
Copyright 1998 IEEE. Published in the Proceedings of VL’98, 1-4 September 1998 at Nova Scotia, Canada. Personal use of this material is permitted.
However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribu-
tion to servers or lists, or to reuse any copyrighted component of this work in other works, must be obtained from the IEEE. Contact: Manager, Copyrights
and Permissions / IEEE Service Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-1331, USA. Telephone: +Intl. 732-562-3966.

Designing new Programming Constructs in a Data Flow VL

Elena Ghittori - Mauro Mosconi - Marco Porta

Dipartimento di Informatica e Sistemistica - Università di Pavia
Via Ferrata, 1 - 27100 - Pavia - Italy

mauro@vision.unipv.it, porta@vision.unipv.it

Abstract
A powerful and useful Data-Flow Visual Programming
Language (DFVPL) must provide the necessary program-
ming constructs to deal with complex problems. The main
purpose of this paper is to give a contribution to the debate
on DFVPL constructs, by presenting the solutions we de-
vised for the VIPERS language.

1. Introduction
Data-flow is one of the most popular computational

models for visual programming languages (VPL). One of
the most important features which characterizes the power
of a data-flow VPL is the availability of a rich library of
predefined functions to be used as elementary building
blocks [1]. Moreover, a powerful and useful data-flow VPL
must provide the necessary programming constructs to deal
with complex problems (in the language’s application do-
main). Our experience with the VIPERS system [2], devel-
oped at the University of Pavia, confirms once more that
the pure data-flow model needs to be enriched with some
forms of control flow constructs in order to tackle non-
trivial applications. Iteration, for instance, has been pro-
vided in different ways in several languages. Nevertheless,
we feel that satisfactory solutions are very difficult to
achieve: sometimes, these solutions use a notation which is
not consistent with the data-flow paradigm. The purpose of
this paper is to give a contribution to the debate on data-
flow VPL constructs.

2. Loop Control Structures in VIPERS
VIPERS allows the programmer to freely choose

whether to explicitly construct parallel iterations [3] , by
introducing cycles into the program graph, or to use com-
pact forms simulating loop behaviors.

Usability issues regarding the loop structures which
will be discussed in the next subparagraphs can be found in
[4], where a new testing methodology is also presented.

2.1 The FOREACH control structure
A typical case of parallel iteration is sequential access

to all the elements of a data structure, so that certain opera-
tions can be performed on them. Figure 1 shows the ex-
plicit structure of a Foreach construct, which, given a ge-
neric list (L), sequentially emits its elements (E). Input
ports are on the left side, while output ports are on the right
side. To achieve a correct synchronization, VIPERS ex-

ploits control signals (thin arcs without arrows) connecting
blocks’ control ports (those with the lightning symbol). If
there exists a signal between an output control port (on the
right) of block A and the input control port (on the left) of
block B, then block B can not be executed before execution
of block A. More than one signal may arrive at the same
input port: for the correspondent block to be enabled, it is
sufficient that at least one of them is active.

L

First

Rest

E

At every
step

At the
endNULL

HEAD

MERGE

This signal enables
block HEAD

Figure 1: implementation of the Foreach structure in VIPERS

The MERGE block fires when either of its two input
ports receives a new data item, which is then emitted as an
output. Such block is mostly used as the entry point of loop
structures, thanks to its ability to accept both an initial in-
put value and successive updatings of it.

As can be easily seen from the figure, the initial list
enters block MERGE, leaving it unchanged, then is both
posted at the input of block HEAD and analyzed by the
boolean block NULL. This block verifies whether the list’s
length is zero (in which case gives “true” off) or greater
than zero (in which case gives “false” off). If the list is not
null, block IF activates the signal relative to its “false” out-
put control port (F), thus enabling block HEAD. This block
separates the input list’s first element (First), made avail-
able, from the remainder (Rest). The “beheaded” list then
re-enters block MERGE and this process is repeated until
all list’s elements have been scanned. The signal emitted by
block HEAD every time it is activated can be employed to
create a synchronism with execution of possible other
blocks which do not directly need data contained in the list
being inspected. Likewise, when the list traversal is fin-
ished, the “true” control signal (T) given off by block IF
can be utilized to activate new blocks and hence allow the
computational process to go on.

If one prefers to deal with a more compact structure,
the whole dotted portion of the figure can be embodied into
a single block (a library block or a macro) [2], as shown in

Figure 2. Such block has as input the list to be scanned and
as output the current element, besides the control signals.

FOREACH

L

E

At the end

At every step

Figure 2: compact form for the Foreach control structure

2.2 The FOR control structure
The situation for the For loop construct, whose ex-

plicit and compact forms are shown in Figure 3, is analo-
gous. n represents the number of times the subgraph acti-
vated by the “false” (F) control signal of block IF is to be
executed. Block DECR, enabled as long as the iteration
process is not completed, decrements its input data by one
and posts them to block MERGE, out of which they arrive
unchanged. Block EQUAL compares such data with zero
and emits “true” or “false” according to the comparison
result. It is to be noted that the subgraph (the loop body)
controlled by the For iterative structure (or, in the previous
case, by the Foreach structure) may in turn contain cycles,
thus implementing a temporally dependent iteration [3]
(Figure 4). In this case, however, it might be necessary for
block DECR (Figure 3) to be activated by a block inside
the loop body instead of being enabled by the “false” con-
trol signal of block IF, in order to achieve correct synchro-
nization. In fact, it may happen that execution of complex
and long loop bodies has still not finished when a new acti-
vation signal is emitted by block FOR. When it is neces-
sary to wait for the end of an iteration step before starting
with the next one, a synchronizing signal must be added to
connect the end of the cycle with the FOR block. For this
reason, the compact For structure, in the case of sequential
iteration, may also require an input control port. Similar
considerations are valid for the Foreach structure.

2.3 The WHILE control structure
In While constructs, execution of the loop body de-

pends on one or more boolean conditions which are to be
satisfied. In Figure 5 the implementation of a While struc-
ture depending on two integer variables x and y is shown.
The variables are used by the test block GREATER and the
body is executed as long as x > y. As in the case of the For
and Foreach constructs, the repeated subgraph is allowed
to contain cycles, to carry out temporally dependent itera-
tions. Figure 6 shows the compact form for the While
scheme of Figure 5.

References
[1] Hils, D. D., “Visual Languages and Computing Survey: Data

Flow Visual Programming Languages”, Journal of Visual
Languages and Computing, vol. 3, 1992, pp. 69-101.

[2] Bernini, M., Mosconi, M. "Vipers: a data Flow Visual Pro-
gramming Environment Based on the Tcl Language", in
Proc.AVI'94, ACM Press , 1994

[3] Ambler, A. L., Burnett, M. M., “Visual Forms of Iteration
that Preserve Single Assignment”, Journal of Visual Lan-
guages and Computing, vol. 1, 1990, pp. 159-181.

[4] Ghittori, E., Mosconi, M., Porta, M., “Designing and Testing
new Programming Constructs in a Data-Flow VL”, Technical
Report, DIS University of Pavia, Italy, 1998. URL: http:
//iride.unipv.it/research/papers/98tr-dataflow.html.

At the
end

At every
step

n
0

At the end

At every step

n

DECR

EQUAL
MERGE

FOR

i

Figure 3: explicit (above) and compact (below) forms for the
For iterative construct in VIPERS

Generic
block

........

Generic
block

........

B

An

for (i=n ; i>0 ; i--)
{

A
}

B

FOR

Enables counter
update

Enables the
new iteration
step

Figure 4: example scheme for a For-based temporally de-
pendent iteration in VIPERS

GREATER

initial x

initial y
x
y

B

A

while (x > y)
{

A
}

B

Figure 5: example scheme for an explicit While construct in
VIPERS

WHILE >
initial x
initial y

x
y

A

B

while (x > y)
{

A
}

B

Figure 6: compact form for the While scheme of figure 5

