u>Sum of minterms (SOM)</u> <u>Product of Maxterms (POM)</u>

minterm Function Example

\checkmark Example: Find F ₁ = m ₁ + m ₄ + m ₇								
\checkmark F1 = \overline{x} \overline{y} z + x \overline{y} \overline{z} + x y z								
index	m ₁	+	m ₄	+	m 7	= F ₁		
0	0	+	0	+	0	= 0		
1	1	+	0	+	0	= 1		
2	0	+	0	+	0	= 0		
3	0	+	0	+	0	= 0		
4	0	+	1	+	0	= 1		
5	0	+	0	+	0	= 0		
6	0	+	0	+	0	= 0		
7	0	+	0	+	1	= 1		
	+ x y index 0 1 2 3 4 5 6	$\begin{array}{c c} + x \ \overline{y} \ \overline{z} + \\ \hline \text{index} & m_1 \\ 0 & 0 \\ 1 & 1 \\ 2 & 0 \\ 3 & 0 \\ 4 & 0 \\ 5 & 0 \\ 5 & 0 \\ 6 & 0 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		

minterm Function Example

✓ $F(A, B, C, D, E) = m_2 + m_9 + m_{17} + m_{23}$ ✓ F(A, B, C, D, E) =

= A'B'C'DE' + A'BC'D'E + AB'C'D'E + AB'CDE

Maxterm Function Example

✓ Example: 3	Imp	lement F1 in maxterms:	
$F_1 = M_0$)••	$M_2 \cdot M_3 \cdot M_5 \cdot M_6$	
F ₁ = (x ·	+ y +	$-z)\cdot(x+\overline{y}+z)\cdot(x+\overline{y}+\overline{z})$	
·(x	+ y	$+\overline{z}$)· $(\overline{X}+\overline{y}+z)$	
x y z	i	$M_0 \cdot M_2 \cdot M_3 \cdot M_5 \cdot M_6 = F1$	
000	0	$\mathbf{O} \cdot 1 \cdot 1 \cdot 1 \cdot 1 = \mathbf{O}$	
001	1	$1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 = 1$	
010	2	$1 \cdot 0 \cdot 1 \cdot 1 \cdot 1 = 0$	
011	3	$1 \cdot 1 \cdot 0 \cdot 1 \cdot 1 = 0$	
100	4	$1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 = 1$	
101	5	$1 \cdot 1 \cdot 1 \cdot 0 \cdot 1 = 0$	
110	6	$1 \cdot 1 \cdot 1 \cdot 1 \cdot 0 = 0$	
111	7	$1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 = 1$	

Maxterm Function Example

✓
$$F(A,B,C,D) = M_3 \cdot M_8 \cdot M_{11} \cdot M_{14}$$

✓ $F(A,B,C,D) =$

(A+B+C'+D')(A'+B+C+D)(A'+B+C'+D')(A'+B'+C'+D)

Canonical Sum of minterms

- Any Boolean function can be expressed as a Sum of minterms.
 - For the function table, the minterms used are the terms corresponding to the 1's
 - For expressions, <u>expand</u> all terms first to explicitly list all minterms. Do this by "ANDing" any term missing a variable v with a term $(v + \overline{v})$
- ✓ Example: Implement $f = x + \overline{xy}$ as a sum of minterms. First expand terms: $f = x (y + \overline{y}) + \overline{x} \overline{y}$ Then distribute terms: $f = xy + x\overline{y} + \overline{x} \overline{y}$ Express as sum of minterms: $f = m_3 + m_2 + m_0$

Another SOM Example

- \checkmark Example: F = A + $\overline{B}C$
- ✓ There are three variables, A, B, and C which we take to be the standard order.
- Expanding the terms with missing variables:

F = A(B + B')(C + C') + (A + A') B' C

- = ABC + ABC' + AB'C + AB'C' + AB'C + A'B'C
- = ABC + ABC' + AB'C + AB'C' + A'B'C
- $= m_7 + m_6 + m_5 + m_4 + m_1$

Standard form = $m_1 + m_4 + m_5 + m_6 + m_7$

Shorthand SOM Form

✓ From the previous example, we started with: $F = A + \overline{B}C$

 \checkmark We ended up with:

 $F = m_1 + m_4 + m_5 + m_6 + m_7$

 \checkmark This can be denoted in the formal shorthand:

$$F(A,B,C) = \Sigma m(1,4,5,6,7)$$

✓ Note that we explicitly show the standard variables in order and drop the "m" designators.

Canonical Product of Maxterms

- Any Boolean Function can be expressed as a Product of Maxterms (POM).
 - For the function table, the maxterms used are the terms corresponding to the 0's.
 - For an expression, expand all terms first to explicitly list all maxterms. Do this by first applying the second distributive law, "ORing" terms missing variable v with a term equal to $v \cdot \overline{v}$ and then applying the distributive law again.
- Example: Convert to product of maxterms:

 $f(x, y, z) = x + \overline{x} \overline{y}$ Apply the distributive law: $x + \overline{x} \overline{y} = (x + \overline{x})(x + \overline{y}) = 1 \cdot (x + \overline{y}) = x + \overline{y}$ Add missing variable z: $x + \overline{y} + z \cdot \overline{z} = (x + \overline{y} + z)(x + \overline{y} + \overline{z})$ Express as POM: $f = M_2 \cdot M_3$

Another POM Example

Convert to Product of Maxterms: $f(A, B, C) = A \overline{C} + B C + \overline{A} \overline{B}$ ✓ Use x + y = (x+y)(x+z) with $x = (A\overline{C} + BC)$, $y = \overline{A}$, and $z = \overline{B}$ to get: $f = (A \overline{C} + B C + \overline{A})(A \overline{C} + B C + \overline{B})$ \checkmark Then use $x + \overline{x}y = x + y$ to get: $f = (\overline{C} + BC + \overline{A})(A\overline{C} + C + \overline{B})$ and a second time to get: $f = (\overline{C} + B + \overline{A})(A + C + \overline{B})$ ✓ Rearrange to standard order, $f = (\overline{A} + B + \overline{C})(A + \overline{B} + C)$ to give $f = M_2 \cdot M_5$

Function Complements

- The complement of a function expressed as a sum of minterms is constructed by selecting the minterms missing in the sum-of-minterms canonical forms.
- Alternatively, the complement of a function expressed by a Sum of Minterms form is simply the Product of Maxterms with the same indices.

$$\overline{F}(x, y, z) = \sum_{m} (0, 2, 4, 6)$$

$$\overline{F}(x, y, z) = \prod_{M} (1, 3, 5, 7)$$

Conversion Between Forms

- ✓ To convert between sum-of-minterms and product-ofmaxterms form (or vice-versa) we follow these steps:
 - Find the function complement by swapping terms in the list with terms not in the list.
 - Change from products to sums, or vice versa.
- ✓ Form the Complement: $F(x, y, z) = \sum_{m} (0, 2, 4, 6)$
- ✓ Then use the other form with the same indices this forms the complement again, giving the other form of the original function: $F(x, y, z) = \prod_{M} (0, 2, 4, 6)$

Standard Forms

- ✓ <u>Standard Sum-of-Products (SOP) form</u>: equations are written as an OR of AND terms
- ✓ <u>Standard Product-of-Sums (POS) form</u>: equations are written as an AND of OR terms
- ✓ Examples:
 - SOP: A B C + A B C + B
 - POS: $(A + B) (A + \overline{B} + \overline{C}) C$
- ✓ These "mixed" forms are <u>neither SOP nor POS</u>
 - (A B + C) (A + C)
 - A B C + A C (A + B)

Standard Sum-of-Products (SOP)

- ✓ A sum of minterms form for n variables can be written down directly from a truth table.
 - Implementation of this form is a two-level network of gates such that:
 - The first level consists of *n*-input AND gates, and
 - The second level is a single OR gate (with fewer than 2ⁿ inputs).
- ✓ This form often can be simplified so that the corresponding circuit is simpler.

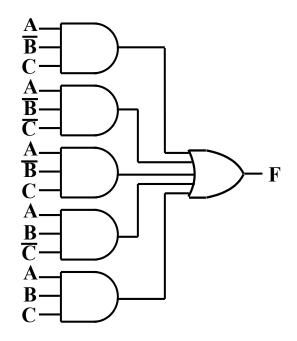
Standard Sum-of-Products (SOP)

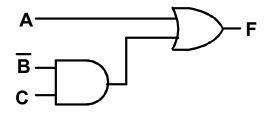
- ✓ A Simplification Example: $F(A,B,C) = \Sigma m(1,4,5,6,7)$ ✓ Writing the minterm expression: $F = \overline{A} \ \overline{B} \ C + A \ \overline{B} \ \overline{C} + A \ \overline{B} \ C + AB\overline{C} + ABC$ ✓ Simplifying: $F = A' \ B' \ C + A \ (B' \ C' + B \ C' + B' \ C + B \ C)$
 - = A' B' C + A (B' + B) (C' + C)
 - $= A' B' C + A \cdot 1 \cdot 1$
 - = A' B' C + A
 - = B'C + A

 Simplified F contains 3 literals compared to 15 in minterm F

AND/OR Two-level Implementation of SOP Expression

The two implementations for F are shown below - it is quite apparent which is simpler!





SOP and POS observations

- ✓ The previous examples show that:
 - Canonical Forms (Sum-of-minterms, Product-of-Maxterms), or other standard forms (SOP, POS) differ in complexity
 - Boolean algebra can be used to manipulate equations into simpler forms.
 - Simpler equations lead to simpler two-level implementations
- \checkmark Questions:
 - How can we attain a "simplest" expression?
 - Is there only one minimum cost circuit?