
Copyright 1998 IEEE. Published in the Proceedings of VL’98, 1-4 September 1998 at Nova Scotia, Canada. Personal use of this material is permitted.
However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistri-
bution to servers or lists, or to reuse any copyrighted component of this work in other works, must be obtained from the IEEE. Contact: Manager, Copy-
rights and Permissions / IEEE Service Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-1331, USA. Telephone: +Intl. 732-562-3966.

Programming Web-Based Applications within a Data-Flow VL

Roberto Idini - Mauro Mosconi - Marco Porta

Dipartimento di Informatica e Sistemistica - Università di Pavia
Via Ferrata, 1 - 27100 - Pavia - Italy

mauro@vision.unipv.it - porta@vision.unipv.it

Abstract

This paper shows how a general purpose data flow visual
programming environment can be effectively used to find,
collect and manipulate information available on the web.
The discussion highlights the elementary functions that
are needed to implement such applications, as well as the
language control structures that can make program de-
velopment easier. Starting from the analysis of a simple
application, some advice is given about the potential of
this approach. We also explain how we intend to make a
suitable portion of the programming environment avail-
able through a common web browser.

1. Introduction

Since the Web emerged as a global information net-
work, people have tended to spend a growing proportion
of their lives in front of computer screens, browsing, se-
lecting, collecting and manipulating information. An im-
portant attempt at employing computers and networks ef-
fectively is represented by the so-called software agents
[1], which know users' interests and can act autonomously
in their behalf, digesting large amount of information
while freeing users from repetitive browsing tasks.

This is a promising approach but can not be consid-
ered a panacea: it is evident that many web-related tasks
raise a challenge for automation but do not require the
complexity involved by an adaptive intelligent system,
which must be carefully trained and refined.

Our theory is that for a large class of applications,
non-naive users could accomplish their goals better and
more rapidly by directly composing simple programs
themselves, while preserving a sense of control over the
system. Moreover, our experience indicates that such pro-
grams can be easily and conveniently expressed within a
data-flow visual programming environment, as we will
show in this paper.

2. The Programming Environment

The system we use for building web-based applica-
tions is VIPERS [2], a general-purpose visual program-
ming environment based on an augmented data-flow
model and developed at the University of Pavia.

VIPERS uses a simple interpretive language (Tcl) to
define the elementary functional blocks (the nodes of the
data-flow graph). Each block corresponds to a Tcl com-
mand (or procedure): such a command may itself invoke
the execution of other UNIX programs as subprocesses.

3. A Data-Flow Approach for Web-based
Applications

The main idea behind this paper is that collecting and
manipulating information available on the web is an appli-
cation susceptible to a data-flow approach. Very con-
cisely, what is generally needed is the capability of ac-
cessing web pages, looking for keywords, selecting and
following interesting links, extracting useful information
and possibly reformatting it. Data transformations and
filterings can be conveniently expressed even by unskilled
users by means of a data-flow language, provided with
proper iteration constructs and procedural abstraction
mechanisms [3].

As a practical example, we present here a simple web
application which accesses the main headlines page of an
on-line newspaper and identifies titles containing at least
one among some given keywords (see Figure 1). Each
headline is arranged in a distinct row and has a link to the
corresponding article. The purpose of the application is to
download the pages relative to the selected titles, so that
they can be quickly accessed later on. Moreover, a HTML
page (index) reporting the list of all the picked headlines,
each one having a link to the corresponding piece of news
file, is then created and displayed in a web browser. The
application in itself is simple, but allows some potentiali-
ties of web-based programs for visual composition to be
highlighted. Once a library of elementary components has
been created, in fact, it is very easy to achieve even con-
ceptually complex functionalities.

LOAD
PAGE

LINKS
GREP

LIST
GREP

CREATE
HTML

OPEN
BROWSER

INPUT
FOREACH
LINE

EXTRACT
URL

LOAD
PAGE

MOVE
FILE

URL TO
PATH

Extract
periods
with links

Select
pertinent
links

Create
HTML index

Select
keywords
list

Keywords
list

Enabled
after the
iteration completion

Change
file name
according
to the index
file

Save as
local file

This portion
is executed
for each line

Save the
initial page
as local file

Figure 1: a web-based application example

Each input/output port in VIPERS is characterized by
a special icon indicating the correspondent data type. Data
types used in the example are: URL (Uniform Resource
Locator), •/• (file path), [...] (list) and t (text).

Referring to Figure 1, block LOAD PAGE connects
to an URL (received as an input or defined as a default)
and downloads the corresponding HTML page on a tem-
porary file, whose path name is made available as its out-
put. Such a file is analyzed by block LINKS GREP, which
extracts only periods containing links. The function of
block LIST GREP is to examine these periods, in order to
elicit those containing at least one of the keywords present
in its input list. The keywords list may be requested at
every execution of the program (in the example such task
is accomplished by block INPUT) or it may be specified
as a default for block LIST GREP. The path name of the
file holding only the selected lines is then provided both
to block FOREACH LINE and block CREATE HTML.

The foreach control construct, in VIPERS, allows
elements of a sequential data structure (in this case, a file)
to be analyzed and made available, one after the other.
Such a compact block might be replaced with an explicit
cyclic subgraph. Block FOREACH LINE emits the vari-
ous lines of its input file, as they are taken out, but only at
the end of this process does it activate the control signal
enabling block CREATE HTML. In the meanwhile, block
EXTRACT URL extracts the URL it incorporates from
every input line and block LOAD PAGE downloads on a
temporary file the page addressed by the just extracted
URL, whose name is properly settled later on.

 When all the lines have been scanned by block
FOREACH LINE, block CREATE HTML is activated
and generates an HTML file to be used as an index for the
locally stored pages. Lastly, block OPEN BROWSER
displays the created HTML file in a web browser, report-

ing the list of the news items which were searched for,
accessible through links to local files.

This is just the kernel of the program we daily use to
check for news about our favourite soccer team: other
blocks (not shown here) are used to calculate the first URL
(depending on the date), to organize downloaded pages
into a special archive and to automatically send some arti-
cles via e-mail after a further filtering.

4. Conclusion

Data-flow visual programming lends itself to em-
ployment by people who are unskilled at using computers,
such as generic users of internet services often are, and so
it proves to be especially convenient even for complex
behaviors. The purpose of the tool we are developing is
simply to allow the common web user to build his/her
custom agent-like applications in an easy manner.

It is important to stress the fact that block function-
alities can be defined and extended as one likes, both tex-
tually (through the Tcl scripting language) and visually (by
using ready-made blocks). Therefore, it is easy to create a
large functions library supporting the various program-
ming requirements in the web applications area.

Our future aim is to make an on-line portion of the
described visual environment available, to function as a
server. That is, any user, by just connecting to the proper
site through an ordinary browser provided with the Tcl
plugin (free and downloadable), will be able to exploit a
vast ready-made blocks library and visually build his/her
own application. Program execution will occur remotely,
on the server. As the user prefers, results can be displayed
in the client browser or forwarded via e-mail to a specified
address.

References

[1] IEEE Internet Computing, Vol 1, Num 4, IEEE Com-
puter Society, Jul-Aug 97.

[2] Bernini, M., Mosconi, M., "Vipers: a data Flow Visual
Programming Environment Based on the Tcl Language",
in Proc.AVI'94, ACM Press , 1994.

[3] Hils, D. D., "Visual Languages and Computing Survey:
Data Flow Visual Programming Languages", Journal of
Visual Languages and Computing, Vol. 3, 1992.

