
Published in the Proceedings of the 8th International Conference on Human-Computer
Interaction (HCI’99), Vol. 1, 22-27 August 1999, Munich, Germany.

A Visual Approach to Internet Applications
Development

Mauro Mosconi – Marco Porta

Dipartimento di Informatica e Sistemistica – Università di Pavia
Via Ferrata, 1 – 27100 – Pavia – Italy

mauro@vision.unipv.it – porta@vision.unipv.it

1   Do Advanced Users Wish to Build and Control Their
Own Internet Applications ?

To allow Internet users to find, collect and manipulate information available on
the Web, different solutions have been developed (IEEE 1997) by researchers
and software companies which aim at simplifying the interface as much as pos-
sible (search engines) or even acting on the users’ behalf (software agents).
Nevertheless, there is a range of applications where the overload involved in
training an adaptive intelligent system would be unacceptable, while a tradi-
tional browsing approach would result in tiresome, time-consuming effort.

To tackle this class of applications, we propose a data-flow visual environment
in which non-naive users can accomplish their goals better and more rapidly by
directly composing simple visual programs themselves, while preserving a sense
of control over the system. In the following, a simple example application is
discussed to highlight the potential of our approach.

2   The Development Platform

The system we use for building our visual Internet applications is VIPERS
(Ghittori, Mosconi and Porta 1998), a general purpose, visual programming
environment based on an augmented data-flow model (Hils 1992) and devel-
oped at the University of Pavia. VIPERS uses a single interpretive language
(Tcl) to define the elementary functional blocks (the nodes of the data-flow
graph). Each block corresponds to a Tcl command (or procedure): such a com-
mand may itself invoke the execution of other programs as subprocesses.



2

VIPERS elementary modules have a square shape and present connection
points, or ports, on their lateral sides; programs are assembled through direct
manipulation, by positioning and properly connecting the available modules:
entire programs can therefore be built without typing any line of code.

3   The Visual Approach

Figure 1 shows an example of a visual program built through VIPERS. Its pur-
pose is to explore the Web to find a set of E-mail addresses (to which a message
will be sent later on), starting from one or more words and/or sentences. To
avoid sending messages to persons out of target, the program also generates a
form, to be filled in by the user. For each address, this form shows its context
(the ten words preceding it and the ten words following it) and a check box,
used to select or exclude the address. The form is subsequently processed by a
CGI program. In the example, you may note both ad-hoc blocks (purposely
prepared for this kind of application) and more general blocks, which can be
used in other application domains as well, for building general-purpose pro-
grams.

Figure 1:  an example of visual program built through VIPERS

Each input/output port in VIPERS is characterized by a special icon indicating
the corresponding data type. Data types used in our example are: t (text), [...]
(list) and •/• (file path). It is to be noted that (at least in this example) when a
module gives out a file path name, this path refers always to a temporary file.

The first module in the figure (block INPUT) allows the user to enter the
words/sentences to be searched for. These words/sentences are then provided, in
parallel, as inputs, to blocks ALTAVISTA and GOOGLE, which connect to
their relative search engines and produce HTML pages (local temporary files)

,1387

$/7$9,67$

*22*/(

(;75$&7

85/

(;75$&7

85/

),/(

$33(1'

),/(

6257

81,48(

/,1(

'2:1/2$'

3$*(6
(;75$&7

85/
'2:1/2$'

3$*(6
6(/(&7 (�0$,/

	 &217(;7

'(/(7( (�0$,/

'83/,&$7(6

&5($7(

:(% )250

Â�Â

Â�Â

Â�Â Â�Â

Â�Â Â�Â

Â�Â

Â�Â

Â�Â Â�Â Â�Â Â�Â Â�Â

Â�ÂÂ�ÂÂ�ÂÂ�ÂÂ�ÂÂ�Â

Â�Â

Â�Â

Â�Â

Â�ÂÂ�Â

Â�Â

Â�Â

Â�Â

W

W

W



3

containing the search results. Blocks EXTRACT URL analyze these results,
locate the links they contain and create text files with one link per line. The
purpose of block FILE APPEND is to link together the files it receives as inputs
and to produce a single file. In the example, therefore, it generates a file holding
all the links present in both the Altavista and the Google search results. This file
is then alphabetically sorted by block FILE SORT and “cleaned up” by block
UNIQUE LINE, which eliminates any duplicated lines (links).

At this point, a quite meaningful set of results should have been obtained (which
could be exploited to automatically download the sites’ pages, through already
available software tools). In our program, now the information access phase
starts. For each link in the temporary file at the output of block UNIQUE LINE,
the following operations are performed:

• the page corresponding to the link is accessed (downloaded);

• the page is appended to a buffer;

• the page’s links are in turn extracted and the relative pages are then ac-
cessed and appended to the buffer (two-level spidering).

These operations are accomplished by blocks DOWNLOAD PAGES and
EXTRACT URL. The first DOWNLOAD PAGES (macro) block in the figure
receives, as input, the file of the links whose pages are to be downloaded and
yields a file (buffer) containing all these pages as output. Actually, this block
has another input port as well: if a file path name is provided for it, such a file is
assumed as an initial buffer to which the pages must be appended. We assume
that the default input value for this port is an empty file: VIPERS, in fact, allows
default values for the inputs of a block to be easily specified, which are used
when no data is explicitly provided.

In the figure, you can also note a thin line without arrows connecting the control
ports (those with the lightning symbol) of blocks DOWNLOAD PAGES and
EXTRACT URL. This line is a control signal and is activated only when the
download of all the pages has been completed. Control signals are used in
VIPERS to achieve correct synchronization: if a signal exists between an output
control port (on the right) of block A and the input control port (on the left) of
block B, then the execution of block B can not occur before the whole execution
of block A.

Returning to the example, when all the first-level pages have been downloaded,
the links they contain are extracted by block EXTRACT URL and provided for
the second DOWNLOAD PAGES block. This block also receives the output of
the first DOWNLOAD PAGES block as an initial buffer and produces a single
file containing both the first-level and second-level downloaded pages. The
specialized module SELECT E-MAIL & CONTEXT receives this buffer as



4

input and singles out the E-mail addresses contained in it. For each address, it
then yields, besides the address itself, the title of the page in which it was found
and its context as output (the ten words preceding it and the ten words following
it). Lastly, block DELETE DUPLICATES eliminates any duplicated E-mail
addresses and the block CREATE WEB FORM generates the web form to be
checked by the user.

As already stated, block DOWNLOAD PAGES is a macro block, that is, it is
composed in turn of other blocks. Figure 2 shows its internal structure.

)25($&+

/,1(
),/(

$33(1'

'2:1/2$' 3$*(6

Â�Â
Â�Â Â�Â

Â�Â

Â�Â

Â�Â

Â�Â
Â�Â

W

W

a

Figure 2:  the internal structure of  block DOWNLOAD PAGES

As one can see from the figure, a file path name is provided as input to block
FOREACH LINE. This block, in turn, is a macro block implementing the
foreach control construct, allowing elements of a sequential data structure (in
this case, a file) to be analyzed and made available, one after another. Block
FOREACH LINE emits the various lines (links) of its input file, as they are
taken out, but only at the end of this process does it activate its output control
signal. Block LOAD PAGE connects to the URL it receives as input and
downloads the corresponding HTML page on a temporary file, whose path
name is made available as its output. The MERGE block fires when either of its
two input ports receives a new data item, which is then emitted as an output.
Here, it allows an initial buffer path name to be specified, to which, during the
subsequent iterations, the various HTML page contents will be added by block
FILE APPEND.

The whole output of the program of figure 1 is a Web page (a form) like that
shown in figure 3, which could be delivered via E-mail to the user. By display-
ing the form in his/her browser, the user will then be able to select the addresses,
excluding, for example, those of the various webmasters, etc.



5

Figure 3:  an example of form generated by the program of figure 1

By pressing the SUBMIT button, the form data is passed to a CGI program on a
server, which processes it.

4   Conclusion

Our experiments indicate that a general purpose data-flow visual programming
environment like VIPERS can be effectively used by skilled users to digest Web
information in an easy manner. The program described above was used as a
testing exercise with a group of six engineering students. All the testers were
able to assemble the application from the modules (blocks) and macromodules
shown in the figure.

It is worth noting how the visual programming approach described here could
be used for rapid program prototyping as well. Indeed, once a program has been
built, it could be advantageously translated into a single script (for example in
Tcl), which can be used without need for the VIPERS visual interface.

We are now developing an on-line version of the VIPERS system, which will
allow to build visual Internet applications by simply connecting to a proper site
and assembling ready-made blocks taken from various libraries. Block execu-
tion will occur either locally or, when needed, on remote machines.

References

Ghittori, E., Mosconi, M., Porta, M. (1998). Designing new Programming Con-
structs in a Data Flow VL. Proceedings of the 14th IEEE International Confer-
ence on Visual Languages (VL’98, 1-4 September 1998, Nova Scotia, Canada).

Hils, D. D. (1992). Visual Languages and Computing Survey: Data Flow Visual
Programming Languages. Journal of Visual Languages and Computing, 3, 69-
101.

IEEE Internet Computing, vol. 1, n. 4, Jul-Aug. 1997.


