
Combinational Logic Circuits

 Part 1 – Gate Circuits and Boolean Equations
• Binary Logic and Gates
• Boolean Algebra
• Standard Forms

 Part 2 – Circuit Optimization
 Part 3 – Additional Gates and Circuits

1

Binary Logic and Gates

Binary variables take on one of two values.

Logical operators operate on binary values and binary
variables.

Basic logical operators are the logic functions AND,
OR and NOT.

Logic gates implement logic functions.

Boolean Algebra: a mathematical system for specifying
and transforming logic functions.

We study Boolean algebra as a foundation for
DESIGNING AND ANALYZING DIGITAL SYSTEMS!

2

George Boole (1815-1864)

3

An Investigation of the Laws of Thought,

on Which are founded the Mathematical

Theories of Logic and Probabilities (1854)

Claude Shannon (1916-2001)

4

A Symbolic Analysis of Relay

and

Switching Circuits (1938)

ENIAC (1946)

(Electronic

Numerical

Integrator

And

Calculator)

Binary Variables

 Recall that the two binary values have different
names:
• True/False
• On/Off
• Yes/No
• 1/0

 We use 1 and 0 to denote the two values.
 Variable identifier examples:

• A, B, y, z, or X1 for now
• RESET, START_IT, or ADD1 later

5

6

Boolean Functions

1 2

1 2

1 1 2 2

1 2 1 2

Boolean Function: () :

{0,1}

(, ,...,) ;

- , ,... are

- , , , ,... are

- essentially: maps each vertex of to 0 or 1

Exampl

vari

e:

{((0, 0),0),((0,

ables

literals

1

n

n

n i

n

f x B B

B

x x x x B x B

x x

x x x x

f B

f x x x x

 1 2 1 2

),1),

 ((1, 0), 1),((1, 1),0)}x x x x 1x

2x

0

0

1
1

x2

x1

(0, 1)

(0, 0) (1, 0)

(1, 1)

arguments domain codomain

f(x1,…,xn): {0,1}n {0,1}

 B1 (B) = {0,1}

 B2 = {0,1} X {0,1} = {00, 01, 10, 11}

 Arrangement of function table on a hypercube
• The function value fj is adjacent in each dimension of the

hypercube to fk where K is obtained from j by
complementing one and only one input variable:

7

The Boolean n-cube Bn

B
1

B
2

B
3

B
4

X0 X1 . . . Xn

is adjacent to

X0 X1 . . . Xn

X0 X1 . . . Xn
. . .

X0 X1 . . . Xn

8

Boolean Functions

1 1

1 0

1

0 1

- The of is { | () 1} (1)

- The of is { | () 0} (0)

- if , is the i.e. 1

- if (), is

Onset

Offset

tautology.

not satisfyabl , i.e. 0

- if () () , t

e

hen a

n

n

n

f x f x f f

f x f x f f

f B f f

f B f f f

f x g x for all x B f

1

nd

- we say

are equiva

 instea

le

nt

d of

g

f f

- literals: A is a variable or its negation , and represents a logic l functioniteral x x

x3

x1

x2

x1

x2

x3

f = x1 f = x1

Logical Operations
 The three basic logical operations are:

• AND

• OR

• NOT

 AND is denoted by a dot ().

 OR is denoted by a plus (+).

 NOT is denoted by an overbar (¯), a single quote mark (')
after, or (~) before the variable.

 The order of evaluation in a Boolean expression is:

 Consequence: Parentheses appear around OR expressions

 Example: F = A(B + C)(C + D)

9

1. Parentheses
2. NOT
3. AND
4. OR

Fundamentals of Boolean Algebra

 Basic Postulates
• Postulate 1 (Definition): A Boolean algebra is a closed

algebraic system containing a set K of two or more elements
and the two operators and +.

• Postulate 2 (Existence of 1 and 0 element):

(a) a + 0 = a (identity for +), (b) a 1 = a (identity for)

• Postulate 3 (Commutativity):

(a) a + b = b + a (b) a b = b a

• Postulate 4 (Associativity):

(a) a + (b + c) = (a + b) + c (b) a (b c) = (a b) c

• Postulate 5 (Distributivity):

(a) a + (b c) = (a + b) (a + c) (b) a (b + c) = a b + a c

• Postulate 6 (Existence of complement):

• (a) a + a = 1 (b) a a = 0

Normally is omitted. A switching algebra is a BA with F={0,1}

 Examples:
• Y = A B = A B is read “Y is equal to A AND B.”

• z = x + y is read “z is equal to x OR y.”

• X = A is read “X is equal to NOT A.”

Notation Examples

 Note: The statement:
1 + 1 = 2 (read “one plus one equals two”)

is not the same as
1 + 1 = 1 (read “1 or 1 equals 1”).

11

Operator Definitions

Operations are defined on the values "0" and "1" for
each operator:

01

10

X

NOT

111

001

010

000

Z=X·YYX

AND

Z=X

111

101

110

000

Z=X+YYX

OR

Properties of Identities

 Some properties:

• Idempotence (a) a + a = a (b) a a = a

• Existence of 0 and 1 (a) a + 1 = 1 (b) a 0 = 0

• Involution (a) a = a

• DeMorgan’s (a) a + b = a b (b) a b = a + b

 Unless it happens to be self-dual, the dual of an
expression does not equal the expression itself.

 Example: F = (A + C) · B + 0

dual F = ((A · C) + B) · 1 = A · C + B

 Example: G = X · Y + (W + Z)

dual G = (X+Y) · (W · Z) = (X+Y) ·(W+ Z)

 Example: H = A · B + A · C + B · C

dual H = (A + B)(A + C)(B + C) = (A + AC + BA + BC) (B + C)

= (A +BC) (B+C) = AB + AC + BC. So H is self-dual.

 Are any of these functions self-dual?

Some Properties of Boolean Algebra

14

 The dual of an algebraic expression is obtained by
interchanging + and and interchanging 0’s and 1’s.

Generalized De Morgan’s theorems

 Proof Generalized De Morgan’s theorems by general
induction:

Two steps:
• Show that the statement is true for two variables

• Show that if is true for n variable , than is also true for n+1
variables:

Let Z= X1 + X2 +…+ Xn

(X1 + X2 +…+ Xn + Xn+1) = (Z + Xn+1) = (Z Xn+1) =

(X1 X2 … Xn) Xn+1 by induction hypothesis

15

X1+X2+…+Xn = X1 X2 … Xn

X1 X2 … Xn = X1+X2+…+Xn

 There can be more that 2 elements other than 1
and 0.

 What are some common useful Boolean algebras
with more than 2 elements?

1. Algebra of Sets

2. Algebra of n-bit binary vectors

3. Quantified Boolean Algebra (QBA)

 If B contains only 1 and 0, then B is called the
Switching Algebra which is the algebra we use
most often.

Others Properties of Boolean Algebra

16

Quantified Boolean formulas (QBFs)

 Generalize (quantifier-free) Boolean formulas with the additional
universal and existential quantifiers: and , respectively.

 In writing a QBF, we assume that the precedences of the
quantifiers are lower than those of the Boolean connectives.

 In a QBF, variables being quantified are called bound variables,
whereas those not quantified are called free variables.

 Any QBF can be rewritten as a quantifier-free Boolean formula
through quantifier elimination by formula expansion (among other
methods), e.g.,

 x:f(x; y) = f(0; y) f(1; y)

and

 x:f(x; y) = f(0; y) + f(1; y)

 Consequently, for any QBF , there exists an equivalent quantifier-
free Boolean formula that refers only to the free variables of .

 QBFs are thus of the same expressive power as quantifier-free
Boolean formulas, but can be more succinct.

Boolean Algebraic Proofs: Example 1

 A + A·B = A Absorption Theorem
Proof Steps Justification

A + A·B

= A · 1 + A · B X = X · 1 Identity for

= A · (1 + B) X · Y + X · Z = X ·(Y + Z) Distributive Law

= A · 1 1 + X = 1 Existence of 1

= A X · 1 = X Identity for

18

 AB + AC + BC = AB + AC Consensus Theorem
Proof Steps Justification

AB + AC + BC
= AB + AC + 1 · BC Identity for
= AB +AC + (A + A) · BC Existence of complement
= AB +AC + ABC + ABC Distributive Law
= AB · (1 + C) + AC · (1 + B) Distributive Law
= AB + AC Existence of 1

 (A+B) · (A+C) · (B+C) = (A+B) · (A+C) Dual identity

Example 2: Boolean Algebraic Proofs

19

Useful Theorems

 X · Y + X · Y = Y (X + Y) · (X + Y) = Y Minimization

 X + X · Y = X X · (X + Y) = X Absorption

 X + X · Y = X + Y X · (X + Y) = X · Y Simplification

 X · Y + X · Z + Y · Z = X · Y + X · Z Consensus

(X + Y) · (X + Z) · (Y + Z) = (X + Y) · (X + Z)

 X + Y = X · Y X · Y = X + Y De Morgan’s Law

20

Example 3: Boolean Algebraic Proofs

Proof Steps Justification

= X’ Y’ Z + X Y’ (A + B)’ = A’ . B’ De Morgan’s Law

= Y’ X’ Z + Y’ X A . B = B . A Commutative Law

= Y’ (X’ Z + X) A(B + C) = AB + AC Distributive Law

= Y’ (X’ + X)(Z + X) A + BC = (A + B)(A + C) Distributive Law

= Y’ . 1 . (Z + X) A + A’ = 1 Existence of complement

= Y’ (X + Z) 1 . A = A, A + B = B + A Commutative Law

YXZ)YX(++

)ZX(XZ)YX(+=++ Y Y

21

Expression Simplification

 An application of Boolean algebra
 Simplify to contain the smallest number of literals

(complemented and un-complemented variables):

AB+ACD+ABD+ACD+ABCD
15 literal, 2 levels

= AB+ABCD+ACD+ACD+ABD
= AB+AB(CD)+AC(D+D)+ABD
= AB+AC+ABD = B(A+AD)+AC
= B(A+D)+AC = BA + BD + AC
5 literal, 3 levels 6 literals, 2 levels

22

Complementing Functions

Use DeMorgan's Theorem to complement a
function:
1. Interchange AND and OR operators
2.Complement each constant value and literal

Example: Complement F =

F = (x + y + z)(x + y + z)
Example: Complement G = (a + bc)d + e

G = (a (b + c))+ d) e = (a (b + c) + d) e

x+ zyzyx

23

Boolean Function Evaluation

x y z F1 F2 F3 F4

0 0 0 0 0

0 0 1 0 1

0 1 0 0 0

0 1 1 0 0

1 0 0 0 1

1 0 1 0 1

1 1 0 1 1

1 1 1 0 1

zxyxF4
xzyxzyxF3

xF2
xyF1

+=
+=

=
= z

yz+
y+

24

Boolean Function Evaluation

x y z F1 F2 F3 F4

0 0 0 0 0 1 0

0 0 1 0 1 0 1

0 1 0 0 0 0 0

0 1 1 0 0 1 1

1 0 0 0 1 1 1

1 0 1 0 1 1 1

1 1 0 1 1 0 0

1 1 1 0 1 0 0

zxyxF4
xzyxzyxF3

xF2
xyF1

+=
+=

=
= z

yz+
y+

25

26

Shannon Expansion

 Let f:BnB be a Boolean function, and x=(x1,x2, …,xn)
the variables in the support of f. The cofactor
(residual) fa of f by a literal a=xi or a=xi is:

fxi
(x1, x2, …, xn) = f (x1, …, xi-1, 1, xi+1,…, xn)

fxi
(x1, x2, …, xn) = f (x1, …, xi-1, 0, xi+1,…, xn)

 Shannon theorem:

f=xifxi
+ xifxi

f=[xi+fxi
] [xi+fxi

]

 We say that f is expanded about xi. xi is called the
splitting variable.

Boolean difference

 Universal and existential quantifications can be
expressed in terms of cofactor, with

 xi.f= fxi
· fxi

and xi.f= fxi
+ fxi

 Moreover, the Boolean difference f/xi of f with
respect to variable xi is defined as

 f/xi =fxi
 fxi

= fxi
 fxi

where denotes an exclusive-or (xor) operator.

 Using the Boolean difference operation, we can tell
whether a Boolean function functionally depends on a
variable. If f/xi equals constant 0, then the
valuation of f does not depend on xi, that is, xi is a
redundant variable for f.

 We call that xi is a functional support variable of f if
xi is not a redundant variable.

27

Example

F = ab + ac + bc

F = a Fa + a Fa

F = ab + ac + abc + abc

Cube bc got split into two cubes abc and abc

c

a

b

ac

ab

abc abc

c

a

b

bc

ac

ab

29

Representation of Boolean Functions

 We need representations for Boolean Functions
for two reasons:
• to represent and manipulate the actual circuit we are

“synthesizing”

• as mechanism to do efficient Boolean reasoning

 Forms to represent Boolean Functions
• Truth table

• List of cubes (Sum of Products, Disjunctive Normal Form
(DNF))

• List of conjuncts (Product of Sums, Conjunctive Normal
Form (CNF))

• Boolean formula

• Binary Decision Tree, Binary Decision Diagram

• Circuit (network of Boolean primitives)

01

10

X

NOT

Truth Tables

 Truth table a tabular listing of the values of a function
for all possible combinations of values on its arguments

 Example: Truth tables for the basic logic operations:

111

001

010

000

Z=X·YYX

AND

Z=X

111

101

110

000

Z=X+YYX

OR

30

31

Truth Table

 Truth table (Function Table):

The truth table of a function f : Bn B is a tabulation of its value
at each of the 2n vertices of Bn.

 In other words the truth table lists all minterms

Example: f = abcd + abcd + abcd +

abcd + abcd + abcd +

abcd + abcd
The truth table representation is

- intractable for large n

- canonical

Canonical means that if two functions are the same, then
the canonical representations of each are isomorphic.

abcd f

0 0000 1

1 0001 1

2 0010 1

3 0011 0

4 0100 1

5 0101 0

6 0110 1

7 0111 0

abcd f

8 1000 0

9 1001 0

10 1010 1

11 1011 0

12 1100 1

13 1101 0

14 1110 1

15 1111 0

32

Truth Table or Function table

 There are 2n vertices in input space Bn

 There are 22
n

distinct logic functions.
• Each subset of vertices is a distinct logic function:

f Bn

x1x2x3

0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

x1

x2

x3

33

Boolean Formula

 A Boolean formula is defined as an expression with the
following syntax:

formula ::= ‘(‘ formula ‘)’

| <variable>

| formula “+” formula (OR operator)

| formula “” formula (AND operator)

| ~ formula (complement)

Example:
f = (x1x2) + (x3) + (x4 (~x1))

typically the “” is omitted and the ‘(‘ and ‘~’are simply reduced by
priority,

e.g.

f = x1x2 + x3 + x4 ~x1= x1x2 + x3 + x4x1

34

Cubes

 A cube is defined as the AND of a set of literal functions
(“conjunction” of literals).

Example:

C = x1x2x3

represents the following function

f = (x1=0)(x2=1)(x3=0)

x1

x2

x3

c = x1

x1

x2

x3

f = x1x2

x1

x2

x3

f = x1x2x3

35

Cubes

 If C f, C a cube, then C is an implicant of f.

 If C Bn, and C has k literals, then |C| covers 2n-k

vertices.

Example:

C = xy B3

k = 2 , n = 3 => |C| = 2 = 23-2.

C = {100, 101}

 An implicant with n literals is a minterm.

36

List of Cubes

 Sum of Products (SOP):
• A function can be represented by a sum of products (cubes):

f = ab + ac + bc

Since each cube is a product of literals, this is a “sum of
products” (SOP) representation

• A SOP can be thought as a set of cubes F

F = {ab, ac, bc}

• A set of cubes that represents f is called a COVER of f.

F1={ab, ac, bc} and F2={abc,abc,abc,abc}

are covers of

f = ab + ac + bc.

c

a

b

bc

ac
ab

abc abc

abc

abc

37

SOP

 Covers (SOP’s) can efficiently represent many logic
functions (i.e. for many, there exist small covers).

 Two-level minimization seeks the minimum size
cover (least number of cubes)

bc

ac
ab

c

a

b

= onset minterm

Note that each onset minterm is
“covered” by at least one

of the cubes, and covers no

offset minterm.

38

Irredundant

 Let F = {c1, c2, …, ck} be a cover for f.

f = i
k
=1 ci

A cube ci F is IRREDUNDANT if F\{ci} f

Example 2: f = ab + ac + bc

bc

ac
ab

c

a

b

bc

ac
Not covered

F\{ab} f

Prime

 A literal j of cube ci F (=f) is PRIME if

(F \ {ci }) {c’i } f

where c’i is ci with literal j of ci deleted.

 A cube of F is prime if all its literals are prime.

Example 3

f = ab + ac + bc

ci = ab; c’i = a (literal b deleted)

F \ {ci } {c’i } = a + ac + bc
bc

ac
a

c

a

b
Not equal to f since this

offset vertex is covered

F=ac + bc + a =

F \{ci } {c’i }

40

Prime and Irredundant Covers

 Definition 1 A cover is prime (irredundant) if all
its cubes are prime (irredundant).

 Definition 2 A prime of f is essential (essential
prime) if there is a minterm (essential vertex) in
that prime but in no other prime.

41

Prime and Irredundant Covers

f = abc + bd + cd is prime and irredundant.

abc is essential since abcdabc, but not in bd or cd or ad

What other cube is essential? What prime is not essential?

abc

bd

cdda

c
b

ad

42

Binary Decision Diagram (BDD)

f = ab+a’c+a’bd

1

0

c

a

b b

c c

d

0 1

c+bd b

root
node

c+d

d

 Graph representation of a Boolean
function f

 vertices represent decision nodes
for variables

 two children represent the two sub-
functions

• f(x = 0) and f(x = 1) (cofactors)

 restrictions on ordering and
reduction rules can make a BDD
representation canonical

43

Logic Functions

 There are infinite number of equivalent logic
formulas

f = x + y

= xy + xy + xy

= xx + xy + y

= (x + y)(x + y) + xy

 Synthesis = Find the best formula (or
“representation”)

Using Switches
• For inputs:

 logic 1 is switch closed
 logic 0 is switch open

• For outputs:
 logic 1 is light on
 logic 0 is light off.

• NOT uses a switch such
that:
 logic 1 is switch open
 logic 0 is switch closed

Logic Function Implementation

Switches in series AND

Switches in parallel OR

C

Normally-closed switch NOT

44

 Example: Logic Using Switches

 Light is on (L = 1) for
L(A, B, C, D) = AD+ABC
and off (L = 0), otherwise.

 Useful model for relay circuits and for CMOS gate
circuits, the foundation of current digital logic
technology

Logic Function Implementation (Continued)

B

A

D

C

45

Logic Gates

 In the earliest computers, switches were opened
and closed by magnetic fields produced by
energizing coils in relays. The switches in turn
opened and closed the current paths.

 Later, vacuum tubes that open and close current
paths electronically replaced relays.

 Today, transistors are used as electronic switches
that open and close current paths.

46

Logic Gate Symbols and Behavior

 Logic gates have special symbols:

 And waveform behavior in time as follows:

(b) Timing diagram

X 0 0 1 1

Y 0 1 0 1

X · Y(AND) 0 0 0 1

X+ Y(OR) 0 1 1 1

(NOT) X 1 1 0 0

(a) Graphic symbols
OR gate

X

Y
Z = X + Y

X

Y
Z = X · Y

AND gate

X Z = X

NOT gate or inverter

47

Gate Delay

 In actual physical gates, if one or more input
changes causes the output to change, the output
change does not occur instantaneously.

 The delay between an input change(s) and the
resulting output change is the gate delay denoted
by tG:

tG tG

Input

Output

Time (ns)

0

0

1

1

0 0.5 1 1.5

tG = 0.3 ns

48

Logic Diagrams and Expressions

 Boolean equations, truth tables and logic diagrams describe the
same function!

 Truth tables are unique; expressions and logic diagrams are not.
This gives flexibility in implementing functions.

X

Y F

Z

Logic Diagram

Truth Table

11 1 1

11 1 0

11 0 1

11 0 0

00 1 1

00 1 0

10 0 1

00 0 0

F = X + Y ZX Y Z
Equation

F = X + Y Z

49

50

Definitions

Definition:

 A Boolean circuit is a directed graph C(G,N) where
G are the gates and N GG is the set of
directed edges (nets) connecting the gates.

 Some of the vertices are designated:

Inputs: I G

Outputs: O G, I O =

 Each gate g is assigned a Boolean function fg which
computes the output of the gate in terms of its
inputs.

51

Definitions

 The fanout FO(g) of a gate g are all successor vertices of g:

FO(g) = {g’ | (g,g’) N}

 The fanin FI(g) of a gate g are all predecessor vertices of g:

FI(g) = {g’ | (g’,g) N}

 The cone CONE(g) of a gate g is the transitive fanin of g and g
itself.

 The support SUPPORT(g) of a gate g are all inputs in its cone:

SUPPORT(g) = CONE(g) I

52

Example

I

O

6

FI(6) =

FO(6) =

CONE(6) =

SUPPORT(6) =

1

5

3

4

7

8

9

2

{2,4}
{7,9}
{1,2,4,6}

{1,2}

Circuit Representations

 For efficient Boolean reasoning :

• Vertices have fixed number of inputs

• Vertex function is stored as label, well defined
set of possible function labels (e.g. OR,
AND,OR)

• Circuits are often non-canonical

54

Canonical Forms

 It is useful to specify Boolean functions in
a form that:
• Allows comparison for equality.

• Has an immediate correspondence to the truth
tables

 Canonical Forms in common usage:
• Sum of Minterms (SOM)

• Product of Maxterms (POM)

56

minterms

 minterms are AND terms with every variable
present in either true or complemented form.

 Given that each binary variable may appear normal
(e.g., x) or complemented (e.g., x), there are 2n

minterms for n variables.
 Example: Two variables (X and Y)produce

2 x 2 = 4 combinations:
(both normal)
(X normal, Y complemented)
(X complemented, Y normal)
(both complemented)

 Thus there are four minterms of two variables.

YX
X Y

YX
YX

57

Maxterms

 Maxterms are OR terms with every variable in
true or complemented form.

 Given that each binary variable may appear normal
(e.g., x) or complemented (e.g., x), there are 2n

maxterms for n variables.
 Example: Two variables (X and Y) produce

2 x 2 = 4 combinations:
(both normal)
(x normal, y complemented)
(x complemented, y normal)
(both complemented)

YX+
X+Y

+YX
YX+

58

 Examples: Two variable minterms and maxterms.

 The index is important for describing which
variables in the terms are true and which are
complemented.

Maxterms and Minterms

Index minterm Maxterm

0 [00] x y x + y

1 [01] x y x + y

2 [10] x y x + y

3 [11] x y x + y

59

Standard Order

 Minterms and maxterms are designated with a subscript
 The subscript (index) is a number, corresponding to a binary

pattern
 The bits in the pattern represent the complemented or

normal state of each variable listed in a standard order.
 All variables will be present in a minterm or maxterm and

will be listed in the same order (usually alphabetically)
 Example: For variables a, b, c:

• Maxterms: (a + b + c), (a + b + c)
 Terms: (b + a + c), a c b, and (c + b + a) are NOT in

standard order.

• minterms: a b c, a b c, a b c
 Terms: (a + c), b c, and (a + b) do not contain all variables

60

Purpose of the Index

 The index for the minterm or maxterm, expressed
as a binary number, is used to determine whether
the variable is shown in the true form or
complemented form.

 For minterms:

• 1 means the variable is Not Complemented

• 0 means the variable is Complemented.

 For Maxterms:

• 0 means the variable is Not Complemented

• 1 means the variable is Complemented

61

Index Example in Three Variables

Assume the variables are called X, Y, and Z.

The standard order is X, then Y, then Z.

The Index 0 (base 10) = 000 (base 2) for three
variables). All three variables are complemented for
minterm 0 () and no variables are
complemented for Maxterm 0 (X,Y,Z).

• minterm 0, called m0 is .

• Maxterm 0, called M0 is (x + y + z).

• minterm 6 ?

• Maxterm 6 ?

ZYX

ZY,X,

62

m6 = x y z

M6 = (x + y + z)

Index Examples – Four Variables

Index Binary minterm Maxterm
i Pattern mi Mi

0 0000 abcd a + b + c + d
1 0001 abcd a + b + c + d
3 0011 ? ?
5 010 1 abcd a + b + c + d
7 011 1 ? a + b + c + d

10 10 10 abcd a + b + c + d
13 1 101 ? a + b + c + d
15 1 1 11 abcd a + b + c + d

63

 Review: DeMorgan's Theorem
and

 Two-variable example:
and

Thus M2 is the complement of m2 and vice-
versa.

 Since DeMorgan's Theorem holds for n
variables, the above holds for terms of n
variables giving:

and
Thus Mi is the complement of mi.

Minterm and Maxterm Relationship

yxy·x += yx·yx =+

yxM 2
+= yx·m2

=

i mM = i ii Mm =

64

Function Tables for Both

minterms of Maxterms of
2 variables 2 variables

x y xy xy xy x+y x+y x+y x+y

 Each column in the maxterm function table is
the complement of the column in the minterm
function table since Mi is the complement of mi.

x y m0 m1 m2 m3

0 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0

1 1 0 0 0 1

x y M0 M1 M2 M3

0 0 0 1 1 1

0 1 1 0 1 1

1 0 1 1 0 1

1 1 1 1 1 0

65

Observations

 In the function (truth) tables:
• Each minterm has one and only one 1 present in the 2n terms (a

minimum of 1s). All other entries are 0.
• Each Maxterm has one and only one 0 present in the 2n terms.

All other entries are 1 (a maximum of 1s)

 We can implement any function by "ORing" the minterms
corresponding to "1" entries in the function table. These
are called the minterms of the function

 We can implement any function by "ANDing" the
Maxterms corresponding to "0" entries in the function
table. These are called the maxterms of the function

 This gives us two canonical forms:
Sum of minterms (SOM) Product of Maxterms (POM)

66

x y z index m1 + m4 + m7 = F1

0 0 0 0 0 + 0 + 0 = 0

0 0 1 1 1 + 0 + 0 = 1

0 1 0 2 0 + 0 + 0 = 0

0 1 1 3 0 + 0 + 0 = 0

1 0 0 4 0 + 1 + 0 = 1

1 0 1 5 0 + 0 + 0 = 0

1 1 0 6 0 + 0 + 0 = 0

1 1 1 7 0 + 0 + 1 = 1

minterm Function Example

 Example: Find F1 = m1 + m4 + m7

 F1 = x y z + x y z + x y z

67

minterm Function Example

 F(A, B, C, D, E) = m2 + m9 + m17 + m23

 F(A, B, C, D, E) =

= A’B’C’DE’ + A’BC’D’E + AB’C’D’E + AB’CDE

68

Maxterm Function Example

Example: Implement F1 in maxterms:
F1 = M0 · M2 · M3 · M5 · M6

)zyz)·(xy·(xz)y(xF1 ++++++=

z)yx)·(zyx·(++++
x y z i M0 M2 M3 M5 M6 = F1
0 0 0 0 0 1 1 1 = 0
0 0 1 1 1 1 1 1 1 = 1
0 1 0 2 1 0 1 1 1 = 0
0 1 1 3 1 1 0 1 1 = 0
1 0 0 4 1 1 1 1 1 = 1
1 0 1 5 1 1 1 0 1 = 0
1 1 0 6 1 1 1 1 0 = 0
1 1 1 7 1

 1 1 1 1 = 1

1

69

Maxterm Function Example

 F(A, B,C,D) =

(A+B+C’+D’)(A’+B+C+D)(A’+B+C’+D’)(A’+B’+C’+D)

141183 MMMM)D,C,B,A(F .= . .

70

Canonical Sum of minterms

Any Boolean function can be expressed as a
Sum of minterms.
• For the function table, the minterms used are

the terms corresponding to the 1's
• For expressions, expand all terms first to

explicitly list all minterms. Do this by “ANDing”
any term missing a variable v with a term (v + v)

•
Example: Implement f = x + xy

as a sum of minterms.
First expand terms: f = x (y + y) + x y
Then distribute terms: f = xy + xy + x y
Express as sum of minterms: f = m3 + m2 + m0

71

72

Another SOM Example

 Example:
 There are three variables, A, B, and C which we

take to be the standard order.
 Expanding the terms with missing variables:

F = A(B + B’)(C + C’) + (A + A’) B’ C

= ABC + ABC’ + AB’C + AB’C’ + AB’C + A’B’C

= ABC + ABC’ + AB’C + AB’C’ + A’B’C

= m7 + m6 + m5 + m4 + m1

Standard form = m1 + m4 + m5 + m6 + m7

CBAF +=

Shorthand SOM Form

 From the previous example, we started with:

 We ended up with:

F = m1+m4+m5+m6+m7

 This can be denoted in the formal shorthand:

 Note that we explicitly show the standard
variables in order and drop the “m” designators.

(, ,) (1,4,5,6,7)mF A B C

CBAF +=

73

Canonical Product of Maxterms

 Any Boolean Function can be expressed as a Product
of Maxterms (POM).
• For the function table, the maxterms used are the terms

corresponding to the 0's.
• For an expression, expand all terms first to explicitly list

all maxterms. Do this by first applying the second
distributive law, “ORing” terms missing variable v with a
term equal to and then applying the distributive law
again.

 Example: Convert to product of maxterms:

Apply the distributive law:

Add missing variable z:

Express as POM: f = M2 · M3

yxx)z,y,x(f +=

yx)y(x1)y) (xx(xyxx +=+=++=+

()zyx)zyx(zzyx ++++=++

vv .

.

.

74

 Convert to Product of Maxterms:

 Use x + y z = (x+y)·(x+z) with ,
and to get:

 Then use to get:

and a second time to get:

 Rearrange to standard order,
to give f = M2 · M5

Another POM Example

Bz =
)BCBC)(AACBC(Af ++++=

yxyxx +=+

)BC)(AABC(f ++++=

BACBCAC)B,f(A, ++=

AyC),B(Ax =+= C

)BCC)(AABCC(f ++++=

C)B)(ACBA(f ++++=

75

Function Complements

 The complement of a function expressed as a sum
of minterms is constructed by selecting the
minterms missing in the sum-of-minterms canonical
forms.

 Alternatively, the complement of a function
expressed by a Sum of Minterms form is simply
the Product of Maxterms with the same indices.

 Example: Given)7,5,3,1()z,y,x(F
m=

)6,4,2,0()z,y,x(F
m=

)7,5,3,1()z,y,x(F
MP=

76

Conversion Between Forms

 To convert between sum-of-minterms and product-of-
maxterms form (or vice-versa) we follow these steps:
• Find the function complement by swapping terms in the list

with terms not in the list.

• Change from products to sums, or vice versa.

 Example: Given F as before: F (x, y, z) = m (1, 3, 5, 7)

 Form the Complement: F (x, y, z) = m (0, 2, 4, 6)

 Then use the other form with the same indices – this
forms the complement again, giving the other form of
the original function: F (x, y, z) = M (0, 2, 4, 6)

77

 Standard Sum-of-Products (SOP) form: equations
are written as an OR of AND terms

 Standard Product-of-Sums (POS) form: equations
are written as an AND of OR terms

 Examples:

• SOP: A B C + A B C + B

• POS: (A + B) (A + B + C) C

 These “mixed” forms are neither SOP nor POS

• (A B + C) (A + C)

• A B C + A C (A + B)

Standard Forms

78

Standard Sum-of-Products (SOP)

 A sum of minterms form for n variables can be
written down directly from a truth table.
• Implementation of this form is a two-level network of

gates such that:

 The first level consists of n-input AND gates, and

 The second level is a single OR gate (with fewer than
2n inputs).

 This form often can be simplified so that the
corresponding circuit is simpler.

79

 A Simplification Example:

 Writing the minterm expression:
F = A B C + A B C + A B C + ABC + ABC

 Simplifying:

F = A’ B’ C + A (B’ C’ + B C’ + B’ C + B C)

= A’ B’ C + A (B’ + B) (C’ + C)

= A’ B’ C + A.1.1

= A’ B’ C + A

= B’C + A
 Simplified F contains 3 literals compared to 15 in

minterm F

Standard Sum-of-Products (SOP)

(, ,) (1,4,5,6,7)F A B C m

80

AND/OR Two-level Implementation of SOP Expression

 The two implementations for F are shown below – it is quite
apparent which is simpler!

F

A
B
C

A
B
C

A
B
C

A
B
C

A
B
C

F

B

C

A

81

SOP and POS observations

 The previous examples show that:
• Canonical Forms (Sum-of-minterms, Product-of-Maxterms),

or other standard forms (SOP, POS) differ in complexity
• Boolean algebra can be used to manipulate equations into

simpler forms.
• Simpler equations lead to simpler two-level implementations

 Questions:
• How can we attain a “simplest” expression?
• Is there only one minimum cost circuit?

82

