
Copyright © 2008 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail
permissions@acm.org.
ETRA 2008, Savannah, Georgia, March 26–28, 2008.
© 2008 ACM 978-1-59593-982-1/08/0003 $5.00

Eye-S: a Full-Screen Input Modality for Pure Eye-based Communication

Marco Porta* Matteo Turina†

Dipartimento di Informatica e Sistemistica
Università di Pavia

Abstract

To date, several eye input methods have been developed, which,
however, are usually designed for specific purposes (e.g. typing)
and require dedicated graphical interfaces. In this paper we pre-
sent Eye-S, a system that allows general input to be provided to
the computer through a pure eye-based approach. Thanks to the
“eye graffiti” communication style adopted, the technique can be
used both for writing and for generating other kinds of commands.
In Eye-S, letters and general eye gestures are created through se-
quences of fixations on nine areas of the screen, which we call
hotspots. Being usually not visible, such sensitive regions do not
interfere with other applications, that can therefore exploit all the
available display space.

CR Categories: H.1.2 [Models and Principles]: User/Machine
Systems—Human Factors; H.5.2 [Information Interfaces and
Presentation]: User Interfaces—Input Devices and Strategies, In-
teraction Styles

Keywords: gaze interaction, eye writing, eye typing, eye gesture,
eye sequence, assistive technology, alternative communication

1 Introduction

Effective pure communication through eyes has been one of the
most stimulating challenges since the appearance of reliable and
relatively unobtrusive eye trackers. People who are partially or
completely paralyzed, and cannot even speak (e.g. quadriplegic
persons), are usually able to freely move the eyes, which therefore
become their only communication channel.

Eye writing is probably the most intuitive way to convey non-
trivial messages to someone: using the natural language to express
any concept, also complex thoughts, the “distance” between se-
verely impaired persons and the world they live in can be greatly
reduced. The problem of writing through the eyes has been widely
considered in the past, and a number of solutions have been pro-
posed.

The simplest approach is surely that based on on-screen key-
boards and dwell time: if the user looks at a certain key for more
than a predefined time interval, the key is considered pressed and
the corresponding letter is typed. Several studies have been car-
ried out connected to this kind of typing and related issues (e.g.
[Hansen et al. 2003] and [Majaranta et al. 2003, 2004], focused on
the efficacy of dwell time and the importance of feedback). There
are also variants where the dwell time is substituted with some
kind of switches, such as physical buttons, eye blinking (e.g.
[Rasmusson et al. 1999]) or facial muscle activation (e.g.
[Surakka et al. 2004]). Moreover, automatic word-completion
functionalities are often used to reduce the typing effort (e.g.
[Lankford 2000]).

Approaches based on virtual keyboards, however, suffer from a
main drawback: fixations may not be exactly centered on the
keys, due to both the inaccuracy of the eye tracker (for most
commercially-available devices the precision is about 1°) and the
fact that users can correctly encode information in the fovea even
if they are not looking exactly at the target. Unless keys are very
big, this problem may result in a frustrating typing experience,
characterized by frequent errors and consequent “undo” opera-
tions. Solutions have been proposed to partially solve the prob-
lem, such as, for example, fixation tracing [Salvucci 1999]: using
hidden Markov models, user actions can be mapped to sequential
predictions of cognitive process models, so that unintentional
fixations on wrong keys can be discarded. Unfortunately, another
relevant shortcoming of virtual keyboards is that they usually oc-
cupy large parts of the screen — otherwise keys would be too
small to be correctly selected — and this reduces the available
space for the display of other content.

While the “traditional” keyboard is the most intuitive answer to
the writing problem, several alternative approaches have been
proposed, with the aim to overcome its limitations. For instance,
Isokoski [2000] describes some interesting solutions based on off-
screen targets, placed around the monitor outside the display area,
which is therefore completely free for applications. Ward and
MacKay [2002] present a method for text entry based on inverse
arithmetic coding, where writing is seen as a navigational task.
Like in the Dasher general data entry interface [Ward et al. 2000],
from which the input technique is derived, letters are arranged
vertically on the screen, and, as they are looked at, enlarge into
big areas that in turn include the most probable successive letters
to form a word. Among the several selection and input methods
described by Majaranta and Räihä [2002], the technique used in
the VisionKey system is quite original, albeit, probably, not very
intuitive. Letters are displayed in a grid of cells, and each cell
contains four characters. To start a command, the user glances at a
corner of the key chart and then glances back at the center. After-
ward, proper sequences of glances at one of the four corners, at
the center of the grid and at the cell containing the letter to type
produce the desired selection. To limit the possible fatigue deriv-

*e-mail: marco.porta@unipv.it
†e-mail: turinamatteo@libero.it

27

ing from dwell time constraints, Ohno and Mukawa [2003] pro-
pose the Quick Glance Selection Method (QGSM), where each
“button” displayed on the screen (including character keys) is
composed of two parts, a command name area and a selection
area: to press the button, the user has to look at the selection area.
The system by Miniotas et al. [2003] uses a technique, called
Symbol Creator, based on assembling characters by means of
seven letter “segments”, implemented as eye-gaze activated on-
screen keys that resemble basic elements of Latin cursive. Fejtová
et al. [2006] describe a system called IPad, where the screen is
subdivided into “boxes” and the user selects the required letter by
gradual division of a selected interval of ordered characters. The
choice is made by looking anywhere within two big buttons
placed on the left and right upper areas of the screen – the re-
quirement for precise positioning is thus significantly reduced at
the expense of a slower writing speed. Such “principle” (grouping
several letters under one key) has a long tradition in eye input in-
terfaces, and can be also found in early systems based on electro-
oculographic potential (e.g. EagleEyes [Gips and Olivieri 1996]).
Wobbrock at al. [2007] describe a system for “eye writing” which
uses gestures similar to hand-printed letters, where characters are
“drawn” instead of typed. Urbina and Huckauf [2007], at last, pre-
sent three new input methods characterized by original features.
The first method exploits the principle of “pie menus” (when
slices containing groups of letters are looked at by the user, new
pies are generated which include only one letter per slice); the
second technique is based on character buttons arranged around a
rectangular area, where the text is actually written; in the third
method, finally, letters are arranged on a half-circle in the upper
part of the monitor, and are typed by dragging them into a text
field.

In this paper we present Eye-S, an input modality for pure eye
communication which can be used for both writing and providing
general commands to the computer. Unlike the just quoted sys-
tems, Eye-S does not require the display of any graphical element,
therefore not disturbing other applications.

The article is structured as follows: Section 2 discusses the main
motivations which have inspired our work; Section 3 explains the
Eye-S input modality; Section 4 describes the major features of
the system; Section 5 considers possible alternative uses for Eye-
S; Section 6 presents experimental results; Section 7, at last,
draws some conclusions and provides hints for future work..

2 Motivations Behind Eye-S

As said in the Introduction, Isokoski [2000] considers several ap-
proaches to the eye writing problem, all exploiting off-screen tar-
gets. Practically, to leave the display area totally free for applica-
tions, physical elements (e.g. strips of paper) are placed outside
the screen, and used to control the input process. The Minimal
Device Independent Text Input Method (MDITIM), in particular,
is a technique which uses five tokens for input. Four of this tokens
are mapped to the four main directions — north, south, west and
east — to give the characters a two dimensional interpretation.
The method was initially conceived for pen input: for instance, the
‘a’ letter is defined by an upward movement of the pen followed
by a shift to the lower left position, sequence which can be abbre-
viated with NSW (North South-West). All characters are defined
this way, with proper combinations of strokes (see the examples
in Figure 1, where starting points are indicated by circles).

a =NSW

b =SEW

c =ESW

Figure 1: Examples of MDITIM characters

The principle of MDITIM has been transposed to an eye writing
application where four external targets, corresponding to the prin-
cipal directions, are attached to the four sides of a monitor, and a
fifth target, placed in the upper left corner of the screen, is used as
a modifier (e.g. to input uppercase characters). To “create” a let-
ter, the user has to look at the targets according to the right suc-
cession (for example, upper, lower and left target for ‘a’).

While original, such an approach has unfortunately two draw-
backs. Firstly, it requires physical targets to be positioned outside
the display area, which might be a problem if the employed eye
tracker is not able to precisely follow off-screen gazes. Secondly,
the MDITIM coding technique requires the user to learn gaze se-
quences that rarely resemble the shapes of characters, thus turning
out not to be very intuitive.

In the context of action-based gaze input (for example to perform
drag and drop operations), Milekic [2003] introduces the concept
of “eye graffiti”, where gaze gestures are used to form a vocabu-
lary in a way similar to the text input mechanism used in personal
organizers. In these devices, natural input is obtained by “draw-
ing” letters, or parts of them, through a pen. As shown in Figure 2,
the sketched lines resemble very closely the corresponding char-
acters, and this helps the user to easily learn the input modality.

a

b

c

Figure 2: Examples of “letter drawing” in personal organizers

Our work derives basically from the previous considerations. Ex-
ternal targets used to free the screen area may be troublesome for
certain eye trackers, and an eye-based input method should be as
intuitive as possible, to reduce the user’s cognitive load. We
therefore apply a sort of eye graffiti input approach to on-screen
virtual targets, which, while being in well-defined positions, are
usually not explicitly displayed.

Another approach based on the graffiti principle, which however
could not inspire our work as it is extremely recent, is the one pre-
sented by Wobbrock at al. [2007] (quoted in the Introduction).
Their interesting system, called EyeWrite, exploits the EdgeWrite
unistroke alphabet [Wobbrock et al. 2003], originally created to
enable text entry on PDAs and other devices. Essentially, letters
are composed by looking at the corners of a square window spe-
cifically used for input, according to the EdgeWrite alphabet;
when the letter under construction is completely formed, the user
looks at the center of the input window to confirm his or her
choice. Apart from the hint provided by Milekic [2003] within a
general discussion about eye gestures, the paper by Wobbrock at
al. [2007] on EyeWrite is almost certainly the first article to de-
scribe a letter-like gestural writing application.

28

However, while probably originating from the same basic idea,
Eye-S, the system we describe in this paper, differs from Eye-
Write in various aspects. On the one hand, Eye-S exploits all the
available screen area for input, by means of an invisible yet im-
plicitly identifiable grid of targets uniformly distributed. On the
other hand, Eye-S does not require the display of any window or
input interface, thus leaving the screen totally free for applica-
tions. Moreover, the use of nine targets to compose letters (or cre-
ate other general commands) makes it possible to choose among
many “eye stroke” combinations, thus not constraining eye ges-
tures to a specific and relatively limited alphabet.

3 Eye-S Input Modality

Even if our input method can be used to provide general com-
mands to the computer (as it will be explained in Section 5), it
was primarily conceived for writing. Thus, our inspiring stimulus
was the possibility for the user to easily “draw” letters through the
eyes, without the need for on-screen space-demanding keyboards.

In Eye-S, letters are drawn through sequences of eye fixations on
specific parts of the screen, which we call hotspots. We use nine
hotspots, four positioned at the vertices of the screen, four placed
in the middle of each side and one located in the center (Figure 3).
Practically, a hotspot is a square area whose size can be varied
according to one’s preference and/or to the precision of the eye
tracker.

Figure 3: Hotspot positions within the display area

Normally, hotspots are not visible. However, their position is
quite clear, and almost no effort is required to the user to remem-
ber where they are. This means that the screen is totally available
for displaying any content, and no area is occupied by specific
interfaces for text input.

An eye sequence (from which the name Eye-S stems) is a succes-
sion of fixations on the hotspots, while a sequence segment is the
linear path between two consecutive fixations; in the following,
we will sometimes use the term “eye gesture” with the same
meaning as “eye sequence”. When the user looks at a hotspot for
more than a defined threshold (e.g. 400 milliseconds), a sequence
recognition process starts. If both the following conditions are
satisfied:

1. other hotspots are looked at after the initial one, within con-
figurable time intervals

2. the succession of watched hotspots pertains to a set of prede-
fined sequences stored in a “database”

then a corresponding action is performed. If the system is being
used for text input, the action will be the same as typing a key on
a keyboard. Eye sequences can be chosen arbitrarily, but in the
writing context they will of course resemble the form of letters.
For instance, possible eye sequences for the ‘a’ and ‘b’ characters
are shown in Figure 4.

a
1 2

b 1

2

3

Figure 4: Possible eye sequences for the ‘a’ and ‘b’ letters

As it can be seen, the ‘a’ letter is obtained by watching at first the
bottom-left hotspot, then the top-middle hotspot and, at last, the
bottom-right hotspot. The sequence for the ‘b’ letter is instead
top-middle, bottom-middle, right-middle and center. Through this
9-points fixation schema, a complete alphabet can be easily built.

Figure 5 shows the most part of the alphabet we have defined and
used in our tests. It is important to note, however, that more than
one sequence could be associated with the same letter (or sign or
general action), as there may be different intuitive ways to de-
scribe the letter as a succession of fixations on the hotspots. More-
over, to ease the user’s task and simplify the recognition process,
in choosing the sequences we have adopted the following criteria:

• no sequence is longer than 3 or shorter than 2 segments (that
is, at least 2 and no more than 4 different hotspots are in-
volved in the coding of letters and other writing commands);

• no sequence is a subset of another.

4 System Description

Eye-S is implemented in C# within the .NET Microsoft frame-
work. As an eye tracker, we use the Tobii 1750 [Tobii Technol-
ogy AB 2003], which integrates all its components (camera, infra-
red lighting, etc.) into a 17’’ monitor.

Allowed sequences and their associated characters or commands
are defined in a configuration text file, where each line contains:
(1) a sequence code, (2) a possible ASCII code (for characters) or
other code referring to a certain action, and (3) a “description”
(i.e. a comment). For example, the following is a portion of the
configuration file defined for our alphabet:

020000103 97 "a"
010043020 98 "b"
.........
102000304 122 "z"
000302000 32 "space"
200000003 8 "backspace"
020013040 63 "?"
.........

The sequence code is formed of 9 digits, as many as the number

29

Figure 5: A possible alphabet for Eye-S text input

of hotspots. Hotspots on each of the three rows, from left to right,
correspond, respectively, to the digits in positions 1 to 3, 4 to 6
and 7 to 9. The set of values that each digit can assume depends
on the maximum length of the sequence, i.e. on the number of

segments composing it. If a hotspot is not involved in a certain
sequence, then the value of its digit is 0. The first hotspot that
must be looked at to start a sequence will have its digit set to 1,
the second hotspot will have the digit set to 2, the third set to 3,
and so on (when more than one fixation is required on the same
hotspot, some number may be missing in the progression, like for
‘space’ and ‘backspace’ in the previous example). Since in our
alphabet the maximum length of a sequence is three — four hot-
spots involved — the digits of the sequence code can assume val-
ues between 0 and 4 only.

When Eye-S is started in “configuration/training” mode, the inter-
face shown in Figure 6 is displayed.

Figure 6: “Configuration/training mode” interface for Eye-S

In this functioning mode, it is possible to calibrate the eye tracker
and set some parameters. For instance, it is possible to choose
whether hotspots must be explicitly shown on-screen with a semi-
transparent effect, which may be useful at the very beginning of
the interaction with the system, to clearly understand where sensi-
tive areas are (Figure 7).

30

Figure 7: Explicit display of hotspots

Moreover, the size of hotspots and the length of dwell and timeout
times can be varied through sliders. Such settings, as well as cali-
bration data, can be stored for subsequent use. After this initial
configuration phase, Eye-S can be started and either directly
tested for text input through a built-in word processor or mini-
mized for free interaction with all the available screen space.

When Eye-S is launched in “implicit mode”, no interface is
shown, and the system is ready for use as an input method (ac-
cording to previously stored data). Both in this case and when
Eye-S is started in configuration/training mode with a minimized
interface, any application involving text input can be used to write
by looking at the hotspots. Eye sequences corresponding to letters,
in fact, are translated into keyboard events, and thus the current
active window will receive the input. In this regard, it is interest-
ing to note that the focus among open windows can be easily
changed by means of a proper sequence, which simulates the
ALT+ESC key combination (Figure 8a).

Since it may be useful for the user to be able to turn Eye-S on and
off at any time, we use a specific sequence with this precise pur-
pose. Actually, after starting the system in one of the two func-
tioning modes, no sequence is recognized, apart from the “on/off”
sequence (which, in our implementation, is the one shown in Fig-
ure 8b). As the user performs such eye gesture, Eye-S is really
turned on (and the message “Eye-S ON” appears at the center of
the screen). When, for any reason, the user wants to turn the rec-
ognition procedure off, he or she simply performs the same ges-
ture (the message “Eye-S OFF” will appear).

During system use, it is generally helpful to get a feedback about
the sequence composition process. To this purpose, when the user
looks at the first hotspot for more than the defined dwell time, a
small green square is displayed within the hotspot itself. Such
square contains a ‘1’, to indicate that this is the first hotspot of a
possible sequence. If the user looks at another hotspot within a
timeout, then a yellow square appears, with a ‘2’ written inside it
(and the green square is deleted). If the sequence which is being
recognized is three segments long, the same happens for the third
hotspot (orange square and ‘3’ as a sequence indicator). At last,
on the final hotspot of a sequence — whether it is three or four
segments long — a red square is displayed which contains the
character or “action” recognized, so that the user can immediately
understand that the eye gesture has been successfully detected.

1

2

On / Off

12

(a) (b)

Figure 8: (a) Sequence for ALT+ESC (switch among open win-
dows); (b) Sequence for turning Eye-S ON and OFF

Figure 9 graphically exemplifies this feedback mechanism in the
case of the ‘p’ letter.

2

1

3p

Step 1: first
hotspot (green)

Step 2: second
hotspot (yellow)

Step 3: third
hotspot
(orange)Step 4: fourth

hotspot (red), ‘p’
character recognition

p

1

2

3

Figure 9: Example of feedback provided by Eye-S during the
composition of letter ‘p’

If, at any point of the sequence composition process, the timeout
is reached, the recognition progression is reset and the feedback
square currently displayed is deleted; the user can then create a
new sequence beginning from any of the nine hotspots. As a fur-
ther feedback, the user can also decide to display straight lines
connecting the hotspots, according to the sequence which is being
created. While not strictly necessary and potentially disturbing,
such additional indication may be useful when learning the alpha-
bet of sequences, which are graphically visualized on the screen
as they are composed.

5 Possible Alternative Uses of Eye-S

As emphasized in the previous sections, although we have ini-
tially conceived Eye-S as a system for text input, it can be also
used to provide the computer with general commands. For in-
stance, there may be sequences associated with all the main appli-
cations that the user normally uses, which could be started by
simply looking at the hotspots in the correct order. Moreover, in a
certain program, predefined sequences might produce specific
results.

Even within the writing context we have explicitly considered in
this paper, however, the potential of Eye-S for the interaction with
general applications is quite high. Most (if not all) Windows inter-
faces can in fact accept keyboard input through proper key com-
binations (shortcuts). Thus, providing for sequences correspond-
ing to such combinations makes it possible to easily control appli-

31

cations. Even more generally, still considering the Microsoft Win-
dows environment, the ALT key can be exploited to select
menus: when the key is pressed, the upper-left menu is high-
lighted (e.g. the ‘File’ menu in applications of the MS Office
suite). Each menu has also a shortcut letter that can be used to
immediately open it (e.g. ‘F’ for ‘File’, ‘E’ for ‘Edit, etc.). Within
menus, in turn, each item has a shortcut letter that immediately
triggers its action. Eye-S allows the user to easily perform all
these operations by means of sequences corresponding to the ALT
key and to the shortcut letters. At any moment, the ESC sequence
can be used to cancel current selections.

As an example, consider the following possible interaction with
Word 2003:

1. the user wants to open an existing file; therefore, he or she
performs the ALT sequence (to activate menus), the ‘F’ se-
quence (to open the ‘File’ menu) and the ‘O’ sequence (to
trigger the ‘Open’ action);

2. in the ‘Open’ dialog box, the user can now directly write, in
the text field, the name of the file to open or, before that,
navigate within the file system structure. To do this, the TAB
sequence is repeated until the file display area gets the focus;
afterward, the arrow keys sequences (UP, DOWN, LEFT
and RIGHT) can be used to select a folder or file, and then to
open it (through the ENTER sequence);

3. once the document has been opened, the user goes to a spe-
cific page by repeating the PAGE DOWN sequence, and
then reaches a precise line and character by means of the ar-
row sequences (the HOME and END sequences can be also
exploited to position the cursor at the beginning or at the end
of the current line);

4. the character placed before the cursor is deleted by means of
the BACKSPACE sequence, and then substituted with an-
other character (of course entered through its sequence);

5. after moving to another section of the document, the user
opens the ‘Format’ menu and chooses ‘Paragraph’ (ALT,
‘O’ and ‘P’ sequences);

6. within the dialog box, the user specifies the properties for
the paragraph, moving among input fields through the TAB
and SHIFT+TAB sequences, selecting items within drop-
down menus by means of the UP and DOWN arrow se-
quences, entering number values in text fields, and so on; at
the end, the ‘Ok’ button is selected and pressed (ENTER se-
quence);

7. the user proceeds with other actions…

The just described sample (and simple) scenario is only one of the
many that could be identified. In addition, as already stated, MS
Office applications have hundreds of more specific shortcuts (e.g.
CTRL+S for ‘Save’, CTRL+F for ‘Find’, etc.), which could be
considered in this well-defined context. If necessary, different
configuration files with different sequence associations (and pos-
sibly different alphabets) could be even defined, to be used with
different programs.

It is also interesting to note that if an application does not provide
explicit shortcuts for menus, its interface can be anyway navi-
gated. In fact, once the ALT sequence has been performed, the
user can move among the available menus by means of the
RIGHT and LEFT arrow sequences; next, after choosing a spe-
cific menu, the UP and DOWN arrow sequences allow items

within menus to be first selected, and then activated (through the
ENTER sequence). Also, the ALT+SPACE and ‘n’ sequences,
executed one after the other, minimize the current window. In
general, when no program is being executed and the screen is free,
the TAB and SHIFT+TAB sequences allow to move among the
desktop, the ‘Start’ button, and the application bar; within each
area, the arrow sequences can then be used to choose and activate
specific icons.

Therefore, while Eye-S is configurable for specific purposes, it
can be profitably used as a general interaction mechanism as well,
even when its actions are simply standard keyboard events.

6 Experiments

Eye-S has been of course informally tested many times during its
development. However, once fully implemented, we have carried
out more formal experiments aimed at obtaining useful qualitative
and quantitative data about its use.

Needless to say, whatever the method adopted, eye input requires
a certain training to produce really good results. Even with input
techniques which are conceptually close to our usual input mo-
dalities, such as those exploiting on-screen virtual keyboards, in-
experienced users needs some time to get acquainted with the new
form of communication. Using an eye graffiti approach like the
one implied by Eye-S requires even further training time, neces-
sary to correctly memorize sequences; and this may prevent very
fast input rates to be achieved in a very short time.

Unfortunately, to date we have not had the opportunity to properly
train many testers (only two), and hence, although the results ob-
tained from them are quite good, we do not have really relevant
statistical data about character input speeds. However, we have
also carried out experiments with 8 totally novice users, to inves-
tigate how rapid the approach can be in the very initial stages of
the interaction and get “first impression” assessments.

The group of 8 volunteer testers, who had never used an eye
tracking system before, was composed of 4 males and 4 females,
aged between 24 and 38 (28 on average). Before the actual test,
each user was explained the purpose of Eye-S and of the experi-
ment, and, after the calibration of the eye tracker, could freely
practice with the system for ten minutes. A scheme with sequence
associations for each alphabet letter (the one shown in Figure 5)
was provided to all participants. System settings, maintained both
in this preliminary phase and in the real tests, were the following:

• dwell time (minimum fixation time for a hotspot to be taken
as a starting point of a sequence): 400 ms;

• timeout (maximum time elapsed between two fixations on
two hotspots during sequence composition, for the sequence
not to be discarded): 1000 ms;

• hotspot size (side length): 190 pixels;
• visible hotspots (semitransparent effect): yes;
• visible sequence segments (segments connecting hotspots

explicitly drawn during sequence composition): no.

Given the very short training period, we opted for displaying hot-
spots all the time. After the ten minutes of practice, users were
asked to write the sentence: “hello! I am writing with my eyes.”

32

(which could be read on a sheet near the Tobii monitor). We
measured the following data:

• time taken to accomplish the task (expressed in seconds);
• number of wrong characters (w1, wrong sequences created,

for example because not correctly remembered);
• number of characters “not finished” (w2), i.e. whose se-

quences were started but then interrupted for any reason
(typically because timeouts were reached).

Table 1 shows the results obtained.

Table 1: Results of the experiments with totally novice users

 T1 T2 T3 T4 T5 T6 T7 T8 Avg

time 222 238 164 122 221 195 209 137 188.5

w1 3 4 2 2 1 0 3 1 2

w2 4 8 2 1 6 5 4 1 3.9

Although the times taken to write the sentence are rather high for
all the testers, all of them concluded the task successfully. In point
of fact, considering that they could practice only for very few
minutes and did not have any previous experience with eye track-
ing systems, we think that the results are comfortable (on average,
we have noted that about one third of the time was spent looking
at the scheme of sequences; once correctly learnt, the total time is
greatly reduced). As a qualitative judgment, all the users appreci-
ated very much the originality of the input approach.

Besides the eight inexperienced users, as stated, also two expert
testers were involved in more accurate experiments, aimed at as-
sessing the real potential of Eye-S as a technique for text input.
“Expert” means that they had been using the system for about
two hours and a half before the test (in previous days). Even
though the results achieved cannot be statistically relevant, we are
very confident that they closely reflect more accurate data we will
obtain from future tests carried out with more testers.

To compare these results with those provided by inexperienced
users, also in this case the testers had to write the sentence “hello!
I am writing with my eyes.”. The only differences in system set-
tings for these experiments were the dwell time of 340 ms (instead
of 400) and the fact that hotspots were not visible. Table 2 shows
the outcomes of the trials.

Table 2: Results of the tests with experienced users

 T1 T2 Avg

time 62 67 64.5

w1 0 0 0

w2 0 1 0.5

As shown in Figure 10, the performance in this case is quite dif-
ferent from that of novice testers.

In a separate and longer experiment, the two experienced users
had also to write the text of a news item taken from a newspaper,
which was dictated to them. The text was composed of 1547 char-
acters (including spaces and punctuation). On average, the testers
were able to write 34 characters per minute, i.e. 6.8 WPM if we
consider an average length of 5 characters per word. Although this
speed is lower than those cited in the literature for on-screen key-

(a) (b)

Figure 10: Novice vs. experienced users — (a) Average times to
accomplish the task; (b) Average values for w1 and w2

boards (e.g. 9.89 WPM reported by Majaranta et al. [2004]) and
for some other input approaches (e.g. 7.99 WPM stated by Wob-
brock et al. [2007] for EyeWrite), we think that Eye-S should be
considered in its totality, with both pros and cons. In particular,
the advantage of leaving the screen completely free for applica-
tions, thus not interfering in any way with them, is relevant to us.
Moreover, while for now we have tested Eye-S as a text input
method only, the system can be used as a general input approach
for almost any kind of command.

7 Conclusions and Future Work

In this paper we have presented Eye-S, a system for providing eye
input to the computer.

The main feature characterizing Eye-S is surely the fact that it
does not require any graphical interface, thus leaving all the avail-
able display area free for applications. On-screen virtual key-
boards and other kinds of eye-based input techniques, in fact, are
usually space-demanding, and may interfere with the use of pro-
grams. We think that this advantage can compensate for a little
slower writing rate when compared to other text input systems,
which use visible graphical elements as targets.

In the context of text input, however, we will need to carry out
more accurate tests, with more experienced users. In addition,
while the adopted sequences for letters, punctuation, etc., derive
from our personal preferences (we judge them good approxima-
tions of character shapes), more accurate choices might improve
the writing speed. To this purpose, we will also consider word
completion functionalities.

Although the main application scenario we have considered in this
paper is that of text input, certainly one of the most useful and
studied, it is important to stress again that the approach can be
exploited to specify general commands as well. The meanings
associated with sequences can in fact be always chosen according
to the needs of the particular context. Moreover, as explained in
Section 5, even when used as a text input tool, Eye-S can allow
easy interaction with many of Windows’ functionalities, which
can be a great advantage.

Acknowledgements

This work has been supported by funds from the Italian FIRB pro-
ject “Software and Communication Platforms for High-
Performance Collaborative Grid” (grant RBIN043TKY).

0
0.5

1

1.5
2

2.5
3

3.5
4

w1 w2

Novice
Experienced

0.00

40.00

80.00

120.00

160.00

200.00

time (sec)

Novice

Experienced

33

References

FEJTOVÁ, M., NOVÁK, P., FEJT, J., and ŠTĚPÁNKOVÁ, O. 2006.
When can eyes make up for hands? In Proceedings of the 2nd
Conference on Communication by Gaze Interaction (COGAIN
2006), Turin, Italy, September 4-5, 46-49.

GIPS, J., and OLIVIERI, P. 1996. EagleEyes: An Eye Control Sys-
tem for Persons with Disabilities. In Proceedings of the Elev-
enth International Conference on Technology and Persons with
Disabilities, Los Angeles, California, USA, March.

HANSEN, J. P., JOHANSEN, A. S., HANSEN, D. W., ITOH, K., and
MASHINO, S. 2003. Command Without a Click: Dwell Time
Typing by Mouse and Gaze Selections. In Proceedings of IN-
TERACT 2003, Zürich, Switzerland, September 1-5.

ISOKOSKI, P. 2000. Text Input Methods for Eye Trackers Using
Off-Screen Targets. In Proceedings of ETRA 2000, Palm Beach
Gardens, FL, USA, 15-21.

LANKFORD, C. 2000. Effective Eye-Gaze Input into Windows. In
Proceedings of ETRA 2000, Palm Beach Gardens, FL, USA,
November 6-8, 23-27.

MAJARANTA, P., and RÄIHÄ, K. 2002. Twenty Years of Eye Typ-
ing: Systems and Design Issues. In Proceedings of ETRA 2002,
New Orleans, Lousiana, USA, 15-22.

MAJARANTA, P., MACKENZIE, I. S., and RÄIHÄ, K. 2003. Using
motion to guide the focus of gaze during eye typing. In Pro-
ceedings of 12th European Conference on Eye Movements
(ECEM12), Dundee, Scotland, August.

MAJARANTA, P., AULA, A., and RÄIHÄ, K. 2004. Effects of Feed-
back on Eye Typing with a Short Dwell Time. In Proceedings
of ETRA 2004, San Antonio, Texas, USA, March 22-24, 139-
146.

MILEKIC, S. 2003. The More You Look the More You Get: Inten-
tion-Based Interface Using Gaze Tracking. In Proceedings of
the 7th Annual Museum and the Web Conference, Charlotte,
North Carolina, USA, March 19-22.

MINIOTAS, D., SPAKOV, O., and EVREINOV, G. 2003. Symbol
Creator: An Alternative Eye-based Text Entry Technique with
Low Demand for Screen Space. In Proceedings of INTERACT
’03, M. Rauterberg et al. (Eds.), IOS Press, IFIP, 137-143.

OHNO, T., and MUKAWA, N. 2003. Gaze-Based Interaction for
Anyone, Anytime. In Proceedings of HCI International 2003,
Crete, Greece, June 22-27, Vol. 4, 1452-1456.

RASMUSSON, D., CHAPPELL, R., and TREGO, M. 1999. Quick
Glance: Eye Tracking Access to the Windows95 Operating En-
vironment. In Proceedings of the 14th International Conference
on Technology and Persons with Disabilities, Los Angeles, CA,
USA, March 15-20.

SALVUCCI, D. 1999. Inferring Intent in Eye-Based Interfaces:
Tracing Eye Movements with Process Models. In Proceedings
of CHI ‘99 (Conference on Human Factors in Computing Sys-
tems), New York, ACM Press, 254-261.

SURAKKA, V., ILLI, M., and ISOKOSKI, P. 2004. Gazing and frown-
ing as a new human-computer interaction technique. ACM
Transactions on Applied Perception, Vol. 1, Issue 1 (July), 40-
56.

TOBII Technology AB 2003. Tobii 1750 Eye-tracker (Release B),
November ‘03.

URBINA, M. H., and HUCKAUF, A. 2007. Dwell Time Free Eye
Typing Approaches. In Proceedings of the 3rd Conference on
Communication by Gaze Interaction (COGAIN 2007), Leices-
ter, UK, September 3-4, 65-70.

WARD, D. J., BLACKWELL, A. F., and MACKEY, D. J. C. 2000.
Dasher - a Data Entry Interface Using Continuous Gestures and
Language Models. In Proceedings of the 13th Annual ACM
Symposium on User Interface Software and Technology (UIST
2000), San Diego, CA, USA, November 5-8.

WARD, D. J., and MACKAY, J. C. 2002. Fast Hands-free Writing
by Gaze Direction. Nature 418, August 22, 838.

WOBBROCK, J. O., MYERS, B. A., and KEMBEL, J. A. 2003. Edge-
Write: A Stylus-Based Text Entry Method Designed for High
Accuracy and Stability of Motion. In Proceedings of the 16th
Annual ACM Symposium on User Interface Software and Tech-
nology (UIST ’03), Vancouver, BC, Canada, November 2-5, 61-
70.

WOBBROCK, J. O., RUBINSTEIN, J., SAWYER, M., and DUCHOWSKI,
A. T. 2007. Not Typing but Writing: Eye-based Text Entry Us-
ing Letter-like Gestures. In Proceedings of the 3rd Conference
on Communication by Gaze Interaction (COGAIN 2007),
Leicester, UK, September 3-4, 61-64.

34

