

Computer Vision and Multimedia Lab

Summary of recent research activities

Department of Electrical, Computer and Biomedical Engineering University of Pavia

- ♦ Active since the early 70s the group's initial research activities focused on image enhancement and restoration techniques
- ♦ Since the early 80s the research topics extended to include *parallel architectures for vision* and advance techniques for *image and video processing*
- ♦ The laboratory currently carries out research in the fields of computer vision, human-computer interaction, 3D modeling and machine learning
- ♦ The more recent activities can be grouped into three main tracks:
 - Eye Tracking
 - Digital Humanities
 - Deep Learning

Staff members and courses

STAFF

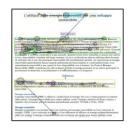
- Associate professors Luca Lombardi (director), Marco Porta
- Researchers Piercarlo Dondi, Mauro Mosconi, Mirto Musci
- > Contract professors Roberto Marmo, Marco Piastra
- Emeritus professor Virginio Cantoni
- > <u>Technician</u> Alessandra Setti

COURSES

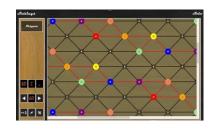
- > Informatica
- Sistemi di Elaborazione delle informazioni
- Sistemi Operativi
- Tecnologie digitali per la comunicazione

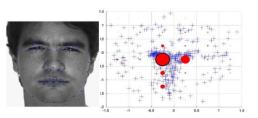
- > Algorithms and Data Structures
- > Artificial Intelligence
- Computer Vision
- > Deep Learning
- > Digital Media

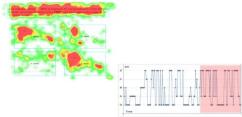
- > Human-Computer Interaction
- > Parallel Programming
- Pervasive Design
- Web Design and Technologies
- > Web and Multimedia Technologies


Explicit and Implicit Gaze-Based Communication

Gaze Input


Using eye tracking as an assistive technology or as an additional input channel (besides keyboard, mouse, etc.) to write, surf the Web, play music, etc.



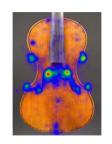

Soft Biometrics

Identifying or verifying the identity of people from the way they look at specific stimuli (e.g., faces)

E-Learning

Understanding learners' behavior and detecting possible comprehension problems

Automotive


Studying the driver's performance using remote and wearable devices

Study of Gaze Behavior

Analyzing the user's gaze behavior while inspecting different kinds of visual stimuli

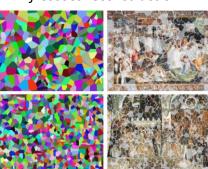
Measurement

Digital Humanities

3D scan and modeling

Historical violins

The ark of St. Augustine



The city of Pavia in the

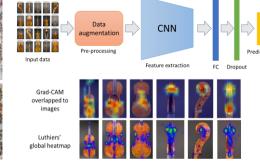


Image processing

Digital anastylosis for frescoes reconstruction

Stylistic analysis and comparison with human behavior

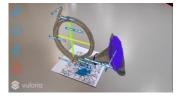
Monitoring of the state of conservation of artworks

3D printed tactile images

Make artworks accessible for visual impaired and blind people

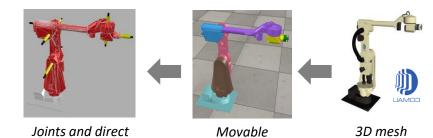
Interactive applications for museums

Gestural interaction

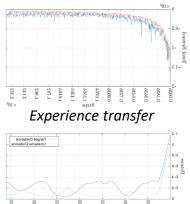


Gaze-based interaction

Augmented reality



Deep Learning


Deep reinforcement learning for collaborative robotics

Virtualization of a real-world robot

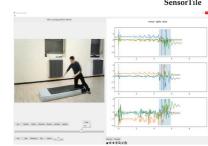
Learning to reach a target while avoiding obstacles in a simulation environment

parts

kinematic chain

Moving obstacle

Fall detection with recurrent neural networks


Accidental falls: an enormous human cost, especially for elderly people

Need for automatic fall detection techniques for timely warnings

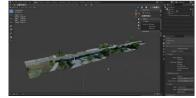
Use of "smart" wearable devices

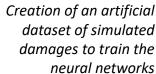
Collection of datasets with simulated falls by volunteers: Seven carry positions, 17 different activities, 40 volunteers, over 5000 tracks Manual annotations on videos, basic for training

Innovative technique: deep learning on embedded

Implementation challenge: limited computing and memory resources battery life for continuous use 24x7

Automatic inspection of buildings and civil structures with CNNs


Photos acquired by drones



3D model creation and elaboration

Automatic detection of damaged areas

Contacts

Computer Vision and Multimedia Lab – CVML

University of Pavia – Department of Electrical, Computer and Biomedical

Engineering, Floor D

Via A. Ferrata 5 - 27100 Pavia, ITALY

Tel: +39 0382 98 5372/5486

E-mail: web-vision@unipv.it - Sito Web: https://vision.unipv.it/

Social: <u>Facebook</u> – <u>YouTube</u> – <u>Linkedin</u>