
UNIVERSITÀ DEGLI STUDI DI PAVIA

Department of Industrial and Information Engineering

A Discrete Approach to Reeb

Graph Computation and

Surface Mesh Segmentation:

Theory and Algorithm

Advisors

Prof. Marco Piastra

Prof. Virginio Cantoni

Ph.D. dissertation by

Laura Brandolini

Dottorato di Ricerca in Ingegneria Elettronica, Informatica ed Elettrica

XXIV Ciclo (2008�2011)

Contents

1 Introduction 3

2 Theory 7

2.1 Reeb graph in the smooth domain 7

2.1.1 Betti Numbers . 8

2.1.2 Manifold . 8

2.1.3 Morse theory in the smooth settings 15

2.1.4 Reeb graph . 18

2.2 Discrete domain . 22

2.2.1 Simplicial complexes 23

2.2.2 Triangulated manifolds 25

2.2.3 Morse theory in the discrete setting 27

2.2.4 Reeb graphs of a PL-Morse function 28

2.2.5 Contour strip Reeb graphs 33

2.2.6 Simpli�ed Reeb graphs 47

2.3 Segmentation . 57

2.3.1 Segmenting with SRG 59

3 Related Techniques 61

3.1 Reeb Graphs . 61

3.1.1 Level Set Diagrams 62

iv Contents

3.1.2 Extended Reeb graphs 63

3.1.3 Sweep algorithm for extracting Reeb graphs of 2-manifold 64

3.1.4 On-line computation of Reeb graphs 66

3.1.5 Enhanced topological skeletons 67

3.1.6 Reeb graphs based on shape diameter function . . . 69

3.1.7 Dynamic graphs . 69

3.1.8 Reeb graphs built on critical loops 70

3.1.9 Other approaches . 72

3.2 Mesh Segmentation . 72

4 The DRGSS algorithm 77

4.1 Computing the SRG and the segmentation 78

4.1.1 The main algorithm 79

4.1.2 Advancing Contours 80

4.1.3 Merge and Split of contours 83

4.1.4 Segmentation . 88

4.1.5 Constructing the Reeb Graph 90

4.1.6 Removing folds: saddle-maximum cancellation . . . 92

4.1.7 Computational complexity 95

4.2 Scalar function . 95

4.3 Implementation . 96

4.3.1 Implementation of the algorithm 97

5 Experimental evidence 101

5.1 Test description . 101

5.1.1 Number of loops of the SRG 102

5.1.2 Scalar function . 102

5.1.3 Shape Genus . 107

5.1.4 Mesh density . 108

5.2 Results . 108

Contents v

5.2.1 The role of multiplicity 109

5.2.2 Robustness to di�erent mesh densities 110

5.2.3 The random function 110

5.2.4 Intrinsic function variants 111

6 SRG for human striatum 117

6.1 Stating the problem . 117

6.1.1 Automatic inter-subject mesh registration 119

6.1.2 Automatic mesh decomposition 119

6.1.3 Inter-group striatal shapes comparison 119

6.2 Striatum shape processing 120

6.2.1 The dataset . 120

6.2.2 Computing SRG . 120

6.3 SRG-based Registration of Striatal Meshes 122

6.4 Results . 123

6.4.1 SRG-based Registration of Striatal Meshes: a quan-

titative assessment 123

6.4.2 SRG-based Surface Decomposition: a qualitative as-

sessment . 125

6.4.3 Inter-group comparison 127

6.4.4 Stability of the SRG to Mesh Resolution 127

6.5 Conclusions . 128

7 Conclusions 131

Bibliography 135

Acknowledgments

I want to thank all those people who guided, supported and helped me in

these years.

Particularly I want to thank my two Ph.D. tutors, Marco Piastra who taught

me the art of discovery and research and always encouraged me, and Virginio

Cantoni who has always been a mentor in these years.

I want also to express my gratitude toward Marisa Alicanti and Flavio

Ferlini, who gave me the chance to combine my work at the server farm of

the University of Pavia and my work as a Ph.D. student.

A great thanks goes to my colleagues at the server farm of the University of

Pavia: Daniela Barbieri, Dante Spizzi, Dario Lanterna, Massimiliano Pini,

Maurizio Quoex, Nicola Corea and Stefano Tavazzani. They encouraged

and sustained me every day. Thanks to Francesco Marchesi, for his valuable

suggestions about the English language.

I want to thank Antonietta Pepe, and Jussi Tohka of the Tampere University

of Technology for the inspiring work that we did together.

Now a really special thanks goes to my husband Dino and to my sons Luca

and Matteo: they accepted, sustained and always encouraged a wife and a

mother who was often engaged with her laptop.

A great thanks to all my family that made this work possible, helping me

in everything I needed, particularly to my mother and my father that have

been busy grandparents during vacations.

This work is also dedicated to my grandmother Carmen, that left us this

summer. Your strength and your love are always with us.

Chapter 1

Introduction

Automated shape analysis is a discipline that has seen a lot of contributions

in the last two decades. In this large sector, an interesting research �eld is

the one that studies the methods and techniques to give a mesh a graph-like

representation of its shape.

As described in Chap. 2, in recent years, a lot of graph-like or skeleton-like

descriptors have been proposed with di�erent aims. Two main purposes of

such a representation are:

• augmenting shape representations (e.g. to detect thinnings and thick-

enings in a shape)

• compact shape representations (e.g. to perform shape matching).

Reeb graphs take place in this landscape both as compact shape descrip-

tors and as descriptors that augment a shape representation. They play a

leading role in di�erent �elds of computer graphics: shape matching and en-

coding (SKK02; SSGD03), mesh deformation (TVD08),(SY07), 3D search

(HSKK01), mesh compression (BMS00), medical imaging (SKSI95; WXS06;

SLK+08; PBP+12) and several other �elds.

Reeb graphs describe the topology of the level sets of a function de�ned

on a n−manifold. In this work we will focus on triangulated 2−manifolds

embedded in R3.

Reeb graphs for 2-manifolds enclose important shape properties such as

connectivity, genus and, when embedded in R3, length, width and direction

4 Chapter 1. Introduction

in a faithful fashion.

Assuming to have a 2D shape embedded in R3 and a scalar function f

(with some regularity properties - see Chap. 2) de�ned on its surface, then,

intuitively, the Reeb graph describes the connectivity relation between the

level lines of the function f . Morse theory (Mil64) lays the foundations for

the formal de�nition of Reeb graph, as it will be described in Chap. 2.

Unlike skeletons, which are sensitive to little surface perturbations (BMMP03;

SLK+08), Reeb graphs of topologically equivalent shapes maintain their

fundamental topological properties. In particular, given a closed, orientable,

connected, triangulated 2−manifold and a general function f (a function

that assigns a di�erent value at each vertex), it has been proved that the

number of loops of the Reeb graph is always equal to the genus of the sur-

face (CMEH+03).

This work illustrates a new robust method for constructing discrete Reeb

graphs for triangulated surfaces that can work with any prede�ned general

function, including a random function.

The Discrete Reeb Graph and Surface Segmentation (DRGSS) algorithm

here presented is a sweep algorithm that constructs in a single swept both

the simpli�ed Reeb graph (SRG) and the segmentation of the input triangu-

lated surface. The produced surface segmentation is topologically correct,

in a sense that will be described in Chapter 2.

The sweep process is made with contours, made up of edges and vertices,

that are initialized at each minimum of the function f and are then evolved

in the direction of ascending values of f . Split and merge events occur for

contours each time a saddle is met, until they have reached a maximum.

In one of its main elements of novelty, with respect to the existing ap-

proaches, the DRGSS algorithm maintains a correct 1-skeleton description

of the topology of contours by allowing their edges and vertices to have

multiplicity greater than 1. This leads to the building of a Reeb graph that

is guaranteed to be correct.

The algorithm deals successfully even with surfaces having higher genus

(experiments have been made with surfaces with a genus up to 22) and

being coarse, that is, with a relatively low density of triangles.

At the best of the information available, this is the only algorithm that

constructs simultaneously the Reeb graph and the corresponding segmenta-

5

tion that has been reportedly validated with the random function. Indeed

(PSBM07) builds the Reeb graph on the random function but does not

compute a segmentation.

As another element of novelty, the DRGSS algorithm produces a segmenta-

tion that adapts to mesh density. Indeed, in DRGSS algorithm it is possible

for a face to be multiple, i.e. to have one or more vertices shared between

more segments. Vertices's multiple membership allows segments to be al-

ways connected and topologically correct, as it will be shown in Chapter 4.

The DRGSS algorithm has been tested with di�erent types of scalar func-

tions f : height, intrinsic and random function. In all of these tests, the

acceptance condition, for each mesh and each function, is that the num-

ber of loops of the resulting Reeb graph must be equal to the genus of the

mesh. Experimental results are described in detail in Chapter 5: they show

that the DRGSS algorithm is e�ective with real-world data and therefore

suitable for practical applications.

The DRGSS algorithm has been applied, with very good results, to medical

imaging (see Chap. 6). We used the simpli�ed Reeb graph (SRG) as a shape

descriptor for the human striatum (a part of the brain), to perform mesh

registration in a simpli�ed way. In this application mesh Reeb graph nodes

are used in place of mesh vertices, to register meshes to each others. We

show also the possibility of using SRG for striatal shape decomposition and

inter-group shape comparison.

The following chapters of this dissertation are organized as described be-

low. Chapter 2 provides a background on theoretical de�nitions, Chapter 3

explores the related works on the subjects of Reeb graphs extraction and

segmentation. The DRGSS algorithm is described in detail in Chapter 4.

Chapter 5 presents the experimental results. Chapter 6 describes an ap-

plication of the algorithm in the medical imaging �eld. In Chapter 7 the

conclusions and possible developments of this work are discussed.

Chapter 2

Theory

Contents

2.1 Reeb graph in the smooth domain 7

2.2 Discrete domain . 22

2.3 Segmentation . 57

This chapter will introduce the theory of the Reeb graphs in the smooth

and in the discrete domain. In detail: section 2.1 introduces the Reeb

graph theory in the smooth domain, section 2.2 presents the discrete domain

(Sec. 2.2.1, 2.2.2) and illustrates both the discrete counterpart of the Morse

theory (see Sec. 2.2.3) and a de�nition of the Reeb graph theory completely

justi�ed in the discrete domain (see Sec. 2.2.4). Section 2.2.5 introduces

the Contour Strip Reeb graphs and section 2.2.6 presents the Simpli�ed

Reeb graphs, that are the object of this work. A brief introduction of the

segmentation problem is also given in section 2.3.

2.1 Reeb graph in the smooth domain

To introduce the concept of Reeb graph in the smooth domain we need a

set of de�nitions from the wide world of computational topology.

8 Chapter 2. Theory

2.1.1 Betti Numbers

Betti numbers can be viewed as the count of the number of topological fea-

tures in meshes, cell complexes, or topological spaces (BW12). The term

Betti number was coined by Henri Poincaré after Enrico Betti. Betti num-

bers are an answer to the questions: how many connected components, how

many tunnels, and how many holes are there in a topological space?(DE93).

As an example, the �rst Betti number of a space counts the maximum num-

ber of cuts that can be made without dividing the space into two components

(Wik12a). In (DE93; DE95) an algorithm has been proposed to compute

Betti numbers for simplicial complexes.

Here we will give only the informal de�nitions of Betti numbers, leaving the

formal ones to speci�c books like (War83; Hen94; Zom05) and (EH10).

Informally, the kth Betti number refers to the number of unconnected k-

dimensional surfaces. We are interested in Betti numbers because, if two

spaces are homotopy equivalent, then all their Betti numbers are equal

(Car09).

The �rst few Betti numbers can be informally de�ned as follows:

• β0: number of connected components of a topological space

• β1: number of two-dimensional or "circular" holes, or the number of

cut that can be made without generating a new connected component

• β2: number of three-dimensional holes or "voids"

For the spaces we are interested in1 the sequence of Betti numbers is 0 from

some points onwards. Indeed βk = 0 for k > d, being d the dimension

of the given space. We are interested in compact 2-manifolds embedded in

R3, so the Betti numbers we are interested in are β0 and β1.

2.1.2 Manifold

Here following the de�nitions necessary to introduce manifolds are pre-

sented. We will deal in particular with 2-manifold, even if some de�nitions

are given in a more general sense.

1but also for mostly �nite-dimensional spaces such as compact manifolds, �nite sim-
plicial complexes, ...

2.1. Reeb graph in the smooth domain 9

2.1.2.1 Sets

The set is a basic object in mathematics and its de�nition was given at

�rst by Cantor in the late nineteenth century. Giving a formal de�nition

for a set is not trivial, so, following (Rob10) here the axiomatic approach is

taken: a set is a collection of objects that is well-de�ned so that one can say

if an object is or is not included in the set. Objects belonging to the set

are its elements or members. If x is an element of the set S we write x ∈ S.
We can describe the set enumerating its elements (white, yellow, red, blue)

or using the set-builder notation in which we state a property valid for its

elements: S = {x|P (x)} (i.e. the set S is made of all the x for which the

property P (x) is true).

The only empty set is ∅ = {x|x 6= x}.

De�nition 1 (Subset). A set A is a subset of a set B if every element of

A is also an element of B. We say A ⊆ B ⇔ (∀x)[x ∈ A⇒ x ∈ B].

From this de�nition it follows that for any set A:

• A ⊆ A

• ∅ ⊆ A

Given three sets A,B,C if A ⊆ B and B ⊆ C then A ⊆ C.

De�nition 2 (Equality of sets). Two sets are equal if they are identical:

A = B ⇔ {(A ⊆ B) ∧ (B ⊆ A)}

De�nition 3 (Power set). If A is a set then 2A is the collection of all

subsets of A:

2A = {B|B ⊆ A}

De�nition 4 (Intersection). The intersection A ∩ B of sets A and B is

the set consisting of all the elements belonging both to A and B.

We write :

A ∩B = {z|z ∈ A and z ∈ B}

10 Chapter 2. Theory

De�nition 5 (Union). The union A ∪ B of sets A and B is the set con-

sisting of all the elements belonging to A or to B.

We write:

A ∪B = {z|z ∈ A or z ∈ B}

De�nition 6 (Complement). The complement of a set A ⊂ B is the set

consisting of all the elements of B that are not elements of A.

We write:

A = {z|z ∈ B and z /∈ A}

To de�ne the complement, it is important to de�ne also the set B, in respect

of which the complement is made. Di�erent super-sets B mean di�erent

complements A.

De�nition 7 (Cartesian product). The cartesian product or direct prod-

uct of two sets A and B is the set consisting of all the ordered 2-tuples (a, b)

having a ∈ A and b ∈ B.

A×B = {(a, b)|a ∈ A and b ∈ B}

De�nition 8 (Finite union of sets). We de�ne the �nite union of the

sets A1, A2, ..., Ai, .., An as the set of elements a that belong at least to one

of the sets A1, ..., Ai, ..., An:

n⋃
i= 1

Ai = {a|∃i ∈ [1, .., n]|a ∈ Ai}

De�nition 9 (In�nite union of sets). We de�ne the in�nite union of

the sets A1, A2, ..., Ai, .. as the set of elements a that belong at least to one

the possible sets Ai:

∞⋃
i= 1

Ai = {a|∃i ∈ N |a ∈ Ai}

De�nition 10 (Finite intersection of sets). We de�ne the �nite inter-

section of the sets A1, ..., Ai, ..., An as the set of elements a that belong to

all the sets A1, ..., Ai, ..., An:

2.1. Reeb graph in the smooth domain 11

n⋂
i= 1

Ai = {a|∀i ∈ [1, ..., n]|a ∈ Ai}

De�nition 11 (In�nite intersection of sets). We de�ne the in�nite in-

tersection of the sets A1, A2, ..., Ai, .. as the set of elements a that belong to

all the possible sets Ai:

∞⋂
i= 1

Ai = {a|∀i ∈ N |a ∈ Ai}

2.1.2.2 Functions

De�nition 12 (Relation). A relation f from a set X to a set Y is a rule

that pairs each element x of X with one or more elements y of Y .

De�nition 13 (Function). A function f from a set X to a set Y is a rule

that pairs each element x of X with exactly one element y of Y . We write:

y = f(x) or f : X → Y

X is called the function domain and Y is called the function codomain. We

can say that f maps X into Y .

De�nition 14 (Composite function). If φ and ψ are two functions such

that φ : X → Y and ψ : Y → Z then ψ(φ(x)) = z is the composite function

mapping X into Z. We write:

ψ ◦ φ

De�nition 15 (Injective, surjective and bijective functions). A func-

tion from a set A to a set B is injective if each element in B has at most

one element of A mapped into it. It is surjective if each element in B has

at least one element of A mapped into it. A function is bijective if it is both

injective and surjective.

12 Chapter 2. Theory

2.1.2.3 Topological spaces

Intuitively, topology is about the connectivity of a space. Following (Ede01),

(Zom05) and (EH10) we will give a more formal de�nition.

De�nition 16 (Topology). A topology on a set X is a collection T ⊂ 2X

such that:

1. If S1, S2 ∈ T , then S1 ∩ S2 ∈ T .

2. If {SJ |j ∈ J} ⊆ T , then ∪j∈JSJ ∈ T .

3. ∅,X ∈ T .

De�nition 17 (Topological spaces). A topological space is (X, T) where
X is a set and T is a topology.

De�nition 18 (Homeomorphism). Given two topological spaces X and

Y, a function f : X→ Y is an homeomorphism if it is continuous, bijective

and has a continuous inverse.

De�nition 19 (Homeomorphic spaces). Two topological spaces X and

Y are homeomorphic if and only if exists an homeomorphism between the

two. We write X ≈ Y meaning that X and Y are of the same topological

type.

2.1.2.4 Smooth manifold

De�nition 20 (Chart). A chart at x ∈ X is a function ϕ : U → Rd,
where U ⊆ X is an open set containing x and ϕ is an homeomorphism onto

an open subset of Rd.

De�nition 21 (Atlas). An atlas for a topological space M is a collection

{(Uα, ϕα)} of charts on M such that
⋃
Uα = M.

De�nition 22 (Hausdor�). A topological space M is Hausdor� if, for

every point m,n ∈M such that m 6= n, there are neighborhoods O and P of

m,n respectively, such that O ∩ P = ∅.

De�nition 23 (Separable). A topological space X is separable if it has a

countable basis of neighborhoods.

2.1. Reeb graph in the smooth domain 13

Figure 2.1 � A manifold of dimension n is a topological space that near each
point resembles n-dimensional Euclidean space

Informally, a manifold of dimension n is a topological space that near each

point resembles n-dimensional Euclidean space. More precisely, each point

of an n-dimensional manifold has a neighborhood that is homeomorphic to

the Euclidean space of dimension n.

Based on Def. 22 and 23 it is possible to give a formal de�nition of a manifold

in the following terms:

De�nition 24 (Manifold). A separable Hausdor� space M is d-manifold

if there is a d-dimensional chart at every point m ∈M that has a neighbor-

hood homeomorphic to Rd.

A 2-manifold is commonly called a surface.

De�nition 25 (Half space). The space Hd ⊂ Rd such that Hd := {h =

(h1, ...hn)|hi ≥ 0} is called the half space of Rd.

De�nition 26 (Manifold with boundary). A topological space M is a

d-manifold with boundary if every element m ∈ M has an open neighbour-

hood N homeomorphic either to Rd or to Hd, the half space.

De�nition 27 (Manifold boundary). The boundary ∂M of a d-manifold

M with boundary is a (d-1)-manifold without boundary.

De�nition 28 (Closed Manifold). A d-manifold M without boundary is

called a closed manifold.

Generally, a 2-manifold (without boundary) is a topological spaceM whose

points all lie in open disks.

We are interested in smooth, compact, orientable, manifolds and so we need

some more de�nitions.

14 Chapter 2. Theory

De�nition 29 (Covering). A covering of Y ⊆ X is a family {Cj |j ∈ J}
in 2X, such that Y ⊆

⋃
j∈J Cj.

De�nition 30 (open covering). An open covering is a covering consist-

ing of open sets.

De�nition 31 (subcovering). A subcovering of the covering de�ned in

Def. 29 is {Ck|k ∈ K} with K ⊆ J .

De�nition 32 (Compact covering). If every open covering of a covering

Y ⊆ X has a �nite subcovering then the covering Y ⊆ X is compact.

De�nition 33 (Compact Manifold). A d-manifold M is compact if ev-

ery open covering C of M contains a �nite sub-collection that is also a

covering of M.

We can then intuitively state that a manifold is compact if it can be covered

with a �nite number of charts.

The �rst to classify the closed surface into two categories, orientable and

non-orientable, was Klein (Kle27). He used the instrument of indicatrix : a

small oriented circle placed on a surface, then transported around an arbi-

trary closed curve. If it exists a curve which brings the indicatrix back with

its orientation reversed, then the surface is non-orientable (see Fig. 2.2).

De�nition 34 (Orientable manifold). A manifold is orientable if it ex-

ists an atlas so that each pair of coordinate systems is consistently oriented

(i.e. the determinant of their Jacobian is positive whenever de�ned).

Let's now take U, V ⊆ Rd.

De�nition 35 (Smooth functions). A function f : U → R is smooth

(or C∞) if it has partial derivatives of all orders and types.

De�nition 36 (C∞ maps). A function f : U → Ra is a C∞ maps if all

its components ai ◦ f : U → R are C∞ .

De�nition 37 (C∞-related charts). Two charts f1 : U → Rd and f2 :

V → Ra are C∞-related charts if a = d and either U ∩ V = ∅ or f1 ◦ f−1
2

and f2 ◦ f−1
1 are C∞ maps.

2.1. Reeb graph in the smooth domain 15

Figure 2.2 � Two examples of non-orientable 2-manifold: the Moebius strip
and the Klein bottle.(Wik12d; Wik12c)

De�nition 38 (C∞atlas). An atlas is a C∞ atlas if every pair of its

charts are C∞-related and a new chart is admissible in this atlas only if

it is C∞-related to every pre-existing chart in the atlas.

De�nition 39 (Smooth manifold or C∞ manifold). A topological man-

ifold with all the admissible charts of a C∞atlas is a C∞ manifold.

2.1.3 Morse theory in the smooth settings

Here we assume that M is a smooth, compact, 2-manifold without bound-

ary. We give this topological space a metric, embedding it in R3, that is

M ∈ R3. The idea behind Morse theory is to analyse such a manifold study-

ing the evolution of the level lines of a real-valued scalar function f de�ned

on M , having only non-degenerate critical points in the sense de�ned be-

low. Here following we de�ne more formally what this implies in terms of

the properties of the function f . In this exposition the main sources are

(EH10) and (Mil63), and the fundamental ideas have been �rst introduced

in (Mor31).

Let's consider a smooth scalar function f de�ned on a smooth, compact,

closed, 2-manifold M :

f : M → R

De�nition 40 (Critical point). A point p ∈M is critical for f if:

∂f

∂u
(p) =

∂f

∂v
(p) = 0

16 Chapter 2. Theory

where (u, v) is a local coordinate system de�ned on M .

De�nition 41 (Hessian). The Hessian of f at the point p is the matrix

of second derivatives:

Hf (p) :=

[
∂2f
∂u2

(p) ∂2f
∂u∂v (p)

∂2f
∂v∂u(p) ∂2f

∂v2
(p)

]

De�nition 42 (Non-degenerate critical point). A critical point p is non

degenerate if det(Hf (p)) 6= 0, i.e. the matrix Hf (p) is non-singular.

De�nition 43 (Morse function). f is a Morse function if all its critical

points are non-degenerate.

The number of critical points of a Morse function is always �nite.

An example of a non-Morse function in the smooth setting is the height of

a torus, or of an eight shape, when they lay on the side parallel to their

symmetry axis. In this case there will be an entire circle of maxima and an

entire circle of minima, for the torus, and two entire circles of maxima and

two entire circles of minima for the eight shape.

In this case the critical points are degenerate and non-isolated. It is worth

noting that just a little perturbation could make this function a Morse one.

De�nition 44 (Simple function). f is simple if for any two critical points

p1 and p2, f(p1) 6= f(p2).

2.1.3.1 Morse lemma

If f is a Morse function on M , for each critical point p ∈ M there exists a

local coordinate system (u, v) such that f takes the form:

f(u, v) = f(p)± u2 ± v2 (2.1)

This result is particularly powerful because it tells us that the neighborhood

of a critical point of a Morse function cannot be more complicated than the

ones shown in Fig. 2.3.

2.1. Reeb graph in the smooth domain 17

Figure 2.3 � The Morse Lemma tells us that the neighborhood of a critical
point of a Morse function cannot be more complicated than the ones shown
in this �gure.

Figure 2.4 � Small circles around a point on M (from (Ban70))

2.1.3.2 Critical Point Theorem

In order to introduce the Critical Point Theorem we give here the Ban-

cho�'s (Ban70) de�nition of index of a critical point p2:

De�nition 45 (Index of a critical point). i(p) = 1 if p is critical and

the two eigenvalues of H(p) have the same sign (i.e. for minima and max-

ima);

i(p) = −1 if p is critical and the two eigenvalues of H(p) have di�erent

signs (i.e. for saddles).

i(p) = 0 if p is regular.

2In some texts the index of a critical point p is de�ned as the number of negative
eigenvalues of H(p), which equals the number of minuses in Eq. (2.1): a minimum has
index 0, a saddle has index 1, a maximum has index 2.

18 Chapter 2. Theory

We can also give a more geometric de�nition of the index of a critical point,

imagining to de�ne a small circle around each critical point:

i(p) = 1− 1

2
sc

where sc is the number of intersections between the plane normal to the

considered function f and the small circle around the critical point. The

intuitive meaning of index is shown in Fig. 2.4.

Theorem 1 (Critical point theorem). The Euler-Poincaré characteris-

tic of M , χ(M), is:

χ(M) =
∑
p

i(p) (2.2)

where the sum is extended over all critical points of f in M .

Regular points do not contribute to Eq. (2.2): if x is a regular point, the

plane normal to f passing by x will meet the small circle around x in exactly

2 points, making its index equal to zero.

On the other hand, a saddle having index p < −1 is called a degenerate

saddle, and its multiplicity is equal to −p+ 1.

Theorem 1 can also be reformulated as:

χ(M) = n1 − n−1 (2.3)

where n1 and n−1 are the number of critical points with the given index,

indeed vertices with index 0 do not contribute in Eq. (2.2).

Based on this, Eq. (2.2) can also be rewritten as:

χ(M) = m− s+M

where m is the number of minima, s is the number of saddles (counted with

their multiplicity) and M is the number of maxima.

2.1.4 Reeb graph

De�nition 46 (Level set). Given a Morse function f de�ned on a smooth,

closed, compact 2-manifold M , the level set of such a function f at l ∈ R

2.1. Reeb graph in the smooth domain 19

Figure 2.5 � The Reeb graph of a torus built on the height function f = z.

is the pre-image f−1(l).

f−1(l) = {x ∈M |f(x) = l} (2.4)

The level sets of f form a partition of the manifold M .

De�nition 47 (Critical and regular values of f). The value l ∈ R of

f is a critical value if it exists a critical point p such that l = f(p). All

non-critical values are deemed regular.

If f is simple (see Def. 44), the correspondence between critical values and

critical points is one-to-one.

For any regular value l, f−1(l) is a smooth, closed 1-manifold, since at all

regular points p ∈ f−1(l) the gradient of f is non-null. At critical points,

the level set either degenerates into a point (maxima and minima) or it

becomes self-intersecting (saddles) (see Fig. 2.6).

De�nition 48 (Contour in the smooth setting). Each connected com-

ponent γ of a level set is called a contour.

γ ⊆ f−1(l)

De�nition 49 (Reeb graph). Given a simple Morse function f de�ned

on a smooth, closed, compact 2-manifoldM , the Reeb graph Rf (M) (Ree46)

is the quotient space de�ned by the equivalence relation:

(x, f(x)) ∼ (y, f(y))⇔ f(x) = f(y) = l and ∃γ ⊆ f−1(l), x, y ∈ γ

20 Chapter 2. Theory

(a) (b)

Figure 2.6 � The evolution of the connected components of the level lines
of the height function f = z on the smooth surface of the bi-torus (a), the
corresponding Reeb graph (b).

In other words, Rf (M) is the space of all contours de�ned by f on M and

is equipped with the quotient topology de�ned by a map γf : M → Rf (M):

γf (x) := The contour γ ⊆ f−1(f(x)) that contains x

Any open set inM corresponds by de�nition to an open set in Rf (M) via γf .

The nodes in the Reeb graph Rf (M) of a simple Morse function f cor-

respond to the contours containing one critical point p. The rest of the

contours correspond to a point of the arcs of Rf (M).

2.1.4.1 Loop lemma for Reeb graphs on 2-manifolds

De�nition 50 (Loop in a graph). A loop in a graph is a minimal cycle.

The genus of a connected, orientable surface is an integer representing the

maximum number of cuttings - along non-intersecting closed simple curves

- we can do, without making the surface disconnected. It is equal to the

number of handles on it (Wik12b).

2.1. Reeb graph in the smooth domain 21

De�nition 51 (Genus and Euler characteristic). The genus g and the

Euler characteristic χ of any closed, orientable 2-manifold M are bound to-

gether by:

χ(M) = 2− 2g(M) (2.5)

Lemma 2 (Loop lemma). The Reeb graph Rf (M) of a Morse function

on a connected, closed and orientable 2-manifold of genus g has exactly g

loops (CMEH+03).

Proof. For any graph, it is true that:

χ(Rf (M)) = β0(Rf (M))− β1(Rf (M))

where β0 is the number of connected components and β1 is the number

of cycles in Rf (M). It is a special case of the Euler-Poincaré Theorem

((EH10)), valid for any topological space T :

χ(T) =
∑
i≥0

(−1)iβi(T)

From the de�nition of χ:

V (Rf (M))− E(Rf (M)) = β0(Rf (M))− β1(Rf (M))

If M is connected, then also Rf (M) is connected: β0(Rf (M)) = 1. Then,

using Eq. 2.3

V (Rf (M))− E(Rf (M)) = 1− β1(Rf (M))

β1(Rf (M)) = 1− (n1 + n−1) + E(Rf (M))

The number of edges in Rf (M) is:

E(Rf (M)) =
1

2
(n1 + 3n−1)

22 Chapter 2. Theory

Figure 2.7 � Reeb graph for a smooth M (from (EH10))

Then:

β1(Rf (M)) = 1− (n1 + n−1) +
1

2
(n1 + 3n−1)

= 1− 1

2
(n1 − n−1)

= 1− 1

2
χ(M)

The last step is justi�ed by Thm. 1. Therefore, from Def. 51:

β1(Rf (M)) = 1− 1

2
(2− 2g(M))

= g(M)

2.2 Discrete domain

We are now focused on triangulated 2-manifolds, intended as 2-simplicial

complexes, as de�ned below. Firstly we will introduce some de�nitions in

order to express the surface in terms of the triangulation of a manifold. Then

we will illustrate how the discrete setting can show interesting properties,

especially useful for our aims. Our main sources will be (Ban70), (Ede01),

(Zom05), (EH10).

2.2. Discrete domain 23

Figure 2.8 � k-simplices, with k ∈ [0− 2]: a vertex is a 0-simplex, an edge is
a 1-simplex, a triangle is a 2-simplex.

2.2.1 Simplicial complexes

Here following we will give some de�nitions, referring to embedded simplicial

complexes. We will not discuss the theory of abstract simplicial complexes,

leaving it to more speci�c texts (see e.g. (Zom05; EH10)).

De�nition 52 (0 -simplex). A 0-simplex p is a point in Rd. It is also

called a vertex.

De�nition 53 (k-simplex). A k-simplex σ is the convex hull of a set

of k+1 a�nely independent points S = {p0, ..., pi, ..., pk+1} in Rd. Those

points are called the vertices of the simplex.

De�nition 54 (Face of a simplex). Given a k-simplex σ, we say that τ ,

de�ned by the set of points T ⊆ S - being S the set of vertices of σ - is a

face of σ, and we write τ � σ.

De�nition 55 (Number of faces of a simplex). A k-simplex has
(
k+1
l+1

)
faces of dimension l and

∑k
l=−1

(
k+1
l+1

)
= 2k+1 faces in total. 2k+1 − 1 if we

do not consider the empty set.

Every simplex is a face of itself: σ � σ. All the other faces di�erent from σ

are proper faces of σ. Note that a vertex is a 0 -simplex, having just itself

as face, an edge is a 1 -simplex, having 2 vertices and an edge as faces, a

triangle is a 2 -simplex, having 3 vertices, 3 edges and a triangle as face (see

Fig 2.8).

De�nition 56 (Simplicial complex). K is a simplicial complex if it is

made of a �nite set of simplices such that:

• ∀τ � σ, σ ∈ K → τ ∈ K

• ∀σ1, σ2 ∈ K → τ = σ1 ∩ σ2, τ � σ1, τ � σ2

24 Chapter 2. Theory

(a) proper (b) improper

Figure 2.9 � A proper simplicial complex (a), three examples of improper

simplicial complexes (b).

A simplicial complex is thus a collection of faces of a �nite number of sim-

plices, any pair of which is either disjoint or meets at a common face.

De�nition 57 (Subcomplex of a simplicial complex). A subcomplex

L of K is a simplicial complex such that L ⊆ K.

De�nition 58 (j-skeleton). The j-skeleton is a particular subcomplex made

of all the simplices having dimension d ≤ j.

K(j) = {σ ∈ K|dimσ ≤ j}

The 0-skeleton is the subcomplex also called the vertices set and referred

to as:

V ertK = K(0)

(a) St(v) (b)
Cl(St(v))

(c) Lk(v)

Figure 2.10 � St(v) (a), Cl(St(v)) (b) and Lk(v) (c) of a vertex v.

De�nition 59 (Closure). A closure of a subset of simplices S ⊆ K is the

smallest subcomplex containing S.

Cl(S) = S ∪ {τ : ∃σ ∈ S | τ � σ}

2.2. Discrete domain 25

De�nition 60 (Star). The star of a simplex τ is the set of all the simplices

having τ as a face:

St(τ) = {σ ∈ K | τ � σ}

De�nition 61 (Link). The link of a simplex τ is the set of all the faces

of the simplices of the star of τ not having τ as a face:

Lk(τ) = {σ ∈ Stτ |σ ∩ τ = ∅}

We can also write:

Lk(τ) := Cl(St(τ))− St(τ)

2.2.2 Triangulated manifolds

From this point on we will use simplicial complexes for representing mani-

folds in the discrete setting, in a sense described by the following de�nitions.

De�nition 62 (Underlying space). The underlying space |K| of a sim-

plicial complex K is the �nite union of all its simplices:

|K| =
⋃
σ∈K σ

De�nition 63 (Triangulation). The triangulation of a topological space

S is a simplicial complex K such that its underlying space is homeomorphic

to S:

|K| ≈ S

We now introduce the concept of orientability in the discrete settings. It will

emerge that orientability is a topological property that does not depend on

the smoothness of the underlying manifold. Intuitively a mesh is orientable

if all the faces in it have a consistent orientation (all clockwise or all counter-

clockwise).

De�nition 64 (Orientation). Let K be a simplicial complex. An orien-

tation of a k-simplex σ ∈ K, σ = {v0, v1, ..., vk}, vi ∈ K, is an equivalence

class of orderings of the vertices of σ, where

(v0, v1, ..., vk) ∼ (vτ(0), vτ(1), ..., vτ(k))

26 Chapter 2. Theory

are equivalent orderings if the parity of the permutation τ is even. We denote

an oriented simplex, a simplex with an equivalence class of orderings, by [σ].

(a) orientable (b) non-orientable

Figure 2.11 � Orientable (a) and non-orientable (b) simplicial complexes.

De�nition 65 (Orientability). Two k−simplices sharing a (k-1)-face σ

are consistently oriented if they induce di�erent orientations on σ. A tri-

angulated d−manifold is orientable if all d−simplices can be oriented con-

sistently. Otherwise, the d−manifold is non-orientable.

De�nition 66 (Triangulated manifold with/without boundary). A

triangulated 2−manifold is without boundary if for every edge it is incident

to exactly two faces in the manifold. In a manifold with boundary the edges

incident to only one face form the boundary of the manifold.

It is also clear that on a closed triangulated 2-manifold the neighborhood

of each vertex is homeomorphic to a disc.

(a) (b)

Figure 2.12 � In (a) in red, a non-manifold edge, and in (b), in red, a non-
manifold vertex.

2.2. Discrete domain 27

Figure 2.13 � Lk+(vc, f)

2.2.3 Morse theory in the discrete setting

In order to introduce Morse theory in the discrete setting we have now to

de�ne what a critical point in the discrete setting is.

Let's take a function f de�ned only at the vertices of the triangulated surface

X.

De�nition 67 (The Lk+(v, f) of a vertex). The Lk+(v, f) of a vertex

v is the set of vertices in vi ∈ Lk(v) having an higher value of the function

f with respect to v, plus their connecting edges. Formally we de�ne:

Lk+(v, f) := {vi ∈ Lk(v)|f(vi) > f(v)}∪{ej ∈ Lk(v)|f(vj) > f(v), ∀vj � ej}

Fig. 2.13 shows an example of Lk+ for a vertex vc.

The Lk−(v) can be de�ned in a similar way:

De�nition 68 (The Lk−(v, f) of a vertex). The Lk−(v, f) of a vertex

v is the set of vertices having a lower value of the function f with respect

to v, plus their connecting edges.

De�nition 69 (|Lk+|). |Lk+| is the number of connected components of

Lk+(v, f)

De�nition 70 (|Lk−|). |Lk−| is the number of connected components of

Lk−(v, f)

As shown in Fig. 2.14 we can count the number of connected components

of the Lk+ and the Lk−: in this case they are respectively |Lk+| = 2 and

|Lk−| = 2.

28 Chapter 2. Theory

Figure 2.14 � This vertex has |Lk+| = 2 and |Lk−| = 2.

De�nition 71 (Critical point). A point x is de�ned critical for f if

|Lk+| = |Lk−| > 1

A regular vertex has |Lk+| = |Lk−| = 1.

A saddle vertex has |Lk+| =|Lk−| = 1+m, where m is called themultiplicity

of the saddle (see Fig. 2.14).

Following this de�nition maxima and minima are a kind of critical points

such that:

• a maximum vertex has |Lk+| = 0, |Lk−| = 1.

• a minimum vertex has |Lk−| = 0, |Lk+| = 1.

De�nition 72 (Degenerate critical point). A point x is de�ned a de-

generate critical point for f if

|Lk+| = |Lk−| = 1 +m and m > 1

A degenerate critical point is thus a critical point with multiplicity greater

than one. In Fig. 2.15 regular and critical (both degenerate and non-

degenerate) vertices are shown.

2.2.4 Reeb graphs of a PL-Morse function

In this section we will give the de�nition of a piecewise-linear Morse function

de�ned on a triangulated manifold X, and of its Reeb graph.

2.2. Discrete domain 29

(a) regular (b) maxi-
mum

(c) mini-
mum

(d) 2-saddle (e) 3-saddle

Figure 2.15 � A regular vertex (a), and four critical vertices (b), (c), (d) and
(e).

Given a real-valued function f de�ned on the vertices of a triangulated sur-

face X, we consider its extension via linear interpolation f∗. This function

f∗ is de�ned on the whole surface of X.

De�nition 73 (Piecewise linear function f∗). The function f∗ : X →
R is the extension via linear interpolation of the real valued function f :

V → R:

f∗(p) :=
∑
vi

λif(vi), ∀p ∈ σ ∈ X (2.6)

where λi are the barycentric coordinates of p in the k-simplex σ.

De�nition 74 (PL Morse function). A function f∗ : X → R is a PL

Morse function ifs all its critical points x are non degenerate.

We now introduce the concept of the level sets of a PL-function f∗ over a

triangulated surface.

De�nition 75 (Level set of f∗). The level set LSf∗(l) of f∗ at l is f∗−1(l),

the set of all the points x of the surface X having f∗(x) = l (see Fig. 2.16).

30 Chapter 2. Theory

Figure 2.16 � The level sets of a function f∗ for four di�erent values of l =
f∗(x).

Figure 2.17 � The level set of a function f∗ de�ned by barycentric interpolation
of the values on the vertices is a piecewise straight line.

Theorem 3. The level sets of a function, de�ned by barycentric interpola-

tion of the values on the vertices, is a straight line.

Proof. In Fig. 2.17 it is possible to see the representation of f∗ in barycentric

coordinates on a given face. Given the hypothesis that:

t12f(v1) + (1− t12)f(v2) = l

t13f(v1) + (1− t13)f(v3) = l (2.7)

The expression of P and Q with barycentric coordinates are:

P = (t13, 0, 1− t13)

Q = (t12, 1− t12, 0)

2.2. Discrete domain 31

The equation of the line passing through P,Q is (Wei12):∣∣∣∣∣∣
t12 (1− t12) 0

t13 0 (1− t13)

λ1 λ2 λ3

∣∣∣∣∣∣ = 0

that is

λ1(1− t12)(1− t13)− λ2t12(1− t13)− λ3t13(1− t12) = 0

that can be simpli�ed in:

λ1 − λ2
t12

(1− t12)
− λ3

t13

(1− t13)
= 0 (2.8)

but for Eq. (2.7):

t12 =
l − f(v2)

f(v1)− f(v2)

t13 =
l − f(v3)

f(v1)− f(v3)

and thus:
t12

(1− t12)
=
l − f(v2)

f(v1)− l

t13

(1− t13)
=
l − f(v3)

f(v1)− l

Thus replacing these terms in Eq. (2.8):

λ1 − λ2
l − f(v2)

f(v1)− l
− λ3

l − f(v3)

f(v1)− l
= 0

λ1(l − f(v1)) + λ2(l − f(v2)) + λ3(l − f(v3)) = 0

but recalling that λ1 + λ2 + λ3 = 1 it gives us:

λ1f(v1) + λ2f(v2) + λ3f(v3) = l

LSf∗(l) is a 1-manifold (see (EHZ03)), namely a line made up of a �nite

number of connected components, unless l = f(v) and v is a critical point.

Indeed, another way of proving Th. 3 is showing that a direction of steepest

32 Chapter 2. Theory

ascent is uniquely de�ned and transversal at all points of such LSf∗(l). Due

to the generality of f , each level line can contain at most one vertex of X.

When l is equal to the value of f of either a maximum or a minimum, one

contour in the corresponding level set degenerates into a point. When l is

equal to the value of f on a saddle v, one contour in the level set becomes

the union of two or more closed lines intersecting in v (see Fig. 2.20). In

this case l is deemed critical because there exists a critical vertex v ∈ X
such that f(v) = l. l is deemed regular otherwise.

De�nition 76 (Contour γ). Each connected component of the level set

LSf∗(l) is called a contour γ.

f∗ has [fmin, fmax] as its image, where fmin and fmax are the minimum and

maximum values of f over the set V , respectively.

The space formed by the contours in f∗−1 for all values l ∈ [fmin, fmax] can

be equipped with a topology along the lines as described in (EH10). This

allows establishing a one-to-one relation between contours and the points

of a graph. More precisely, all non-degenerate contours (that thus contain

one closed line only) correspond to a point in an arc of the graph while

all degenerate contours, either composed by a single point or by multiple

closed lines, correspond to a node in the graph.

When f∗ is a Morse function, de�ned on a triangulated manifold X, the

de�nition of the Reeb graph Rf∗(X) goes as in the smooth case.

De�nition 77 (Reeb graph of PL-Morse function). Given a piecewise

linear simple Morse function f∗ de�ned on a smooth, closed, compact 2-

manifold X, the Reeb graph Rf∗(X) is the quotient space de�ned by the

equivalence relation:

(x, f∗(x)) ∼ (y, f∗(y))⇔ f∗(x) = f∗(y) = l and ∃γ ⊆ f∗−1(l), x, y ∈ γ

being x and y any two points on the surface X.

In other words, Rf∗(X) is the space of all contours de�ned by f∗ on X and

is equipped with the quotient topology de�ned by a map γf∗ : X → Rf∗(X):

γf∗(x) := The contour γ ⊆ f∗−1(f∗(x)) that contains x

When f is not bound to be Morse, then the graph obtained is called Ex-

tended Reeb graph (ERG) (BFS00) because its de�nition derives directly

2.2. Discrete domain 33

from that of Reeb graph for smooth surfaces (Ree46), but it is extended

because one of the basic tenets of the original de�nition is that the scalar

function f de�ned on a smooth, compact 2-manifold must also be a Morse

function, which implies having only simple saddles, i.e. points where only

two closed lines in the level set intersect. It follows that, in the original

Reeb graph, all nodes corresponding to saddles have connectivity 3. In the

realm of triangulated surfaces and with scalar functions which are initially

de�ned on vertices only, the Morse condition is no longer necessary, and

this implies that the nodes of an ERG corresponding to a saddle can have

connectivity greater than 3.

Figure 2.18 � An example of Reeb graph corresponding to the connected
components of all the level sets f∗−1.

2.2.5 Contour strip Reeb graphs

We are now going to introduce a discrete theory for Reeb graphs, founded

on works of (Ban70) and (EH10). As in the case of ERG, we will not need

the function f to have only non-degenerate saddles: when f∗ is not a Morse

function, i.e. when there are degenerate saddles for f (see Fig. 2.15e), the

de�nition of Rf∗(X) still holds but there might be nodes in the graph with

connectivity higher than 3, corresponding to degenerate saddles.

We now introduce the Contour Strip Reeb graphs. We need to give or recall

some de�nitions. The de�nition of the neighborhood of a vertex v ∈ X is

the link of the vertex itself: Lk(v) (see Def. 61 and Fig. 2.10c).

34 Chapter 2. Theory

De�nition 78 (Cross simplex). Given a function f : X → R and a

value l, a simplex σ ∈ X is a cross-simplex for a value l ∈ R if either:

- σ is a vertex and f(σ) = l

- ∃vi, vj ≺ σ, f(vi) < l < f(vj).

As shown by Fig. 2.19, a cross simplex could be a vertex, an edge or a

triangle: a cross-triangle for a regular value l is such that the level line

passes through it. The same is true for edges, while a vertex v can only

belong to a cross simplex if l = f(v).

De�nition 79 (The index of a vertex ((Ban70))). The index of v in

the discrete setting is:

i(v) = 1− 1

2
tc(v) (2.9)

where tc(v) is the number of cross-triangles in St(v).

(a) (b) (c)

Figure 2.19 � In (a) the value l coincides with f(v), and the triangle in gray is
a cross-face. In (b) the triangle is also a cross-face but the value l is between
the value of the blue and the red vertices. A cross-edge (c).

As it can be seen in the Fig. 2.15 each regular point has exactly two crossing

triangles, so its index is 0. If v is a minimum or a maximum it does not

have crossing triangles, so its index is 1. In the case of a saddle there will

be so many couples of crossing triangles as m+ 1, being m the multiplicity

of the saddle. Consequently the index of the saddle will be −m. For the

reasons shown in Fig. 2.20, the number of closed lines f∗ intersecting at a

saddle v is equal to 1/2 the number of cross-faces in the St(v).

As described in (Ban70), Def. 79 induces a few considerations that are

speci�c to the discrete setting. Considering an height functions de�ned by

2.2. Discrete domain 35

(a) (b)

Figure 2.20 � In (a) the level set f∗−1 (solid line) crosses the star of v. In (b),
the level set f∗−1 passes through v, revealing that it is in fact a 2-saddle. The
number of closed lines intersecting at a saddle is equal to 1/2 the number of
cross-triangles in its star.

Figure 2.21 � Degenerate saddles in the smooth domain (left) and in the
discrete domain (right) (from (Ban70))

a vector ξ on a closed, smooth 2-manifold (see Fig. 2.21), the directions of

ξ producing degenerate critical points are a subset of S2 with zero measure,

which means it always exists an in�ntesimal perturbation than turns a non-

Morse height function into a Morse function. We say that Morse functions

are a dense set in the continuous setting.

On a triangulated surface on the contrary, any direction ξ generating a

degenerate point is included in a subset of S2 having non-zero area (see

Fig. 2.21). This means that perfectly defective triangulated surfaces can

exist in the discrete settings.

Nevertheless every general function f onX can be turned into a Morse func-

tion by altering the triangulated surface with a local remeshing, as shown in

Fig. 2.22, with the iterative procedure of saddle unfolding (EHZ03). This

technique unfolds a k-saddle into two new ones, having multiplicity i, j

36 Chapter 2. Theory

with i, j < k and i + j = k. This approach is adopted by many authors

((CMEH+03), (BHEP04), (TVD09) among the others).

Figure 2.22 � A degenerate saddle unfolded into two simple saddles (EH10).

(a) CSTRG (b) SRG

Figure 2.23 � In the CSTRG (a) each node corresponds to the contour strip of
a vertex (see text), while arcs correspond to the contour strips `in between'. In
the SRG (b) there are nodes for each critical point of f and for each segment,
while the arcs represent adjacency.

2.2.5.1 Critical Point Theorem

We will now introduce the Critical Point Theorem in the discrete settings

(Ban70) showing that f need not be a Morse function for the Critical Point

Theorem to hold, it is enough it is general.

De�nition 80 (The Euler characteristic of a triangulated surface).

2.2. Discrete domain 37

The Euler characteristic of any triangulated surface is:

χ(X) := V (X)− E(X) + T (X) (2.10)

where V (X), E(X) and T (X) are the sets of vertices, edges and triangles

in X, respectively.

We need also the following lemma:

Lemma 4. For a closed triangulated surface:

3T (X) = 2E(X) (2.11)

Indeed any triangle has three edges as faces and each edge is shared by two

triangles.

Theorem 5. For any general function f : V (X)→ R the following is true:

χ(X) =
∑

v∈V (X)

i(v) (2.12)

where V (X) is the set of vertices of X and i(v) is the index of vertex v (in

the sense of Def. 79).

Proof. Adding Lemma 4 and De�nition 80 we obtain:

χ(X) = V (X)− 1

2
T (X) (2.13)

The proof of the Theorem 5 then proceeds as follows:

χ(X) =
∑

v∈V (X)

i(v)

χ(X) =
∑

v∈V (X)

(1− 1

2
tc(v))

χ(X) = V (x)−
∑

v∈V (X)

1

2
tc(v)

χ(X) = V (X)− 1

2
T (X)

The last step is justi�ed by the fact that, since f is general, each triangle

38 Chapter 2. Theory

Figure 2.24 � A critical vertex (in orange), its level strip for f (edges in black
and triangles in dark gray), its level set for f∗ (the line in violet)

in X crosses the �plane� for exactly one of its vertices: the one in between

in terms of values of f .

Theorem 5 can also be reformulated as:

χ(X) = n1 −
∑
i>0

i · n−i (2.14)

where n1 and n−i are the numbers of critical points with the index 1 and

−i respectively.
It is worth highlighting that f generality is a su�cient condition for the

Theorem 5 to hold.

2.2.5.2 Loop lemma for Reeb graphs on a triangulated surface

Lemma 6 (Loop lemma). The Reeb graph Rf∗(X) of a general function

f on a connected, closed and orientable triangulated 2-manifold X of genus

g has exactly g loops (CMEH+03).

Proof. As a direct consequence of the critical point theorem, the loop lemma

too does not require f to be a Morse function. Given that Rf∗(X) is a graph,

clearly, this is valid:

χ(Rf∗(X)) = β0(Rf∗(X))− β1(Rf∗(X))

2.2. Discrete domain 39

Figure 2.25 � A critical vertex (in black), its level strip for f (in gray), its
level set for f∗ (the line in black), its upper level set (in red) and lower level

set (in blue)

Where β0 is the Betti number (see Sec. 2.1.1) representing the number of

connected components of the graph of X, that, for a connected manifold, is

always 1. β1 is the �rst Betti number, which is equal to the number of loops

in the graph (see again sec. 2.1.1). Therefore, with the previous assumption

that X is connected:

V (Rf∗(X))− E(Rf∗(X)) = β0(Rf∗(X))− β1(Rf∗(X))

V (Rf∗(X))− E(Rf∗(X)) = 1− β1(Rf∗(X))

β1(Rf∗(X)) = 1− (n1 +
∑
i>0

n−i) + E(Rf∗(X))

But, counting the number of edges departing from a graph node, and di-

viding by 2 for internal nodes (for which each edge is adjacent to 2 nodes):

E(Rf∗(X)) =
1

2
(n1 +

∑
i>0

(2 + i) · n−i)

Then:

β1(Rf∗(X)) = 1− 1

2
(n1 −

∑
i>0

i · n−i)

40 Chapter 2. Theory

but, due to Theorem 5:

β1(Rf∗(X)) = 1− 1

2
(n1 −

∑
i>0

i · n−i)

= 1− 1

2
χ(X)

= g(X)

The number of loops of the Reeb graph β1(Rf∗(X)) is equal to the genus

of the mesh g(X).

2.2.5.3 Level strip

De�nition 81 (Level strip of α). The level strip at α is:

LS(α) :={v ∈ X : f(v) = α}∪
{σ ∈ X : ∀vi, vj |vi � σ and vj � σ|f(vi) < α < f(vj)}∪
{τ ∈ X : ∀vi, vj , vk|vi, vj , vk � τ |f(vi) < f(vk) < α < f(vj)}

The LS(α) is the set of all the cross faces and the cross edges at α and at

most the vertex v such that f(v) = α.

Among the level strips of α we can de�ne those passing from a vertex v:

De�nition 82 (Level strip of v). We can de�ne the level strip of v as a

sub-case of LS(α) where f(v) = α:

LS(v) := LS(α) | α = f(v)

We can see an example of level strip in Figure 2.26.

Two cross-faces in LS(α) are said to be connected if they share either an

edge or a vertex which is also in LS(α). With this de�nition in mind, we

can introduce the following.

Lemma 7 (Homotopy between LS(α) and f∗−1(α)). For each v ∈ V (X),

the union of the interior of the simplices in the level strip LS(v) has the

same homotopy type of the level set f∗−1(f(v)). In addition, for any other

value α `in between' (i.e. for which there is no v such that α = f(v)), the

level strip LS(α) has the same homotopy type of f∗−1(α). (see Fig. 2.27)

2.2. Discrete domain 41

(a)

(b)

Figure 2.26 � Level strips contain cross-faces, cross-edges and at most one
cross-vertex (a). The level set f∗−1(f(v)) is entirely contained in the level
strip LS(v) and has the same homotopy type (b).

(a) (b)

Figure 2.27 � A ring-like contour f∗−1 (solid line) that runs around a maxi-
mum (a). The level strip does not include the edge in gray in the middle and
hence has the homotopy type of the level set f∗−1, i.e. a ring, whereas the
ULS (in red) in (b) does not.

Proof. This can be proved by parts, by deformation retraction.

De�nition 83 (Deformation retraction). Given two topological spaces

X, Y, such that Y ⊆ X, a deformation retraction is a map :

h : X× [0, 1]→ X

such that:

• h is continuous

• ∀x ∈ X, h(x, 0) = x (i.e. h(., 0) = Idx)

• ∀x ∈ X, h(x, 1) ∈ Y

42 Chapter 2. Theory

v1

v2
v3

a
a' l0

Figure 2.28 � The interior of a triangular face has the same homotopy type
of the interior of the segment of a level set that crosses it.

• ∀y ∈ Y, ∀t ∈ [0, 1], h(y, t) = y

We consider the level strip as union of simplices (faces, edges and vertices)

and we consider, for each of them, their interior. We build a deformation

retraction that transforms each of them in the corresponding piece of f∗−1

that crosses them.

In the case of the only vertex v in the contour strip LS(v) it is trivial to

see that its interior is deformed retracted in the vertex v itself. It is also

easy to show that the interior of each cross edge in the contour strip can be

deformed retracted in the point of f∗−1 that crosses it. In the case of the

interior of a face we need an additional result:

Lemma 8. The interior of a triangular face has the same homotopy type

of the interior of the segment of a level set that crosses it.

Proof. Also in this case we prove it by constructing a deformation retraction.

Each point a is projected along the radius that joins a and v1 (see Fig. 2.28),

where v1 is the vertex shared by the two cross-edges. The generic equation

of a level set in barycentric coordinates is:

λ1f(v1) + λ2f(v2) + λ3f(v3) = l

The point a has barycentric coordinates (a1, a2, a3).

The line that runs through v1 and a is also called the radial line through a,

and its equation can be found solving this determinant (Wei12):∣∣∣∣∣∣
1 0 0

a1 a2 a3

λ1 λ2 λ3

∣∣∣∣∣∣ = 0

2.2. Discrete domain 43

which gives:

a2λ3 − a3λ2 = 0 and thus a2λ3 = a3λ2

The intersection between the radial line through a and the generic level set

at l is: 
λ1f(v1) + λ2f(v2) + λ3f(v3) = l

a2λ3 = a3λ2

λ1 + λ2 + λ3 = 1

The solution of this system is:

λ1 =
a2l + a3l − a2f(v2)− a3f(v3)

a2f(v1)− a2f(v2) + a3f(v1)− a3f(v3)

λ2 =
a2(f(v1)− l)

a2f(v1)− a2f(v2) + a3f(v1)− a3f(v3)

λ3 =
a3(f(v1)− l)

a2f(v1)− a2f(v2) + a3f(v1)− a3f(v3)

The equation of f∗ at a is:

a1f(v1) + a2f(v2) + a3f(v3) = la

The map h : X× [0, 1]→ X (where X is the interior of a triangle) projects

each point a ∈ X to the intersection between the radial line through a and

a level set at level l = la− t(la− l0) where l0 is the value of the target level

set.

• clearly h is continuous

• ∀a ∈ X, h(a, 0) = a (that is the intersection between the radial line

through a and the level set la)

• ∀a ∈ X, h(a, 1) ∈ Y (where Y is the interior of the level set in X)

• ∀a ∈ Y, ∀t ∈ [0, 1], h(a, t) = a

Thus the union of the interior of the simplices in the level strip LS(v) has

the same homotopy type of the level set f∗−1(f(v)).

It is now natural to de�ne the contour strip:

44 Chapter 2. Theory

De�nition 84 (Contour strip of v). CS(v), the contour strip of v, is

the connected component of LS(v) containing v.

Considering any two vertices v1 and v2 that are either regular or saddle,

their contour strips are said to be adjacent if they overlap, in the sense that

they share at least one cross-face, and there is no other overlapping contour

strip for a vertex v3 such that f(v3) lies between f(v1) and f(v2). If vertex

v is either a minimum or a maximum, the above de�nition also applies by

assuming that any other contour strip overlaps the (degenerate) contour

strip of v if it overlaps St(v).

2.2.5.4 CSTRG

In order to de�ne the adjacency between nodes of the contour strip Reeb

graph (CSTRG) we are going to introduce, we need two more de�nitions:

De�nition 85 (Upper strip of v). The upper strip of v is:

UpS(v) := CS(v) ∪ St+(v)− v

and also:

De�nition 86 (Lower strip of v). The lower strip of v is:

LowS(v) := CS(v) ∪ St−(v)− v

where St+(v) and St−(v) are respectively the set of cross simplices in St(v)

for α = f(v) + ε and α = f(v) − ε. We can now de�ne the contour strip

Reeb graph:

De�nition 87 (Contour strip Reeb graph CSTRG). The contour strip

Reeb graph of triangulated surface X is a graph whose nodes nv correspond

to the CS(v), ∀v ∈ V (X) and whose arcs arci,j represent an adjacency

relation between the nodes nvi , nvj . In particular, two nodes nvi , nvj are

adjacent on the graph if f(vi) < f(vj) and

∃CS | CS ⊆ UpS(vi) and CS ⊆ LowS(vj) (2.15)

In particular when vi, vj are both regular, or one regular and one maxi-

mum/minimum then UpS(vi) = LowS(vj), on the other hand, when at

2.2. Discrete domain 45

least one of them is a saddle point then the relation of Eq. (2.15) holds.

More important, the CSTRG represents all the possible, distinct contour

strips of X: every node nv represents a CS(v), every arc between two nodes

arc(nvi ,nvj) represents the adjacency relation between CS(vi) and CS(vj),

relation that is guaranteed through the UpS(vi) and the LowS(vj).

It is worth to note that UpS(v) and LowS(v) have been obtained with a

geometric operation (see Def. 85 and Def. 86). Nevertheless their de�nition

is also justi�ed in terms of the level lines of f∗, indeed:

UpS(vi) ⊆ LS(f∗(vi) + ε)

(a)

(b)

Figure 2.29 � The ULS (upper level set) (a) and the LLS (lower level set)
(b) for the same level strip in Fig. 2.26. Vertex v is included in both.

As we have seen, the level strips guarantee the construction of a graph (the

CSTRG) that is homeomorphic to the ERG, and furthermore they are a

computational simpler alternative to the level lines of f∗. But our aim is

to �nd a simpler representation of the level lines of f∗, that uses only the

1-skeleton of the X: we want to use existing lines (vertices and edges in

the mesh) without tracing new ones. One idea could be to use the upper

(lower) bound of the level strip. But this could lead to some theoretical

problems, as we will show in the next section.

46 Chapter 2. Theory

2.2.5.5 Upper and lower level sets

The upper (resp. lower) level set (ULS, LLS) for a vertex v is the upper

(resp. lower) boundary of the closure of LS(v) in X. More precisely, the

ULS for v contains all the vertices vi in the closure of the level strip such

that f(vi) ≥ f(v) plus all edges between the vertices that also belong to the

closure of the level strip. Here following we give the formal de�nitions.

De�nition 88 (Upper level set). The upper level set of f at α is:

ULS(α) := {σ ∈ Cl(LS(α)) : ∀v � σ, f(v) ≥ α}

The dual de�nition for the LLS is obvious.

De�nition 89 (Lower level set). The lower level set of f at α is:

LLS(α) := {σ ∈ Cl(LS(α)) : ∀v � σ, f(v) ≤ α}

Clearly v belongs to both ULS(v) and LLS(v).

In an e�ort to ease computations, de�ning a graph using either the ULS or

the LLS in the place of the level sets f∗−1(f(v)) or even of the level strips

LS(v) may seem attractive, since it entails dealing with edges and vertices

only. However, as shown by the examples in Fig. 2.30, in general neither

the ULS nor LLS have the same homotopy type of f∗−1(f(v)).

Figure 2.30 � ULL (in red) does not have the same homotopy type of f∗−1(f)
(in purple).

If we build a graph made up of nodes and arcs, where nodes are the con-

nected components of either ULS (or LLS) and the arcs are the corre-

sponding adjacency relations, we do not obtain a graph homeomorphic to

the Reeb graph of the f∗. It is possible to see by counterexamples (e.g. in

Fig. 2.31), that there exist cases for which the graph constructed on the

2.2. Discrete domain 47

ULS (or LLS) is not homeomorphic to the CSTRG and also violates the

Loop Lemma.

This problem, in our opinion (and in our experiments), a�ects the algorithm

described in (TVD08) which has, on the other hand, largely inspired the

work on the algorithm presented in this thesis.

2.2.6 Simpli�ed Reeb graphs

The de�nition of ULS of LLS for a vertex v can be enhanced in order to

regain the equivalence with the level sets f∗−1(f(v)) and, through this, with

the CSTRG. We now introduce the concept of multiplicity of an edge and

a vertex in the upper or lower level set and we show how this construct

guarantees the homeomorphism between this augmented upper or lower

level set and the the level line of f∗.

2.2.6.1 Multiplicity for augmented upper and lower level set

Vertices and edges in the ULS (resp. LLS) must be assigned a multiplicity,

in order to gain the homeomorphism with f∗−1(f(v)).

The multiplicity of an edge in the ULS(α) is equal to the number of faces

that are adjacent to the edge and also belong to the level strip LS(α).

De�nition 90 (Multiplicity of edges in the ULS(α)). An edge e ∈ ULS(α)

has multiplicity 2 in ULS(α) if:

∃ti, tj ∈ LS(α) and e ≺ ti, e ≺ tj

Any other edge e ∈ ULS(α) has multiplicity 1.

The de�nition of multiplicity in LLS(α) is dual:

De�nition 91 (Multiplicity of edges in the LLS(α)). An edge e ∈ LLS(α)

has multiplicity 2 in LLS(α) if:

∃ti, tj ∈ LS(α) and e ≺ ti, e ≺ tj

Any other edge e ∈ LLS(α) has multiplicity 1.

48 Chapter 2. Theory

(a) (b)

(c) (d)

Figure 2.31 � The �gure represents a toroidal surface over which a general
function f (not shown) is de�ned; it has a minimum, a maximum and two
saddles. A sequence of four level sets f∗−1 is considered, for increasing val-
ues of α. ULS are shown in red. In step (a) f∗−1 has a unique connected
component, which splits in two in step (b). The two connected components
merge in (c), hence in step (d) f∗−1 has again one connected component. In
contrast, in step (b) the ULS has two singularities: one at the saddle and
another one, in the lower part of the torus, which does not correspond to a
critical point of f . Due to the latter, the ULS remains connected even after
meeting the �rst saddle. In step (c) the ULS meets the second saddle but
no merge occurs, since the connected component is unique. Hence, in this
example, the graph corresponding to the connected components of the ULS
has no loops and violates the Loop Lemma.

2.2. Discrete domain 49

(a) (b) (c)

(d) (e) (f)

Figure 2.32 � A double presence edge in its three possible con�gurations: with
two vertices with multiplicity m = 1 (a), with one vertex with multiplicity

m = 1 and one vertex with multiplicity m = 2 (b), with two vertices with
multiplicity m = 2 (c). The lower row shows their corresponding implicit

unfolding.

The multiplicity of and edge cannot be higher than 2 because, in a trian-

gulated manifold, an edge cannot be face of more than two triangles (see

Def. 66 and Fig. 2.12).

In Figures 2.32a, 2.32b, 2.32c are shown all the possible con�gurations of

multiplicity of an edge on a ULS.

By de�nition, the multiplicity of a vertex vi in the ULS(v) is equal to 1/2

the number of faces in its star St(vi) that also belong to the level strip

LS(v). A vertex v which is a saddle for f has multiplicity 2 or greater in

its ULS(v), depending on how many contours of f∗−1 intersect at it.

De�nition 92 (Multiplicity of a vertex in the ULS(α)). The multiplic-

ity of a vertex v ∈ ULS(α) is:

m(v) =
1

2

∑
e∈ULS(α),v≺e

m(e)

where m(e) is the multiplicity of the edge in ULS(α).

The same holds for LLS(α):

50 Chapter 2. Theory

De�nition 93 (Multiplicity of a vertex in the LLS(α)). The multiplic-

ity of a vertex v ∈ LLS(α) is:

m(v) =
1

2

∑
e∈LLS(α),v≺e

m(e)

where m(e) is the multiplicity of the edge in LLS(α).

(a) (b)

Figure 2.33 � The catalog of all possible con�gurations of one vertex with
multiplicity 1 in a contour.

(a) (b) (c)

Figure 2.34 � The catalog of all possible con�gurations of one vertex with
multiplicity 2 in a contour.

(a) (b) (c) (d)

Figure 2.35 � The catalog of all possible con�gurations of one vertex with
multiplicity 3 in a contour.

Vertices can have a multiplicity greater than two, even if there is an higher

limit �xed from the topology of the link of the vertex itself: in any case

2.2. Discrete domain 51

(a) (b)

Figure 2.36 � A double presence vertex (a) and its implicit unfolding (b).

Figure 2.37 � A critical vertex (in orange), its level set for f∗ (the line in
black), its augmented upper level set (in red) with two vertices and one edge
that have multiplicity m = 2 (in green). The vertex with m = 2 on the right
is not critical because it is not the minimum in its ULS.

52 Chapter 2. Theory

the multiplicity of a vertex in the upper/lower level set is limited by the

number of vertices in its link:

1 < m <
|Lk|

2
(2.16)

In Figures 2.33, 2.34, 2.35 are shown the con�gurations of multiplicity m of

a vertex in the ULS, for 1 ≤ m ≤ 3.

Having a multiplicity greater than one in ULS (resp. LLS) is not a su�cient

condition for a vertex to be a saddle: indeed in general, both ULS(v) and

LLS(v) include multiple vertices that are non-critical (see Fig. 2.37).

For a vertex to be a saddle a stronger condition must be true, as following

described.

Lemma 9. Vertex v is a saddle i� m(v) = 2 in both ULS(v) and LLS(v).

Proof. If v is a saddle it must have four cross-triangles in its star. Each of

them has both an upper and a lower edge, although it is possible that some

edges are shared (i.e. with multiplicity 2).

The lemma can be extended to degenerate saddles, having index −2 and

more.

In other words, a vertex is a saddle if it has multiplicity m > 1 in a ULS

(for any vertex) and it has the minimum value of f among all the vertices

in the same connected component. Both ULS(v) and LLS(v) may well

contain other vertices with multiplicity m > 1 but they are not minimal, in

ULS(v), or maximal, in LLS(v), as shown in Fig. 2.37.

Inspired by (EHZ03), each multiple edge and multiple non-critical vertex

can be unfolded by an (implicit) local remeshing of the kind shown in

Fig. 2.32 and 2.36. It is implicit, however, because in the algorithm we

will propose in chapter 4 such local remeshing never takes place. The algo-

rithm behaves `as if' the triangulation X was unfolded accordingly. From

this point on, we assume by default the augmented de�nitions of ULS and

LLS, i.e. those including multiplicity values.

2.2. Discrete domain 53

2.2.6.2 Homotopy equivalence: f∗−1 and the augmented level set

Now we introduce some de�nitions in order to show that the ULS and

LLS augmented with multiplicity re-establish the topologically equivalence

with f∗−1(f(v)). We will use notions from (Coh73), (RWS11). Consider a

simplicial complex K:

De�nition 94 (Free face). τ ∈ K is a free face iif there exists σ ∈ K

such that τ � σ and σ is unique, i.e. there is no other σ′ ∈ K such that

τ � σ′.

De�nition 95 (Free pair). The pair (τ, σ) of Def. 94 is called a free pair.

De�nition 96 (Elementary collapse). An elementary collapse of K is

a subcomplex K ′ that can be obtained from K by removing one free pair.

De�nition 97 (Elementary expansion). An elementary expansion ofK

is a subcomplex K ′ that can be reduced to K by removing one free pair.

De�nition 98 (Collapse). A collapse of K is a subcomplex K ′ that can

be obtained from K via a sequence of elementary collapses.

De�nition 99 (Expansion). An expansion of K is a subcomplex K ′ that

can be reduced to K via a sequence of elementary expansions.

De�nition 100 (Simple-homotopy equivalence). Two simplicial com-

plexes K and M are simple-homotopy equivalent if M can be obtained from

K via a sequence of collapses and expansions.

Theorem 10. If K and M are simple-homotopy equivalent they are also

homotopy equivalent.

Note that the vice-versa is not necessarily true. With this de�nition in mind

we can prove the following.

Theorem 11. A connected component of a level set f∗−1 is homotopy equiv-

alent to the corresponding component of the ULS (resp. LLS) if the latter

contains at least one edge.

54 Chapter 2. Theory

Proof. Consider the connected component of f∗−1 as a 1-simplicial com-

plex and construct an essential simplicial complex (i.e. a strip of triangles)

having the connected component of f∗−1 and the corresponding unfolded

component of the ULS (resp. LLS) as boundaries. The strip of triangles is

simply homotopy equivalent to both, hence they are homotopy equivalent.

The ULS (resp. LLS) must contain at least one edge, otherwise the coun-

terexample shown in Fig. 2.38 becomes possible.

Figure 2.38 � The strip of triangles is simple-homotopy equivalent to the point
ULS but not to the ring (f∗−1).

2.2.6.3 Upper and lower contour

We now introduce the de�nition of upper (resp. lower) contour of v, as the

connected component of the augmented ULS (resp. LLS) that contains v.

De�nition 101 (Upper Contour). An upper contour γ+(v) ⊆ ULS(v)

is a maximal subset of connected simplices σ ∈ ULS(v) that includes v.

By Def. 88 v is the vertex having the minimum value of f in all ULS(v).

De�nition 102 (Lower contour). A lower contour γ−(v) ⊆ LLS(v) is

a maximal subset of connected simplices σ ∈ LLS(v) that includes v.

Symmetrically, by Def. 89 v is the vertex having the maximum value of f

in all LLS(v).

Upper and lower contours are the connected component of ULS (resp. LLS)

and thus they are in the same way augmented with multiplicity.

2.2. Discrete domain 55

Corollary 12. The upper contour γ+(v) (resp. lower contour γ−(v)) is

homotopy equivalent to the connected component of f∗−1 containing v.

Proof. If γ+(v) does not contain an edge then v is a maximum and γ+(v)

and f∗−1 are equivalent. If γ+(v) contains an edge then Theorem 11 holds.

The same is true for γ−(v): if γ−(v) do not contains an edge then v is a

minimum and γ−(v) and f∗−1 are equivalent. If γ−(v) contains an edge

then Theorem 11 holds.

In the following de�nitions we will use only the ULS and γ+ for sake of

clarity. The same theory holds for the LLS and γ−. For the same reasons

γ+ will be simply indicated as γ. To introduce the adjacency between

contours we will present how the basic step of contour evolution is done

(see Fig. 2.39). We thus need some further de�nitions.

(a) Before (b) St(vc, γ) (c) Lk+(vc, f)

(d) Lk(vc, γ) (e) Lk+(vc, f) −
Lk(vc, γ)

(f) After

Figure 2.39 � The basic step of contour evolution for a regular vertex vc:
starting from the initial contour (a), the �gure shows the details of the contour
update. The contour strip (in gray) is shown for convenience only, since it is
not explicitly computed.

De�nition 103 (St(v) on the contour). The St(v, γ(v)) is the intersec-

56 Chapter 2. Theory

tion between the contour γ(v) and the St(v):

St(v, γ(v)) := St(v) ∩ γ(v)

Fig. 2.39b shows (in red) an example of St(vc, γ) for the vertex vc.

De�nition 104 (Lk(v) on the contour). The Lk(v, γ(v)) is the intersec-

tion between the contour γ(v) and the Lk(v):

Lk(v, γ(v)) := Lk(v) ∩ γ(v)

Fig. 2.39d shows (in red) an example of Lk(vc, γ) for the vertex vc.

De�nition 105 (Updated Contour). An contour γ(v) is updated in γupd(v):

γupd(v) = γ(v)− St(v, γ(v)) + (Lk+(v, f)− Lk(v, γ(v))) (2.17)

Fig. 2.39f shows the contour γupd once it has been updated for the vertex

vc.

De�nition 106 (Adjacency between contours). Two contours γ(vi), γ(vj)

are adjacent if f(vi) < f(vj) and there exists a contour γ such that:

γ ⊆ γupd(vi) and γ ⊆ γ(vj) (2.18)

The reason for which Def. 106 is not simply:

γupd(vi) = γ(vj)

is that it can happen that the topology of γ changes if the considered vertex

is a critical one. The de�nition of adjacency will have a central role in the

algorithm presented in Chap. 4.

2.2.6.4 SRG

Equipped with the previous adjacency relation, the resulting graph will be

a graph with a node for each mesh vertex: nodes corresponding to regular

2.3. Segmentation 57

values will have connectivity 2, nodes corresponding to critical values will

have connectivity 1 in case of maxima and minima, or > 2 in case of saddles.

Sweeping the mesh from minima (resp. maxima) there will be sequences of

regular vertices (corresponding to node with connectivity 2 on the graph),

separated by critical vertices.

De�nition 107 (Simpli�ed Reeb graph). The simpli�ed Reeb graph (SRG)

is a graph that has one node for each critical point and one node for each

segment, whose boundaries are the contours passing by the critical points.

Each segment-node is adjacent to the nodes corresponding to the two critical

points whose contours barrier the segment.

Since f is general there cannot be two critical points at the same height,

and thus each segment will be bordered by the contours of exactly 2 critical

points (one lower and one upper).

From a topological perspective the SRG is a simpli�cation of the CSTRG,

in which all the nodes corresponding to regular values, between two critical

nodes, are collapsed in a single node, representing the mesh segment swept

by the corresponding contour. It is thus easy to see that the SRG is home-

morphic to the ERG, indeed it respects the De�nition 3.1.1 of (Bia04) and

obeys the Loop Lemma, for every choice of a general function f .

2.3 Segmentation

Mesh surface segmentation represents an important area of interest in sev-

eral scienti�c �elds, like medical applications, geographical maps rendering,

and more in general, in computer graphic (for compression, simpli�cation,

morphing, ...). Skeletonization and segmentation tasks are often comple-

mentary, one being the driver to the other. Mesh segmentation is about

partitioning mesh elements (vertices, edges and faces) in disjoint sets. Seg-

mentation tasks can be divided into two di�erent types (Sha08), (AKM+06):

• part-type segmentation, whose aim is to partition a surface in its mean-

ingful parts; the methods that use this type of segmentation are fo-

cused on identifying relevant shape features. Part segmentation is

strictly related on how human beings perceive objects: as a collection

of parts.

58 Chapter 2. Theory

• surface-type or patch-type segmentation, whose aim is to subdivide a

surface into patches under a certain criterion (curvature, patch area,

...). These methods are applied in the case of e.g. texture mapping,

charts painting, mesh simpli�cation, radiosity, ray tracing...

We give now a more formal de�nition of the segmentation of a mesh M .

De�nition 108 (Mesh segmentation Σ). Let M be a 2 − d mesh em-

bedded in R3, and S the set of mesh elements (V, E or T). A segmentation

Σ of M is the set of sub-meshes Σ = {M0, ...,Mk−1} induced by a partition

of S into k disjoint subsets.

In certain cases, e.g. when partitioning vertices or edges, it could happen

that an element (e.g. a face) could be cross between two di�erent segments,

in this case it must be attached to one of the two segments under a certain

criterion.

Segmenting a surface mesh in patches is not easy: under the condition

that the patches are convex, (CDST97) proved that the problem is NP-

complete.

(Sha04) de�nes mesh segmentation as an optimization problem with the

following de�nition:

De�nition 109 (Mesh segmentation as an optimization problem).

Given a mesh M and the set of elements S ∈ {V,E, T}, the objective is to

�nd a disjoint partitioning of S into S0, ..., Sk−1 such that the criterion

function J = J(S0, ..., Sk−1) is minimized (or maximized) under a set of

constraints C.

The objective is thus to �nd an approximate solution that optimizes some

parameters, being bound to certain constraints. (Sha08) groups the con-

straints considered to guide the segmentation process into these families:

• cardinality constraints: these constraints are about the number of

parts of a partition. They could be absolute or relative bounds (i.e.

the minimum number of elements in each part, for example to elimi-

nate too small and not-signi�cant partitions).

• topological constraints: these are bounds that make a partition to be

connected or homeomorphic to a disk.

2.3. Segmentation 59

• geometric constraints these constraints are about the maximal/mini-

mal area of a partition, its convexity, its maximal diameter, etc...

2.3.1 Segmenting with SRG

Aside from the construction of a compact shape representation in the form

of a graph, the theoretical notions presented let us de�ne a suitable seg-

mentation of X, namely a partition of the surface into segments which are

themselves organized in a way that re�ects the topology of X (BGSF08).

An e�ective segmentation of this sort can be de�ned by taking the contours

in f∗−1(f(v)) for each saddle vertex v as boundaries for segments (BMS00),

(PSF09). From this, yet another de�nition of a graph can be derived. We

de�ne the Simpli�ed Reeb Graph (SRG) as the graph obtained by associating

each segment to a node, plus one node corresponding to each critical point

of f . Arcs correspond to adjacency relations: each node associated to a

segment is adjacent to the two nodes corresponding to the two critical points

vi whose contours f
∗−1(f(vi)) border the segment itself.

By de�nition, each contour of f∗−1(f(vi)) corresponding to a saddle vertex

passes through the vertex itself and then runs across the triangular faces in

the contour strip. This means that the remeshing of X becomes necessary

whenever an accurate representation of segments is required. For many

applications, however, an approximate segmentation by which each non-

critical vertex is univocally associated to a segment can be enough, making

the remeshing operation unnecessary.

To make this possible, however, each face of X must be simple for f , i.e.

that only one segment boundary should pass across it. Often in practice,

a few faces can be multiple, in the sense that they are crossed by multiple

segment boundaries. Ignoring this could cause problems, as the resulting

approximated segments could be disconnected. Intuitively, this problem

becomes more evident when the density of vertices in X is lower, the genus

of X is higher and/or f is less `regular'. In Sec. 5.2 we will discuss some

experimental evidences for this.

As we will see, the algorithm presented can detect multiple faces (see

Fig. 4.7b) hence mark those parts of X for which a local remeshing op-

eration is truly necessary, if the simplicity condition above is to be ensured.

Anticipating (Sha08) classi�cation, that will be described in Sec. 3.2, the

60 Chapter 2. Theory

method here proposed is an implicit method, in that the produced segmen-

tation is a by-product of the SRG computation.

Seeing the segmentation task as a constrained problem, the constraint that

we cannot ignore is that the segmentation must be topologically correct.

If we imagine to have a segmentation, and to build a dual graph, having

one node for each segment, and one arc for each adjacency relation between

segments, the resulting graph must have a number of loops equal to the

genus of the surface for the segmentation to be correct.

Chapter 3

Related Techniques

Contents

3.1 Reeb Graphs . 61

3.2 Mesh Segmentation . 72

In this chapter the main contributions in the subject of Reeb graph and

segmentation will be presented.

3.1 Reeb Graphs

Reeb graphs have been extensively applied in recent years in di�erent �elds

of computer science. Among the main applications of Reeb graphs we recall

surface coding (SKK91), modelling interaction between objects (SKSI95),

surface compression (BMS00), shape matching (HSKK01), human body

segmentation (XSW03; WXS06), mesh deformation (TVD06), mechani-

cal design (PSBM07), (TGSP09) and time analysis of mixed �uids data

(COH+12).

The introduction of Reeb graphs in computer graphics is due to (SKK91)

and the �rst algorithm to automatically compute Reeb graphs is described

in (SK91). This algorithm automatically constructs the Reeb graph of a 2D

manifold surface embedded in 3D using surface contours, a weight function

and an a priori knowledge of the number of holes of the object.

62 Chapter 3. Related Techniques

In the following sections we will describe some of the most interesting tech-

niques existing in literature for Reeb graph construction, even if this should

not be considered a complete exploration of all the contributions in this

matter. A detailed work on the subject of Reeb graphs for shape analysis

can be found in (BGSF08).

3.1.1 Level Set Diagrams

In their work (LV99) describe an algorithm that constructs level set di-

agrams (LSD) for 0-genus polyhedrons P using geodesic distance from a

source point. The level set diagram is an embedded graph that encodes

both the topology and the geometry of a shape.

This work has several interesting aspects. One of these is the method to

compute a mesh diameter, in other words the identi�cation of the two di-

ameter vertices of a mesh: the couple of most distant vertices in the whole

mesh. The algorithm starts choosing a random vertex r on the mesh and

then, with the Dijkstra algorithm (Dij59) it computes the farthest vertex

from r. The procedure is then iterated, computing s, the farthest vertex on

the mesh w.r.t. r. This latter vertex s in then used as the source point of a

geodesic distance function f computed on mesh vertices with the Dijkstra

algorithm.

Other interesting concepts are those of level sets and contour strip, that

will be taken by (CMEH+03) and then by (TVD08). Level sets of f at l

(i.e. x ∈ P |f(x) = l) de�ne a set of cross-faces (w.r.t l) that form disjoint

cycles, for any value l distinct from the values that the function assumes at

the vertices of the polyhedron.

The level set realization for the value l is a polygonal curve C(l), with

possible multiple components, that intersects each cross edge ei,j at a point

pi,j de�ned as:

pi,j =
l − f(vi)

f(vj)− f(vi)
vi +

f(vj)− l
f(vj)− f(vi)

vj

Ideally the level sets would be one for each vertex on the mesh, but the

authors choose to consider a limited number of level sets, dividing the func-

tion range [0, fmax] in a user-de�ned number of intervals. They analyse the

topology of each considered level set, based on the index of the vertex for

3.1. Reeb Graphs 63

which the level set is computed: they use a slight variation of the index of

a point of a scalar function f de�ned over a polyhedral surface de�ned in

(Ban70) and (Hen94):

Indf (v) = 1−
Sgcf (v)

2

where Sgcf (v) is the number of sign changes of f(vi) − f(v), being vi the

vertices in the link of the vertex v, considered in a counter clockwise order.

Changes in topology of the level set can happen only at critical vertices,

those vertices having an index 6= 0.

The LSD is obtained computing the centroid of each polygonal curve C(li) ∀li ∈
[0, fmax]. The author choose this solution � instead of computing the cen-

troid over the curve vertices � in order to �lter the artefacts caused by

non-uniform meshes. The LSD algorithm provides a curve for each branch

of the LSD but does not tell how those branches must be linked together.

Centroids become discontinuous each time a contour is split into several

contours, for this reason virtual links are added between branches.

The LSD algorithm is limited to 0-genus surfaces, and the only topological

event that is considered is the split, i.e. when a connected component of

the level set divides in two. This algorithm does not compute any kind

of segmentation. This method has been extended to surfaces with genus

higher than 0 in (HA03), and with a technique to �nd seed points based on

a multi-scale curvature evaluation in (MP02b)

3.1.2 Extended Reeb graphs

In (BFS00) Extended Reeb graphs are introduced as conceptual models for

surface representation applied to terrain models. They are extended be-

cause, in the original de�nition of Reeb graph (Ree46) f is required to be

Morse. In (BFS00) the original de�nition is extended to elevation func-

tions, also not being Morse or general. Initially the triangulated meshes

(with boundaries) are virtually closed with a virtual minimum. The al-

gorithm then discovers and reorders (by function values) the critical areas

(those containing a non degenerate maximum, a minimum, a saddle but

also the �at areas containing non isolated critical vertices), then for each

of them an area of in�uence is computed, and �nally resulting Reeb graph

64 Chapter 3. Related Techniques

nodes are linked by arcs following the adjacency relations between areas.

In (BMS00) an approach based on Extended Reeb graphs is applied. The

co-domain of the function f is partitioned in c + 1 intervals, being c the

number of non degenerate critical points. Two vertices are equivalent, in

the Reeb sense, if the function computed in each of the two vertices belongs

to the same interval and if the two points belong to the same connected

component of the counter-image of the partition. All the equivalent vertices,

in the Reeb sense, can be collapsed in one node corresponding to the whole

partition. Arcs of the graph represent equivalence relations. An embedding

is also provided, positioning each node in the centroid of the corresponding

region.

3.1.3 Sweep algorithm for extracting Reeb graphs of 2-manifold

(CMEH+03) is a fundamental contribution, in that it proves a certain num-

ber of results concerning the number of loops of a Reeb graph of a simple

Morse function f, de�ned on a smooth, compact, connected, 2-manifold.

3.1.3.1 Topological invariants

Lemma 13 (Loops of a RG of a closed orientable 2-manifold). The

Reeb graph of a Morse function over a connected orientable 2-manifold of

genus g without boundaries has a number of loops equal to g.

For this proof the authors do not make use of the Morse property of the

f function, implying that Lemma 13 holds for more general but not for

arbitrary continuous functions.

Lemma 14 (Loops of a RG of an orientable 2-manifold with h boundaries).

The Reeb graph of a Morse function over a connected orientable 2-manifold

of genus g with h ≥ 1 boundary components has a number of loops between

g and 2g + h− 1.

Lemma 15 (Loops of a RG of a closed, non-orientable 2-manifold).

The Reeb graph of a Morse function over a connected non-orientable 2-

manifold of genus g without boundary has a number of loops between 0 and
g
2 .

3.1. Reeb Graphs 65

Lemma 16 (Loops of a RG of a non-orientable 2-manifold with h boundaries).

The Reeb graph of a Morse function over a connected non-orientable 2-

manifold of genus g with h ≥ 1 boundary components has a number of loops

between 0 and 2g + h− 1.

3.1.3.2 The sweep algorithm

The authors then present a sweep algorithm, based on the results of the

previous lemma, for a compact, triangulated manifold and for a PL Morse

function f .

Vertices of the triangulation are processed in order of ascending values of

the Morse function f , that should be thus sorted globally. The function

f , valued at mesh vertices, is also supposed to be general. f is extended,

via linear interpolation, to the whole mesh surface as f∗. Level sets of f∗

are represented by a set of contour strips, i.e. piecewise linear paths or

cycles. In case of a manifold without boundaries the contour strips will

be made of cycles only. In the contour strip every triangle contains a line

segment (made of all the points in the triangle that are part of the pre-

image f∗−1(α)) in the path, and any two contiguous triangles meet in an

edge that contains a shared endpoint of two line segments in the path. This

shared endpoint is not a vertex of the triangulation, but is a point on an

edge, except when it exists a vertex x such that f∗(x) = α.

For each possible value of the function f∗ there will be a �nite number of

contour strips (or contour paths in the case of meshes with boundaries).

The authors propose the following artifact in order to represent the contour:

each contour (or path) is stored as a list of the edges of the triangulation

corresponding to descending paths from contour vertices. The edges carry

the vertices of the contours, and the triangles between them carry the edges

of the contours.

Each time a critical point is met, a new node is inserted in the Reeb graph

and also arcs are updated consequently. Each time a minimum is met, a

new list (cyclic or linear) of ascending edges is created. Each time a regular

vertex is met, its descending edges are replaced by its ascending ones. In

this case all edges belong to a single list (cyclic or linear). Each time a

saddle is met, two cases can arise: two lists merge in a new one or a list

splits into two new ones. In this case it is also necessary to �nd the lists

from which the descending edges are removed and to which the ascending

66 Chapter 3. Related Techniques

edges are added. In the case a degenerate saddle is met, the authors apply

the saddle unfolding procedure, that transforms a saddle with multiplicity

m into m simple saddles. The implementation of the cyclic and linear list

is made with balanced search tree (see (CLRS09)).

Each time a maximum is met, the corresponding list is closed (because there

are no more ascending edges for this vertex).

This approach is particularly interesting both because of its e�ciency and

its capability of dealing with degenerate critical points. On the other hand,

no embedding is given for the graph, nor a segmentation is proposed, even if,

for the sweeping nature of this approach, one can easily imagine to integrate

both these aspects. The handling of the degenerate saddles is made through

a local remeshing. Finally a global ordering of the function f is required.

3.1.4 On-line computation of Reeb graphs

In (PSBM07) an interesting method for constructing the Reeb graph of

very large meshes is described. The method computes also an embedding

of the Reeb graph using a number of nodes that depends on the range of

the mapping function and on a user de�ned parameter.

The algorithm has been tested with di�erent functions, showing signi�cant

performances with large meshes.

It is an on-line algorithm with an iterative approach that requires taking

into account all the simplicial elements of the mesh (vertices, edges and

triangles) during the computation: at each step, a new simplicial element

is considered and the Reeb graph is incrementally updated, until all sim-

plicial elements have been considered. The only requirement on the input

mesh is that all vertices of a triangle must appear before the triangle itself,

because vertices and triangles are processed in order of arrival. Initially the

Reeb graph is empty. Each time a new vertex is read a corresponding new

node in the Reeb graph is created, and each time a new triangle is read,

a corresponding new arc is created for each of its edges that has not been

already processed. Each time the interior of a triangle is read it could con-

nect disjoint contours already processed and the Reeb graph is consequently

updated. The method is based on a tightly coupled data structure between

mesh vertices and edges and Reeb graph arcs and nodes. Each node in

the graph maintains a pointer to its original vertex, each arc maintains a

3.1. Reeb Graphs 67

reference to all the cross edges for the function value represented by that

arc and each mesh edge points back to the higher valued (with respect to f)

arc in the graph. The algorithm takes also advantage of the possible mesh

manifoldness, removing redundant arcs or nodes in the graphs: e.g. in case

of a 2-manifold mesh, considering an edge whose two adjacent triangles has

already been processed, it can be removed from the graph reference. This

method does not require the input mesh to be manifold, and can be applied

to structure of whatever dimension, not only 2 or 3 simplicial complexes.

This method does not require the input function to be Morse. The authors

show results with di�erent kinds of mapping functions: x, y, z coordinates,

a random function, and some eigenvectors of the Laplacian matrix of the

input mesh. Furthermore they simplify the obtained Reeb graph using the

extended persistence algorithm (AEHW06), which generalizes the notion of

persistence to loops. Output graphs are stored in a coarser-to-�ne format:

this method is particularly useful for searching subtle defects on a mesh,

because defects disappear at a certain level of simpli�cation, and thus they

can be easily identi�ed. The algorithm is also available as VTK implemen-

tation (see (vis10)). At our best knowledge this is the fastest and most

accurate Reeb graph algorithm available. It does not compute a mesh par-

titioning.

3.1.5 Enhanced topological skeletons

In (TVD08) an interesting approach is presented in terms of an algorithm for

mesh segmentation and Reeb graphs extraction and embedding, resulting in

an enhanced topological skeleton. This is a sweep method that, di�erently

from (CMEH+03), uses 1-skeleton to represent the level sets of f . This

approach is based on three steps: feature points extraction, PL general

Morse function computation, Reeb graph extraction.

Feature points are extracted as mesh most prominent points. The algorithm

�nds the two most distant vertices on the mesh applying the "Source point

location" algorithm of (LV99), i.e. the extrema vertices.

Then it computes two distance functions δ1 and δ2, one for each extrema

vertex. It �nds, for each of the two functions δ1 and δ2, their local extrema

(maxima and minima). These two sets of local extrema are then merged in a

soft way: two extrema belonging to each of the two functions are merged in a

68 Chapter 3. Related Techniques

common feature point if they overlap or if they are not more far away than a

prede�ned tolerance ε from each other, otherwise they are simply discarded.

Two feature points cannot be closer than the same de�ned tolerance ε and

thus their number varies in function of this parameter.

The function f is computed as the complement to 1 of the normalized

(with respect to mesh diameter) geodesic distance from the nearest feature

point. f is valued 1 (the maximum value) in the feature points and tends

to 0 in the center of the mesh. Since f could present a great number

of minima-saddles con�guration, and could be not simple, in the sense

described in the chapter 2, the authors suggest a perturbation of f , to

guarantee both generality and minimum-saddle cancellation. Perturbation

requires one mesh swept from the global minimum in order to sort the f

values and is performed as: f = i
n where i is the position of the ith value

of f . Finally f is made PL Morse via the procedure of m-saddle unfolding

described in (CMEH+03).

The Reeb graph equivalence classes computation is started at the mapping

function minimum, that, after the perturbation step, is unique. The au-

thors adopt an approximated representation of level sets using chains of

vertices and edges. This representation is what we call ULS (see Chap. 2,

Def. 88). Contours are the connected components of the ULS. They sweep

the mesh starting from the f minimum. At each step, a candidate vertex vc
is selected, as the minimum in all contours. The corresponding contour is

updated, adding Lk(vc)− vvisited, i.e. the set of vertices in the contour that

have not already been visited and having an higher value of the mapping

function. Variation in the number of the contours lead to split, or merge

events. At the end of the sweep n equivalence classes (in the Reeb de�nition

sense) have been computed, one for each of the n mesh vertices. The sweep

procedure keeps track of the creation (at f minimum), split and merge and

termination (at f maxima) of the discrete contours, and it appends the

correspondent equivalence class to the relative Reeb graph branch. A list

of contiguous equivalence classes form a Reeb graph edge. Each edge is

connected to two nodes represented by critical points, minimum (starting

node) and maxima (termination nodes). A dual, geometrically-embedded

representation is then implemented, replacing each Reeb graph edge with

the centroid of the corresponding equivalence classes. Edges linking these

nodes represent adjacency relations.

In our experience this technique has some unsolved issues (as shown in

3.1. Reeb Graphs 69

Sec. 2.2.5.5) that could lead to critical contour con�gurations, especially

in case of coarse, real-world meshes. Indeed, discrete contours could be-

come non 1-manifold, also at vertices di�erent from the critical ones (see

Fig. 2.37), generating self intersections. As shown in Fig. 2.31 this could

lead to missing split and merge events detection, and thus to a graph that

has not the same topological properties of the RG.

Furthermore, minimum-saddle cancellation procedure in our experience didn't

solve extra critical vertices problems, and moreover these problems are more

frequent on coarse meshes. Indeed examples provided in (TVD08) are lim-

ited to genus 2 mesh, with a great number of vertices.

The split process could happen with high frequency in case of coarse meshes

with higher genus, and the corresponding segments could be disconnected.

The algorithm needs a global lookup on two heaps, one for the sweeping con-

tours and the other for the visited vertices. This could a�ect performances

in the case of meshes with a great number of vertices.

3.1.6 Reeb graphs based on shape diameter function

In (SSCO08) a method for both mesh segmentation and skeletonization

based on shape diameter function (SDF) is given. The SDF is computed at

each vertex 'sending' several rays inside a cone centered at the vertex, and

selecting the one normal to the intersecting surface. The SDF is a measure

of the diameter of the shape's volume in the neighborhood of each point on

the surface and it is used as a scalar function de�ned on the mesh surface.

Its isocontours are used for segmentation. Skeletons are built choosing a set

of points over the mesh as samples, and projecting for each of them, in the

inward normal direction, a skeleton point at half the distance of the SDF

in that point. Iterating and �ltering, a skeleton like structure is obtained.

SDF is robust with respect to rigid body transformation, an also versus

deformations that do not alter mesh volume, but may have limitations with

non-cylindrical parts of objects.

3.1.7 Dynamic graphs

(DN09) propose an approach for computing Reeb graphs of 3d-manifold

with the use of dynamic graphs. Their algorithm uses a sweep approach,

70 Chapter 3. Related Techniques

that tracks the evolution of isosurface components while visiting each vertex

with a subsequent higher value. Events occur when an isosurface, passing

through a vertex, changes the number of connected components. The Reeb

graph is updated accordingly during the sweep. The algorithm maintains a

spanning tree and a spanning cotree of the given manifold and generates a

tree-cotree partition of the manifold itself.

Dynamic graphs work on 3-manifold but do not compute neither a mesh

segmentation nor a graph embedding. Furthermore this approach requires

a global sorting of vertices values in order to start the computation. Finally

the mapping function is required to be Morse.

As in (HSKK01) this work uses AGD (average geodesic distance) calculated

from a small set of evenly-spaced vertices (base vertices) and this choice

may possibly lead to inaccurate results with meshes having non uniform

sampling.

3.1.8 Reeb graphs built on critical loops

(PSF09) propose an approach for building the Reeb graph of a mesh under

a general function f (extended by linear interpolation over the whole mesh

surface as f∗) using its critical points and their isocontours. To �lter the

topological noise of the function f (intended as a function with a great

number of critical points, close to each other and with close f-values and

with possible multiple saddles) the use of two possible methods is proposed:

persistency-based simpli�cation as described in (BHEP04) or salient critical

points identi�cation as described in (LLKR07).

First of all, the critical points of f are extracted and classi�ed as maxima,

minima, and saddles and one isocontour is computed for each of them.

Isocontours f∗−1(f(s)), for each saddle s, cut the mesh into distinct parts.

Each isocontour self-intersects at its saddle s, generating so many critical

loops βk as m+ 1 with m being the multiplicity of the saddle s.

For each saddle s an isocontour is computed starting at s and connecting

the interpolated values - on the edges - of f∗ of the connected triangles

having f∗(x) = α, where x ∈ e and e is a mesh edge so that its extrema a

and b have f value so that f(a) < α < f(b).

The process of isocontouring implies a remeshing in the neighborhoods of

3.1. Reeb Graphs 71

the isocontour itself, with a duplication of all the vertices and edges along

the loop βk.

Each contour βk identi�es the set of remeshed triangles that have one edge

of βk as an edge. It divides the mesh in di�erent shells, at the same time

pairing triangles belonging to the two di�erent cells with adjacency rela-

tions.

An adjacency graph A is iteratively built, having a node for each saddle,

shell, or critical loop. A geometric embedding is also provided positioning

shell and critical loop nodes in the centroids of the corresponding set of mesh

vertices. Adjacency graph arcs correspond to adjacency relations between

the corresponding mesh shells: each shell has a node in its barycentre and

this node is adjacent to the two saddles whose critical loops border the shell.

Each saddle is adjacent to all its critical loops.

In the �nal step, the adjacency graph A is converted into the Reeb graph:

the resulting graph has one node for each boundary connected component,

one for each critical point (saddles, maxima and minima) and arcs encode

adjacency relations between the resulting components. If all the critical

loops of two di�erent saddles border the same shell, then the two saddles

will be connected with an arc; if two critical loops of two di�erent saddles

border the same shell then their barycentre will be connected with an arc,

furthermore both of them will be connected to their own saddle. Finally if

two critical loops of a saddle and one critical loop of another saddle border

the same shell, then there will be an arc between the �rst saddle and the

barycentre of the critical loop of the second one.

As the authors state, this approach is particularly suited for densely sampled

large meshes with small genus and really smooth functions (with a small

number of critical points). It is worth noting that this method requires

a noise �ltering procedure at the start and a remeshing procedure during

the computation of each isocontour. Finally the segmentation must be

necessarily computed with a distinct additional step that sweeps the whole

mesh with an adjacency-adjacency relation. The procedure starts at one of

the remeshed faces belonging to a particular shell, following then adjacency-

adjacency relations, and keeping saddle critical loops as a not to be crossed

limit, until all mesh faces has been visited.

72 Chapter 3. Related Techniques

3.1.9 Other approaches

3.1.9.1 Reeb graphs from LS-graphs

Recently (DN12b) proposed an output-sensitive approach to compute Reeb

graphs of d-manifold and non-manifold. Also in this case the Reeb graph is

built by �rst computing the level sets at critical points, and then extracting

Reeb graph arcs by traversing the mesh, starting from function minima

and reaching previously computed level sets. Their approach is particularly

e�cient with meshes with a low number of critical points, but the embedding

proposed for the graph may arise some considerations, e.g. in terms of

symmetry. Also in this case the segmentation can be derived as a further

step, and here it is partially manual.

3.1.9.2 Reeb graph as union of contour trees

Recently some contributions has been proposed (TGSP09; DN12a) for com-

puting the Reeb graph of meshes as the union of contour trees (CSA00).

These approaches are particularly suited for huge meshes. In particular the

(TGSP09) is speci�cally designed for volumetric meshes embedded in R3,

while (DN12a) can handle manifold and non manifold in any dimension. See

(DN12a) for further details on the di�erences between the two approaches.

(HWW10) and afterwards (DN12a) show time comparison between (PSBM07;

TGSP09; HWW10; DN12b; DN12a), explaining speci�cities and limitations

of each of the described methods.

3.2 Mesh Segmentation

Mesh partitioning is considered to be still an open problem (Sha08). There

is not a unique solution, but there exist di�erent solutions, each tailored

on a di�erent problem. A recent work (LVB+12) proposed the evaluation

of di�erent algorithms with respect to a uni�ed benchmark database, the

SHREC database (BVLD09). This tool has been proposed in 2009 and

since then it stimulates and supports discussion and confrontation about

the segmentation problem.

In a previous work (AKM+06) proposed seven criteria to evaluate di�erent

segmentation algorithms:

3.2. Mesh Segmentation 73

• Type of segmentation: part-type, surface-type.

• Extracting the correct segments: this is not an objective parameter

and establishing the correctness of a boundary is strongly dependent

on application and can often be done looking at the images.

• Boundaries: even if this parameter is not stricly objective, it is pos-

sible to de�ne requirements as smoothness, length and location along

concave features.

• Hierarchical / multi-scale segmentation: to �t possible di�erent user

requirements.

• Sensitivity to pose: whether a change in the pose of the shape can

a�ect its segmentation.

• Sensitivity to noise and tesselation: robustness with respect to noise

and mesh sampling.

• Asymptotic complexity : this can give an idea of the running time in

the worst case.

• Parameters: whether an algorithm requires user controlled parame-

ters, or previous knowledge of the mesh.

(Sha08) identi�es the following categories of segmentation methods:

• Region growing: this method starts at a seed and expands the

segment until a certain condition is reached. This kind of technique

is appliyed with some variations in (CDST97; KT96; MPS+04).

This method has also a variation, calledmultiple source region growing

in which more than one seed is chosen at start.

It is applied by (SCOGL02; ZH04) among others.

• Hierarchical clustering: in this method possible couples of ele-

ments are tested for being partitioned in the same cluster. Initially

each element has its own cluster, then clusters are merged, applying

a cost function each time a merge is done. This approach is adopted

in (GWH01; AFS06). In this latter work a set of primitives is used

(planes, spheres and cylinders) in order to segment the mesh.

74 Chapter 3. Related Techniques

• Iterative clustering: di�erently from region growing and hierarchi-

cal clustering, in iterative clustering the number of resulting patches

is one of the input parameters. The optimization algorithm tries to

converge to a best solution measuring at each step the best represen-

tative for a partition. This technique is applied with some variances

by (STK02; Kob05). In the �rst algorithm one of the main decisions

the procedure has to take is about whether two faces belong to the

same patch or not. A cost function, based on the distance from each

two faces is evaluated and, at each step, faces are exchanged from one

patch to another till when all the faces in a given patch result to be

connected. Resulting patches could be or disc-like or cylinder-like. In

the second algorithm patches type are extended to planes, spheres,

cylinders and rolling ball blend patches.

• Spectral analysis: given a graph G, we de�ne its adjacency matrix

A as:

Aij =

{
1, if i, j are neighbors.

0, otherwise.

and the diagonal matrix D which is made of di, the degree of vertex

i, then the Laplacian of G is de�ned as the matrix L = D −A.

Lij =


1, if i = j.

− 1
di
, if i, j are neighbors.

0, otherwise.

(KG00) uses this technique for compressing meshes, adding a prepro-

cessing step in which the mesh is segmented in parts.

In (LZ04) spectral clustering is applied to 3D mesh segmentation, in-

troducing the concept of an a�nity matrix that encodes whether two

faces belong to the same cluster, based on their distance:

W (i, j) =
1

e

δ(i, j)

2σ2

In a succeeding work (LZ07) propose a mesh segmentation algorithm

based on spectral analysis via recursive bisection of the original mesh.

In this case they distinguish between structural segmentability and

3.2. Mesh Segmentation 75

geometrical segmentability, introducing two di�erent a�nity matrix

operators for the spectral projection done at each step.

• Implicit methods: (Sha08) de�nes these kinds of approach as the

ones that create a mesh partition as a by-product of other techniques,

like boundary or skeleton extraction.

Some of these approaches are based on constructing boundaries, like

(LLS+05). In this work the authors propose to scissor the mesh with

contours in correspondence of features, identi�ed with minima rule

and part salience theory. This method is robust in practice, but fea-

ture extraction could produce overhead in case of huge meshes. In this

case the authors propose the use of a simpli�ed version of the mesh

for feature extraction. (PSF09) identify contours that are the bound-

aries of the segmentation in correspondence of the critical points of a

PL-function de�ned over the mesh.

(KLT05) propose a coarse to �ne approach to segmentation, based on

multi-dimensional scaling, feature points detection and core compo-

nent extraction. Feature points are de�ned as witnesses of prominent

components, and as the points more distant to all other points in the

mesh. Once both feature points and core component are identi�ed,

the coarse mesh is segmented and �nally the cuts and the segments

are re�ned in the original high-resolution mesh.

In (LKA06) is described an iterative algorithm that computes both

the mesh skeleton and the segmentation. The heart of the recursive

procedure goes as follows: a skeleton of the mesh is computed using a

principal axis, then the quality of the skeleton is evaluated measuring

the convexity of the corresponding component. If the test is passed

the skeleton is returned, otherwise the mesh is further segmented with

approximated convex decomposition.

(SSCO08) propose an algorithm for mesh decomposition and skele-

tonization using a shape diameter function (SDF), i.e. a scalar func-

tion de�ned on mesh faces (see also Sec. 3.1.6). This method consists

of a pre-processing step (for SDF calculation, normalizing and smooth-

ing), then of a step in which isovalues of the SDF create iso-contours

for a �rst soft partitioning of mesh faces and �nally a step in which

actual partitioning is found using k-way graph-cut.

In (BDBP09) a method for mesh segmentation based on Reeb graph

76 Chapter 3. Related Techniques

is presented. Reeb graph is built over the average geodesic distance

AGD mapped over the mesh surface. Formally the AGD is, at each

vertex, the average geodesic distance of the vertex itself to all the other

points on the model surface. But the authors suggest a simpli�cation,

computing the AGD from a small number of evenly spaced vertices

(base vertices) of the surface. The values of the function f are divided

in intervals. This algorithm takes in consideration, at each step, the

number of connected components associated with each interval. Con-

tiguous intervals with the same number of connected components are

fused together. The process is iterated until all the di�erent intervals

have a di�erent number of connected components. A further step is

required in order to adjust segmentation boundaries with respect to

deep surface concavities.

Chapter 4

The DRGSS algorithm

Contents

4.1 Computing the SRG and the segmentation 78

4.2 Scalar function . 95

4.3 Implementation . 96

In this chapter the theory illustrated in chapter 2 will be applied to introduce

the discrete Reeb graph and segmentation algorithm (DRGSS), an algorithm

that builds both the Reeb graph (in this case a simpli�ed Reeb graph - SRG)

and the corresponding segmentation.

Here it will be shown how to implement an upper level set (ULS), augmented

with edges and vertices multiplicity and how to build an SRG based on the

evolution of the augmented ULS. This guarantees that the resulting graph

will be homeomorphic to the CSTRG and thus to the Reeb graph of f∗

(BFS00).

The focus of this work is not on the particular function f received as input,

it is enough for it to be general.

78 Chapter 4. The DRGSS algorithm

4.1 Computing the SRG and the segmentation

Algorithm 4.1.1: ReebSegmentation(T, f)

main

Γ← ∅
Σ← ∅
Vminima ← minima(T, f)

for each vmin ∈ Vminima

do



comment: γ is a multiset of vertices and edges

σmin ← new σ({vmin})
γ ← new γ({vmin})
σ(γ)← new σ(∅)
Γ← Γ ∪ {γ}
Σ← Σ ∪ {σmin} ∪ {σ(γ)}
adjacency(Σ)← adjacency(Σ) ∪ {(σmin, σ(γ))}

while (Γ 6= ∅)

do



vc ← arg minv ∈Γ f(v)

Γc ← {γ ∈ Γ | vc ∈ γ}
if (isMultiple(vc,Γc))

then mergeSplit(vc,Γc)

else



advanceContour(vc,Γc(1))

if not (isEmpty(γ))

then σ(γ)← σ(γ) ∪ {vc}

else


Γ← Γ− {γ}
σmax ← new σ({vc})
Σ← Σ ∪ {σmax}
adjacency(Σ)← adjacency(Σ) ∪ {(σ(γ), σmax)}

output (Σ)

procedure isMultiple(vc,Γc)

if (|Γc| > 1) or (∃γ ∈ Γc | multiplicity(vc, γ) > 1)

then return (true)

else return (false)

procedure advanceContour(vc, γ)

γ ← γ − St(vc, γ)

γ ← γ ∪ (Lk+(vc, f)− Lk(vc, γ))

The algorithm that will be described is modular in that it receives as input

a mesh in PLY format and it returns as output the resulting SRG and its

4.1. Computing the SRG and the segmentation 79

corresponding segmentation.

The proposed algorithm uses the f function valued at mesh vertices, when

available, having as only requirement on the function its generality. The

algorithm can also compute an f function, if this is not given as input.

4.1.1 The main algorithm

The main algorithm (see Algorithm 4.1.1) takes as input a triangulated

mesh X and a general function f . We choose, for simplicity, to present

the DRGSS algorithm for an upward sweep of T , i.e in the direction of

ascending values of f . The de�nition of a dual algorithm, that goes in the

opposite direction, follows immediately.

Initially the set of the evolving contours Γ and of the segments Σ are both

empty. The local minima Vminima of the function f are found and a segment

is created for each of them and stored in Σ.

In the same iteration, for each minimum of the function f , a contour is

created and stored in Γ. Each contour is assigned an empty segment, that

is marked adjacent to the segment in Σ containing the corresponding min-

imum.

The main iteration is repeated until all the evolving contours have van-

ished. At each step the vertex vc, having the lowest value of the function

f in all contours, is selected as the candidate vertex ; if vc has multiplicity

m > 1 in Γ (see Sec. 4.1.2.1), the mergeSplit operation is performed (see

Sec. 4.1.3), otherwise the contour containing vc is updated and vc is added

in the segment of its contour (see Sec. 4.1.2).

The contour γ just updated, will be empty in case vc is a maximum. In

this case indeed vc does not have neighbors with an higher value of f , and

it is also, by construction, the minimum of its contour: any contour thus

vanishes at maxima. If it would be the case, γ is removed from the set of

the evolving contours and a new segment σmax is created containing the

maximum and this segment is set to be adjacent to σ(γ), the segment of

the contour γ that has vanished.

The main loop ends when Γ is empty, that is when all the evolving contours

have met a maximum (see Sec. 4.1.5).

At the end Σ will contain all the mesh segments and their adjacencies:

80 Chapter 4. The DRGSS algorithm

the SRG will have a node for each segment and an arc for each adjacency

relation.

4.1.2 Advancing Contours

In order to describe how the contour evolution is done we need to recall

some de�nitions from Chap. 2: St(vc, γ) (see Def. 103) is the St of vc on the

contour γ and it is shown (in red) in Fig. 4.1b, Lk(vc, γ) (see Def. 104) is

the Lk of vc on the contour γ and it is shown (in red) in Fig. 4.1d.

(a) Before (b) St(vc, γ) (c) Lk+(vc, f)

(d) Lk(vc, γ) (e) Lk+(vc, f) −
Lk(vc, γ)

(f) After

Figure 4.1 � This �gure is the same of Fig. 2.39, it has been repeated for
convenience only. It shows the contour update for a regular vertex vc: starting
from the initial contour (a), the �gure shows the details of the computation.

Finally we recall the de�nition of Lk+(vc, f): it is the Lk+ of the vertex vc
on the mesh (see Def. 67 in Chap. 2). An example of Lk+(vc, f) is shown

(in red) in Fig. 4.1c.

Given these de�nitions we can now introduce the method by which contours

are updated. Recalling Def. 105 in Chap. 2:

γupd(v) = γ(vc)− St(vc, γ(vc)) + (Lk+(vc, f)− Lk(vc, γ(vc)))

4.1. Computing the SRG and the segmentation 81

(a) (b) (c) (d)

Figure 4.2 � Contour evolution starts at minima (a), at each step a candidate
vertex is selected (orange) (b,c) as the one with the lowest value of f in all
contours. All contours evolve in the direction of ascending values of the f
function (d).

Figure 4.3 � Possible con�gurations of Lk between two vertices (EH10).

We can see that contour evolution involves only the immediate neighbor-

hood of the candidate vertex vc: the St(vc, γ) is replaced by Lk+(vc, f) −
Lk(vc, γ).

Fig. 4.1 shows an example of this basic step. Fig. 4.1a shows the initial

contour, with the candidate vertex vc in orange. Fig. 4.1b shows St(vc, γ)

that is removed from the contour, Fig. 4.1c and 4.1d show respectively

Lk+(vc, f) and Lk(vc, γ) whose di�erence (shown in Fig. 4.1e) is added to

the contour. Finally Fig. 4.1f shows the updated contour.

The vertex vc is also inserted in the segment σ(γ) after the contour evo-

lution. Figure 4.2 describes the �rst stages of the evolution of a contour

after having been initialized, at the beginning of the algorithm, for a speci�c

minimum.

Fig. 4.3 shows a special case in a triangulation. This is the case in which a

mesh contains a tetrahedron (Ede01). Formally this con�guration happens

82 Chapter 4. The DRGSS algorithm

when, given two neighboors vertices a and b:

Lk(a) ∩ Lk(b) 6= Lk(a) ∩ Lk(b) ∩ Lk(ab)

where Lk(ab) is the Lk of the edge ab. When these con�gurations are found,

particular care must be exerted in contour management.

Thanks to the properties explained in sections 2.2.5 and 2.2.6, the contour

evolution operation does not require looking up in a collection of visited

vertices, as it happens in other evolving contour methods (TVD08). It uses

only the immediate neighborhood of the candidate vertex, or, only in case

it is a saddle, the ULS and the contour strip, as we will see in Sec. 4.1.3.1.

It can happen that a candidate vc is a local maximum: in this case the

operation γ ← γ∪(Lk+(vc, f)−Lk(vc, γ)) in advanceContour is resulting

in an empty contour γ. Consequently γ is simply removed from the evolving

contours.

4.1.2.1 Contours as Multisets

As shown in Sec. 2.2.6.1, a key point of our algorithm, is the introduction

of an augmented representation of the ULS, in which edges and vertices

have a multiplicity m ≥ 1. More precisely, each upper contour is a multiset

(Knu98) that contains vertices and edges, each associated to a value of

multiplicity describing their presence in the upper contour.

Multiplicity greater than 1 arises during contour evolution (see Fig. 4.10a),

when the vertices and the edges that have been added to the contour are al-

ready present either in the contour itself or in other contours (see Fig. 4.10c).

If this would be the case, in the advanceContour procedure the values

of multiplicity for vertices and edges are updated accordingly.

Multiplicity has a fundamental role in detecting contour events: if the can-

didate vertex vc has m > 1 it will certainly be a saddle (see Sec. 2.2.6.1),

because vc is also the minimum of γ(vc) w.r.t. the values of f . Only in this

case the algorithm will walk the contour γtmp in order to identify contour

connected components. On the other side, because of multiplicity of ver-

tices and edges in the contour, identifying contour connected components

must be done with particular care (see Algorithm 4.1.3).

4.1. Computing the SRG and the segmentation 83

4.1.3 Merge and Split of contours

As described in Algorithm 4.1.1, split and merge events detection is a local

task that depends only on the multiplicity of the candidate vc in γ, or in

the other evolving contours.

Algorithm 4.1.2: mergeSplit(vc,Γc)

γtmp ← new γ(∅)
σsaddle ← new σ({vc})
Σ← Σ ∪ σsaddle
for each γc ∈ Γc

do

{
γtmp ← γtmp ∪ γc
adjacency(Σ)← adjacency(Σ) ∪ {(σ(γc), σsaddle)}

advanceContour(vc, γtmp)

Γn ← connectedComponents(γtmp)

for each γn ∈ Γn

do


Γ← Γ ∪ {γn}
σ(γn)← new σ({v ∈ γn})
Σ← Σ ∪ σ(γn)

adjacency(Σ)← adjacency(Σ) ∪ {(σsaddle, σ(γn))}

In the isMultiple procedure in Algorithm 4.1.1 the multiplicity of the

candidate vertex is checked: if the candidate vertex has multiplicity m > 1

in Γ then it certainly is a saddle, indeed it is, by construction, also the

minimum in its contour γ.

The Algorithm 4.1.2 can be thought as made of three sub-parts:

• the �rst one merges all the contours that share vc as a candidate.

Whenever the candidate vertex vc is simultaneously present in more

than one contour (i.e. |Γc| > 1) then a merge event occurs. Figure 4.6

describes the merging of two contours;

• the second part advances the (possibly) merged contour γtmp in the

direction of ascending values of the function f ;

• the third splits the resulting contour in its connected components.

Indeed if vc has a presence greater than one in its contour, then a

84 Chapter 4. The DRGSS algorithm

split event will surely occur.

When f is a Morse function, split and merge events cannot occur simulta-

neously. Furthermore, every split event will produce just two new contours

and every merge event will merge just two contours into a single one.

However, since f is only required to be general it can happen that multi-

ple merge or multiple split take place at a saddle, also simultaneously. In

particular, this happens in the case of a degenerate saddle.

At �rst, the Algorithm 4.1.2 creates both a new temporary empty contour

γtmp, and a new segment σsaddle containing only the saddle vc. This segment

is stored in Σ with all the other segments. Then, in the case of a merge

(i.e. when vc belongs to more than one contour), contours sharing vc are

merged in γtmp, and each corresponding segment σ(γc) is set to be adjacent

to the segment σsaddle just created. Then γtmp is advanced, as described in

Sec. 4.1.2.

Then the procedure identi�es the connected components of the evolved con-

tour (see Sec. 4.1.3.1). For each connected component a new contour and a

new segment are initialized: the new segment is initialized with the vertices

of the new contour (σ(γn) ← new σ({v ∈ γn}). These initialization guar-

antees segment proper connectivity also in case of multiple and frequent

split or merge events (as it will be described in Sec. 4.1.4.1). The adjacency

relations in Σ are also updated: σsaddle is set to be adjacent to each of the

σ(γn) just created.

Overall, this means that the nodes in the SRG corresponding to a degenerate

saddle will have connectivity greater than 3.

4.1. Computing the SRG and the segmentation 85

4.1.3.1 Identifying connected components

Algorithm 4.1.3: connectedComponents(γtmp)

main

adjacents← Lk(vc, γtmp)

while (adjacents.size > 0)

do

vu ← adjacents[0]

γn ← new γ(vu)

Γn ← {γn}
vl, vstartLower ← vc
vp, vn ← (Lk(vu, f) ∩ Lk(vl, f))

adjacents← adjacents− {vp, vn}
advanceAndUpdate(γn, vn, vp, vl, vu, adjacents, edgecur)

while (not isClosedCycle(vu, vn, vl, vp, vstartLower))

do
insertEdge(γn, edgecur)

removeEdgeAndCleanVertices(γtmp, edgecur)

vn ← otherFaceVertex(vp, vl, vu)

advanceAndUpdate(γn, vn, vp, vl, vu, adjacents, edgecur)

insertEdge(γn, edgecur)

removeEdgeAndCleanVertices(γtmp, edgecur)

output (Γn)

procedure advanceAndUpdate(γn, vn, vp, vl, vu, adjacents, edgecur)

if (vn ∈ γn)

then

{
vp ← vu
vu ← vn

else

{
vp ← vl
vl ← vn

edgecur ← edgeBetween(vp, vu)

adjacents← adjacents− {vn}

Determining the connected subsets Γn of the splitting contour γtmp involves

walking the contour across vertices and edges with possible multiplicity

m > 1. Figure 4.4 shows a relatively simple case in which, after updating

the contour for the candidate vertex vc, the two subsets are clearly separated

and easy to follow. The multiplicity of both edges and vertices can make the

problem more complex. In particular, in coarse meshes with higher genus

it is not infrequent to have contours that have more than one connected

subset of vertices and edges with multiplicity m > 1.

86 Chapter 4. The DRGSS algorithm

(a) (b)

Figure 4.4 � Split event: the candidate vertex vc (in orange) has a multiplicity
m > 1 in its contour (a); the contour is split into two distinct ones (b).

(a) (b) (c)

(d) (e) (f)

Figure 4.5 � Identifying connected components in a contour after having ad-
vanced contour γtmp (a). Starting from vc = vl, the three vertices vu, vl and
vp identify the current face in the contour strip (in gray) and allow walking
across vertices and edges with multiplicity greater than 1.

4.1. Computing the SRG and the segmentation 87

The situation is described in Figure 4.5, where the vertices and edges with

double presence (in green) do not include the splitting point, i.e. the candi-

date vertex vc. As shown in Figure 4.5a, the problem is that the procedure

must walk through the subset with double presence by entering and exiting

`on the same side' of the contour, i.e. without crossing over.

While all other operations are done manipulating only the contour γ, (a

connected component of the ULS), in order to �nd the connected com-

ponents of a splitting contour also the contour strip is required, since the

upper level set does not contain, per se, the required information.

The method adopted starts from the candidate vertex vc, which at this

point is, by construction, outside γtmp (Fig. 4.5b) and has a lower value

with respect to each other vertex in γtmp and also belongs to St(vc). The

current face will be identi�ed by a triplet of vertices vu, vl and vp in which

initially vl = vc and vu must be in γtmp. In particular vu is initially one

of the vertices of Lk(vc, γtmp). From this point on, the method is a `walk'

along the contour strip: at each step, the next face will be the unique one

that shares the edge (vu, vl) and is opposite to vp. The delicate part of the

method is labelling the vertices of the next face: if the vertex vn in the next

face that is opposite to vp belongs to the contour γtmp (Fig. 4.5d), then the

new labelling is:

vp = vu, vu = vn, vl = vl.

Otherwise (Fig. 4.5c), i.e. if vn does not belong to γtmp, the new labelling

is:

vp = vl, vl = vn, vu = vu.

The `walk' is completed, and one connected component has been identi�ed,

when it returns back to vc, more precisely when vl comes to coincide with vc
again. Another `walk' is then performed starting from another, unexplored

face in St(vc) that also belongs to the contour strip, until there are no more

such unexplored faces.

It has to be emphasized that these `walks' over the connected components of

the contour strip are performed in the algorithm only when a saddle vertex

is met.

88 Chapter 4. The DRGSS algorithm

(a) (b)

Figure 4.6 � Merge event: the candidate vertex vc (in orange) belongs to two
distinct contours (a); the two distinct contours are merged into one (b).

4.1.4 Segmentation

As described in section 4.1.1, each contour has an associated segment, that

contains the set of vertices visited by the contour. In detail, in the initial-

ization step, the procedure creates a segment for each function minima and

one empty segment associated to each contour. During contours evolution,

each segment is progressively �lled adding at each step the candidate vertex

in its associated contour. When a saddle is met, a new segment is created

containing the saddle, the corresponding contour is removed from Γ (the

set of the evolving contours) and one or more new contours are created,

with their associated segments. Clearly, segments are also created when

the corresponding contour meets a maximum. The overall mesh partition

is described by the collection of all the segments in Σ.

4.1.4.1 Multiple membership

When contours pass by a critical vertex, the corresponding event (split,

merge, contour creation, contour end) is managed by the algorithm. In the

same procedure also the parent contours are removed from the set of the

evolving contours. As a consequence their associated segments are closed, in

the sense that new vertices will no longer be added to these segments. This

means also that segments are delimited by the level lines of the extended

function f∗ passing through a critical vertex. The resulting segmentation

4.1. Computing the SRG and the segmentation 89

(a) (b)

Figure 4.7 � A cross face between two segments (a), a cross face between three
segments (b).

depends on the values of the function f but also on the density of the

triangulation X, intended, informally, as the number of vertices per unit of

surface. In general, in case of a dense triangulation each face is traversed

by at most one segment boundary (see Fig. 4.7a), making the assignment

of vertices to segments unique and non-ambiguous.

In the case of a low density triangulation, the boundaries delimiting the

segments are very close to each other and it can happen that some faces

are traversed by more than one segment boundary (see Fig. 4.7b). These

kind of faces are multiple faces, in the sense that they are shared between

more than two segments. In this case, if the unique assignment of vertices

to segments is maintained, the resulting segmentation would often produce

disconnected patches over the triangulated surface.

One possible solution to this problem is remeshing: multiple faces are un-

folded creating new vertices that increase locally the mesh density and re-

store the connectedness of the corresponding segments.

We propose here a di�erent solution: in Algorithm 4.1.2 we allow the ver-

tices that are part of a multiple face to be assigned to all the segments that

share that face. Let's consider a cross face for the values f∗(vci) (where

vci are critical vertices and i ∈ [0, n] and n ≥ 1). Only those vertices in

a multiple face having a function value higher than each of the f∗(vci) are

assigned to all the segments σi having one of the f
∗(vci) as lower boundary.

In Algorithm 4.1.2 this is obtained at the creation of new segments, with

the code:

σ(γn)← new σ({v ∈ γn})

90 Chapter 4. The DRGSS algorithm

Figure 4.8 � Vertices with multiple membership are shown in the highlighted
areas as having a di�erent border color.

This means that all the vertices in the connected component γn are assigned

to the corresponding segment. In this way each segment will be guaranteed

to be connected, by construction.

In case a unique assignment of vertices to segments is required, the above

line should be modi�ed in:

σ(γn)← new σ({∅})

In this case each non-minimal vertex will have to `wait' until it is selected

as vc in Algorithm 4.1.1 before being (uniquely) assigned to a segment. In

contrast, in the method proposed, the initialization of a new segment with

the vertices of γn guarantees the connectedness also making the multiple

cross-faces easily identi�able.

Figure 4.8 shows an example of multiple membership of vertices in segments.

Vertices with multiple membership are shown as having a border color that

di�ers from the inside: the inside color is that of the �rst segment they

have been assigned to and the border color is that of the second segment to

which they have been assigned. Higher level of sharing (e.g. vertices shared

between three or more segments) can occur in practise.

4.1.5 Constructing the Reeb Graph

In the output graph resulting from the application of the DRGSS algo-

rithm, nodes correspond to the centroids of the identi�ed segments and

4.1. Computing the SRG and the segmentation 91

(a) (b)

Figure 4.9 � The centroid of each segment is a node (a), arcs describe adja-
cency between segments (b).

arcs represent the adjacency relations between segments, as described in

Algorithms 4.1.1, 4.1.2 and 4.1.3.

The graph is built incrementally, during contours evolution. In particular,

every time the contour of a regular candidate vertex v is updated, the

vertex v is stored in the corresponding segment. Every time a split or

merge event occurs at a vertex v, the parent segments are declared adjacent

to the segment containing the saddle v, and the same holds for the o�spring

segments. Figure 4.9 shows an example output graph.

The output graph is a simpli�ed Reeb graph (SRG), in that each node that

corresponds to the centroid of a segment represents the aggregation of a set

of distinct contours, each corresponding to a regular vertex in the mesh.

These regular nodes have connectivity 2. Each critical segment (a segment

that contains a critical vertex alone), corresponds to a graph node too. In

the case of a maximum or a minimum it will have connectivity 1, in the

case of a saddle it will have connectivity equal to m+1, being m the saddle

multiplicity.

Computing the number of loops To validate the properties of the Reeb

graphs obtained, we used the procedure described in (SAA09) to compute

92 Chapter 4. The DRGSS algorithm

the minimum cycle basis and hence the number of loops in the obtained

graph (see Algorithm 4.1.4).

The number of loops must be equal to the genus of the corresponding mesh,

which can be computed with the Euler equation (see Def. 51 and 80 in

Chap. 2):

v − e+ t = 2− 2g

where v is the number of vertices in the mesh, e is the number of edges and

t is the number of triangles.

Algorithm 4.1.4: findGraphNumberOfLoops(graph)

edgeListSize← graph.edgelist.size

VtoBeV isited ← ∅
Vvisited ← ∅
Evisited ← ∅
cycleCount← 0

vc ← reebGraph.vertexlist[0]

while size(Evisited) 6= edgeListSize

do

Vvisited ← Vvisited ∪ vc
for all edge : neighborhood(vc)

if edge /∈ Evisited
otherV ertex← getOtherVertex(edge, vc)

Evisited ← Evisited ∪ edge
if ((otherV ertex /∈ Vvisited) and (otherV ertex /∈ VtoBeV isited))
VtoBeV isited ← VtoBeV isited ∪ otherV ertex
else

cycleCount← cycleCount+ 1;

if size(VtoBeV isited) ≥ 0{
vc ← VtoBeV isited[0]

VtoBeV isited ← VtoBeV isited − vc
return (cycleCount)

4.1.6 Removing folds: saddle-maximum cancellation

Edges and vertices with multiplicity m > 1 appear during the basic contour

evolution (see Fig. 4.10). We de�ne a fold the set of simplices made up of a

connected sequence of contour vertices and edges with m = 2 terminating

in one vertex with m = 1. In Fig. 4.10c the fold is made up of the edge with

m = 2 and its two face vertices: the one with m = 2 is the fold root vertex

vr (the vertex with m = 2 in which it arrives one fold edge with m = 2,

4.1. Computing the SRG and the segmentation 93

(a) Before advancing (b) Lk+(vc, f) −
Lk(vc, γ)

(c) After advancing

Figure 4.10 � In this case both a vertex and an edge with multiplicity 2 are
produced while advancing the contour. The contour strip (in gray) is shown
for convenience only, since it is not explicitly computed.

and from which other two edges with m = 1 depart), the other with m = 1

is the fold terminating vertex v1.

If one of the vertices of the fold with m = 2 is the minimum in the contour

(i.e. it is a saddle) a split will be generated, resulting in a tiny segment,

containing a thin strip of vertices on a 'ridge' and in a graph with a noisy

branch.

When a fold is met it would be an excellent opportunity to implement a

saddle-maximum cancellation, indeed it is easy to proof that such a piece

of contour cannot generate further merge events, changing the number of

loops of the resulting graph (see Fig. 4.10c).

As an optional, optimization step in the DRGSS algorithm, we implement

this saddle-maximum cancellation in that we reorder the value of f for the

fold vertices, in ascending order, from the fold root to the fold terminating

vertex.

The procedure takes as maximum value, the value of the fold root, and as

minimum value :

fmin = fvneigh
+ ε

where fvneigh
is the function value of the vertex having higher value of f

between all the vertices in the 1-neighborhood of the fold vertices (the root

excluded).

Then all the n fold vertices are labelled from i = 1 for the fold root, to i = n

94 Chapter 4. The DRGSS algorithm

(a) SRG has 144 nodes (b) SRG has 248 nodes

Figure 4.11 � The hand (genus 5) with the saddle-maximum cancellation has
a SRG with 144 nodes (a); the one without the saddle-maximum cancellation
has an SRG with 248 nodes (b). Both graphs have 5 loops.

for the fold terminating vertex, and they are assigned a new f value. Given:

δ = (froot − fmin)/(n− 1)

then each fold vertex vi will be re-valued as:

fnew(vi) = froot − (i− 1)δ

with i ∈ [1...n]. It is easy to see that the fold root vertex maintains its

original value. After re-assigning the values, the entire fold - up to vr
excluded - is removed from the contour γ.

This fold removing technique can be applied also to folds that are longer

than the example in Fig. 4.10c, also containing multiple saddles and max-

ima.

This fold removing step is optional in the algorithm, and it can be excluded

in the case the application is required to detect and not to �lter also this

kind of features.

As shown in Fig. 4.11 in case of a mesh with a relative high genus, with

respect to the number of vertices, applying or not the saddle-maximum

cancellation could lead to a completely di�erent number of nodes in the

SRG. Nevertheless, also in this case, both the graphs have the same number

of loops (equal to the genus of the mesh).

4.2. Scalar function 95

4.1.7 Computational complexity

In the DRGSS algorithm, the 1-skeleton of X is represented by a list of

vertices. Each vertex v has a set of attributes: the position in 3D space, a

reference to the edges in St(v), the value of the scalar function in the vertex

(f(v)). The time complexity of the overall algorithm is thus of O(n log n),

where n is the number of vertices in X. It is essentially the same of the

algorithm presented in (CMEH+03) because per each vertex the algorithm

performs at most a constant number of operations on contours, each repre-

sented by a list of vertices and edges. Using a balanced search tree (CLRS09)

for such lists, as suggested in same work above, each operation can be per-

formed in logarithmic time.

In this work we preferred representing contours with hash tables, in which

each entry has a vertex v as its key and St(v, γ) (see Def. 103) as its value.

In an hash table, the insert and delete operations are performed in constant

time whereas the time required for the search operation depends on the load

factor : it can take linear time in the worst case, when the load factor is

large enough. However, in practice, an appropriate value of the load factor

can make the search operation in hash tables to be performed in constant

time (CLRS09), at the expense of some extra memory.

4.2 Scalar function

The DRGSS algorithm can receive in input any kind of general scalar func-

tion f . As it will be described in detail in Sec. 5.1.2, we tested the algorithm

with di�erent kinds of scalar functions: height functions, intrinsic functions

and also random functions. As we have seen in Chap. 2, di�erent f functions

lead to di�erent Reeb graphs (see Fig.4.12), although always compliant, un-

der the hypothesis that f is general, with the Critical Point Theorem (see

Thm. 5 in Chap. 2) and the Loop lemma (see Lemma 6 in Chap. 2).

However our aim was not to compare the functions in terms of their e�ec-

tiveness in representing the shape. Contributions on this subject can be

found in (NGH04), (LLT03), (BMMP03).

96 Chapter 4. The DRGSS algorithm

(a) f = x (b) f = y (c) f = z

Figure 4.12 � SRG and segmentation for the double torus with f growing
normal to each of the three Cartesian axes: f = x (a); f = y (b); f = z (c).

4.3 Implementation

In this section we analyse some aspects concerning the DRGSS implemen-

tation. The representation of the SRG together with the corresponding

segmentation is the main output Σ of Algoritm 4.1.1. The SRG contains

one node per each critical segment plus one node per each regular segment,

with arcs representing the adjacency relations. The SRG is also embedded,

in the sense that every SRG node is assigned a position in the ambient space

of X: each node corresponding to a critical segment will share the same

position of its critical vertex, while each node corresponding to a regular

segment is assigned the centroid of the vertices belonging to the segment

itself. Fig. 4.13 shows an example of SRG constructed and embedded in the

way described.

4.3. Implementation 97

(a) (b)

Figure 4.13 � Each node in the SRG is assigned a position: that of the cor-
responding critical vertex or the centroid of the corresponding segment (a).
Arcs between nodes describe adjacency relations (b).

4.3.1 Implementation of the algorithm

We used a 100% pure Java implementation, developed inside the Eclipse

SDK (Fou12) environment, using Java 1.5. We did not use any third-party

Java libraries. The DRGSS algorithm has been built using some classes of

the SOAM project (Pia12) and is composed of a DRGSS algorithm engine

that can be called with some possible use cases and corresponding view

models, as described below.

• The �rst is a Canvas repaint structure, triggered by an observer/ob-

servable pattern between the Algorithm (i.e. Controller) and its View,

in order to monitor the segmentation and SRG construction. It is also

possible to export the generated intrinsic f function, the produced

segmentation and the SRG as separate PLY �les (see Sec. 4.3.1.2).

• In the second use case the engine is called to segment and generate

SRG, for a given mesh, for all the possible intrinsic functions gen-

erated choosing each time a di�erent vertex as starting point (see

Sec. 5.1.2.2), until all mesh vertices have been chosen.

• In the third use case an input �le containing a list of meshes is entered

as input. The engine returns as results the SRG computation and the

98 Chapter 4. The DRGSS algorithm

segmentation, for all the possible variants of the intrinsic function (see

Sec. 5.1.2.2), for each of the input meshes.

• In another use case the engine accepts as input a PLY mesh having

a quality property. This quality property is read in input as a given

function value, that is used for mesh segmentation and SRG compu-

tation.

The DRGSS algorithm does not need mesh-dependent parameters. The

only mesh parameter used is the one relative to the intrinsic function: ε

(see Sec. 5.1.2.2). It is not dependent on the type of mesh and has been set

to 0.05 as in (TVD08).

Furthermore it is possible to pass to the algorithm some parameters like:

starting vertex index, time delay (for visualization purposes), PLY function

export, casual starting vertex, reply function, and others visualization pa-

rameters. These parameters can be modi�ed at runtime in the DRGSS user

interface and can also be passed to the DRGSS algorithm as a property

�le. This can be particularly useful during the analysis of a mesh. This

approach avoids the recompilation of the code.

The described implementation could be further optimized, as, in this as-

signment, our main interest was in the validation of the algorithm.

All the experiments have been run on commodity hardware.

4.3.1.1 The input PLY

The proposed algorithm takes advantage of the possible f function valued

at mesh vertices and passed as quality attribute in the PLY �le. In the

case the PLY �le does not contain quality values, the algorithm generates

a function f , as described in Sec. 5.1.2.2.

generality In order to guarantee the f generality, in the implementation

proposed, we did not explicitly perturbed f , but instead we introduced a

comparator, using the Vertex object hashcode, that is unique, to disam-

biguating between vertices having the same value of f .

4.3. Implementation 99

4.3.1.2 Producing Reeb graph and segmentation as PLY

As a result of the Reeb graph computation and mesh segmentation, two

outputs are produced in ply format:

• mesh-rg.ply : the ply �le containing the simpli�ed Reeb graph. Reeb

graph nodes are saved as vertices of the ply �le, instead Reeb graph

edges are stored as degenerate faces.

• mesh-segmentation.ply : the ply �le containing the mesh vertices and

triangles, with a quality property associated to the vertices, represent-

ing the label of the corresponding segment. Each vertex is associated

to the �rst segment in which the vertex has been segmented. Multiple

membership is not stored in this ply �le, principally because existing

viewers can't handle such kind of multiplicity, but if it would be the

case, this will be a trivial extension.

Chapter 5

Experimental evidence

Contents

5.1 Test description . 101

5.2 Results . 108

To verify the correctness and e�ectiveness of the DRGSS algorithm we car-

ried out extensive tests with a great number of meshes having di�erent

genus and density. We present here some of the most relevant results of our

tests. Most of the meshes have been taken from on line repositories such as

the AIM@Shape database (Fal04) and the SHREC12 database (LVB+12).

They range from genus 0, both with great and small number of vertices, to

genus 22 with over ten thousand vertices.

In Sec. 5.1 the proposed testing strategy is described and Sec. 5.2 illustrates

and discusses the results of this work.

5.1 Test description

To validate the DRGSS algorithm we planned a test set considering a test

space of multiple dimensions:

• di�erent scalar functions,

• increasing complexity in terms of shape genus,

102 Chapter 5. Experimental evidence

• di�erent mesh densities, even for the same shape.

5.1.1 Number of loops of the SRG

An SRG is validated if it has a number of loops that is equal to the genus of

the considered shape. To count the number of loops of the graph, we used

the procedure described in (SAA09). We computed the minimum cycle

basis and hence the number of loops in each of the obtained graphs. On

the other hand, we compute shape genus as:

g = 1− 1

2
(v − 1

3
e) (5.1)

where v is the number of vertices in the mesh and e is the number of

edges. Eq. 5.1 derives from the Euler equation (see Def. 51 and Lemma 4

in Chap. 2).

5.1.2 Scalar function

The DRGSS takes as input a triangulated mesh and a general scalar function

f . This means that no conditions are posed on the input function except its

generality. One of the dimensions on which to test the DRGSS was thus in

the di�erent classes of f . The aim was of choosing the most representative

ones, remembering that di�erent functions take to di�erent graphs, even if

each of them must have a number of loops equal to the shape genus g.

In this section the input functions used to test the algorithm are described.

5.1.2.1 Height function

The height function has been extensively used in literature (see for instance

(TIS+95; dBvK97; SKK91; BFS00; WXS06; PSBM07) among the others); it

is the immediate choice, in particular in case of natural objects (e.g. terrain

models (BFS00), (TIS+95)). The level lines of f∗ (see Eq. 2.6 in Chap. 2)

de�ned by an height function correspond to the intersection between the

mesh and a plane normal to the height vector.

This kind of scalar function leads to a graph that is invariant to translations

and uniform scaling, but it is not invariant to rotations and deformations.

The value of this f for Reeb graphs construction must thus be evaluated

5.1. Test description 103

(a) f = x (b) f = y (c) f = z

Figure 5.1 � The three height functions corresponding to the Cartesian axes
in R3, mapped on the double torus.

with respect to the speci�c application (e.g. it would not be good for shape

matching (BMMP03)). We chose the three height directions corresponding

to the Cartesian axes in R3. In Figure 5.1 three examples of height function

are given for the double torus.

5.1.2.2 Intrinsic function

A scalar function mapped on a shape is called intrinsic if its values do

not change in case of translation, scaling, rotation and deformation of the

shape. This kind of function produces Reeb graphs that are homeomorphic

to each other when applied to a same shape in di�erent poses or at di�erent

magni�cations.

Among the available intrinsic functions (e.g.(LV99), (MP02a), (BMMP03),(TVD08)),

we chose to test the DRGSS algorithm with a variant of the function pro-

posed by (TVD08), as described in (BP12). This choice was motivated by

the fact that this function starts with an heuristic (the starting point is

chosen at random among mesh vertices, see below). This particular aspects

gives us the opportunity for testing many scalar functions at once: in our

experiments we chose at each run, for each mesh, a di�erent vertex as the

starting point, until all mesh vertices have been selected. In this way we

104 Chapter 5. Experimental evidence

Figure 5.2 � An intrinsic function mapped on the double torus

tested the DRGSS algorithm with all the existing variations, for each mesh,

of this intrinsic function, resulting in a broad test coverage.

To compute the intrinsic function we used the concept of geodesic distance

on a mesh (NKI02), meant as the length of the shortest path connecting

each two vertices. Another fundamental de�nition used is that of diameter

vertices, that is a pair of vertices that are at the maximum geodesic distance

on the mesh.

Similarly to (TVD08), in our implementation, the f function is computed

through the following steps:

• �nd the two diameter vertices and compute the two distance functions

(δ1, δ2) from these points, with the Dijkstra algorithm (Dij59): each

function will assign to each vertex in the mesh its geodesic distance

from the corresponding point;

• �nd the local extrema, i.e. the local maxima and minima of the two

distance functions (δ1, δ2);

• identify the feature points (FP) by merging local extrema with some

tolerance;

• the resulting function is computed as the geodesic distance between

each vertex and its closest FP.

5.1. Test description 105

Algorithm 5.1.1: findDiameterVertices(mesh)

maxDistance← 0

vp ← null

v ← random

vn ← �ndFarthestVertex(v)

while vn 6= vp
do
vp ← v

v ← vn
vn ← �ndFarthestVertex(v)

maxDistance← distance(vn, v)

return (vn, v,maxDistance)

Diameter Vertices and Maximum Distance The algorithm chooses

a starting vertex at random in the mesh and sets it as the currentVertex.

Then it �nds the farthest vertex from the currentVertex, with the Dijk-

stra algorithm (�ndFarthestVertex), and sets it as the currentVertex. The

procedure is repeated until a �xed pair of vertices is met, namely when cur-

rentVertex and its farthest vertex coincide in two consecutive loops. These

are the diameter vertices v1 and v2 (see Figure 5.3a).

This algorithm is a variation of the one de�ned in (LV99), in that we choose

to continue the iteration until it reaches a stable pair of vertices, in the above

sense (see Algorithm 5.1.1), while only two iterations are performed in the

original version, after the random selection.

Each mesh has its speci�c con�guration of diameter vertices that, in gen-

eral, changes when changing the starting point. In particular if the mesh

shows a symmetry but does not have a principal diameter (like in the case of

the torus), a new starting point will often identify a new couple of diameter

vertices. On the other hand, if the mesh is elongated (i.e. it has a principal

diameter, like in the case of the bunny or in the case of the hand), iterating

until a stable pair of vertices is found will result in quite the same couple

of diameter vertices, also choosing each time a di�erent starting point. Ta-

ble 5.4 shows the number of di�erent con�gurations of diameter vertices for

some of the meshes of the test set.

106 Chapter 5. Experimental evidence

The two diameter vertices de�ne two distance functions δ1 and δ2 being the

geodesic distances from vertices v1, and v2 respectively.

computing f Following (TVD08), we identify the feature points (FP) of

the mesh by softly merging the local extrema of the two distance functions δ1

and δ2. Local extrema (i.e local minima and maxima) of the two functions

are merged into a common feature point if they are not farther away than

a certain prede�ned tolerance, otherwise they are simply discarded (see

Figure 5.3b and 5.3c).

Algorithm 5.1.2: findFP(v1, v2)

V1 ← �ndLocalExtrema(v1)

V2 ← �ndLocalExtrema(v2)

FP ←mergeLocalExtrema(V1, V2, ε)

return (FP)

(a) (b) (c)

Figure 5.3 � Diameter vertices (in orange) (a), local maxima and minima of
the two distance functions δ1 and δ2 (in blue and purple) (b), the feature
points (in red) (c).

As seen also in (MP02a), (KLT05) and (TVD08), typically feature points

are located on the most prominent components of the mesh (see Fig. 5.4a).

The function of choice is de�ned as the geodesic distance between each

vertex and its closest feature point (see Fig. 5.4b), normalized w.r.t. the

maximal vertex distance on the mesh to the nearest feature point. We also

5.1. Test description 107

(a) (b)

Figure 5.4 � Feature points (in red) (a) and the resulting distance function δ
(b) for the hand with genus 5.

ensure that the function is general (i.e. no two vertices have the same value)

while computing the geodesic distances.

5.1.2.3 Random function

To test the correctness of the DRGSS algorithm, we chose to introduce

in the test set also meshes with the random scalar function. This is the

worst function in terms of number of critical points since it has a great

number of local minima, maxima, saddle points, also degenerate ones and

it will generate noisy simpli�ed Reeb graphs. For example, in Fig. 5.5 the

function has 2367 critical points in a mesh of 3070 vertices.

For these reasons, the random function is a good test case for the topo-

logical correctness of the algorithm, because also under these conditions,

the DRGSS must produce a graph that has a number of loops equal to the

shape genus.

5.1.3 Shape Genus

We chose the meshes in the experiments with the aim of covering di�erent

levels of topological complexity: shapes in the test set range from genus 0 up

to genus 22. We used public datasets, taking meshes from the AIM@SHAPE

database (Fal04) and from the SHREC12 database (LVB+12) (in particular

here we selected the triangulated closed surfaces).

108 Chapter 5. Experimental evidence

Figure 5.5 � A random function mapped on the double torus

5.1.4 Mesh density

Mesh density, intended intuitively as the number of vertices per unit of sur-

face, is a relevant parameter for a segmentation and Reeb graph extraction

algorithm, as explained in Sec. 4.1.4.1. To test the e�ectiveness of the repre-

sentation technique here proposed (the augmented ULS), we put in our test

set di�erent versions of the same mesh, that have been progressively either

coarsened via vertex decimation, either thickened with surface subdivision

(i.e. two common mesh processing techniques (CNR12)). Meshes in the

test set thus range from a few hundred to several thousand vertices.

Furthermore we also added some noise (intended as roughness of surfaces

(CNR12)) to some of the meshes, the ones identi�ed with Noisy in the

Tables 5.2 and 5.3.

5.2 Results

With all the variants of the mapping function described in 5.1.2 and, for

each of the meshes shown in Tables 5.1, 5.2, 5.3, the proposed algorithm

computes the SRG corresponding to the correct genus, also when the scalar

function is the random function (see Tab. 5.3).

5.2. Results 109

26620 vertices

403 vertices

Figure 5.6 � Progressive coarsening of the same mesh (Genus 3) from 26620
vertices to 403 vertices: a smaller number of vertices causes an increase of
multiplicity of edges and vertices in contours.

Some of the meshes in the test set are also illustrated in Figure 5.8, together

with their SRG and the segmentations obtained.

5.2.1 The role of multiplicity

The experiments (see Fig.5.6) show that the statistics of the multiplicity of

edges and vertices in contours, as described in Sec. 4.1.2.1 are, in general,

proportional to the coarseness of the triangulation: the more a mesh is

coarse, the more contours will show edges and vertices multiplicity.

Figure 5.6 shows the statistics for a shape with genus 3, used for the tests,

that has been progressively coarsened via vertex decimation. The diagram

on the right in Figure 5.6 shows the multiplicity of vertices in contours,

measured in relative terms - as the fraction of all vertex occurrences in con-

tours, for the same test shape, triangulated at di�erent levels of coarseness.

It is evident that the occurrence of vertices with multiplicity higher than 1

steadily increases as the mesh becomes coarser. In particular, the fraction

of vertices with m = 3 in a mesh with 403 vertices is more than three orders

of magnitude larger than the corresponding fraction in a mesh with 26620

vertices. This means that, statistically, the multiplicity of vertices and edges

is inversely proportional to mesh density and directly proportional to genus.

Thus, the most interesting test cases, in terms of higher multiplicity, will

be found in meshes having high genus and low vertices density. For this

reason we took care of inserting into the test set a relevant number of such

110 Chapter 5. Experimental evidence

meshes.

Table 5.1 � Some of the meshes used to check the validity of the DRGSS
algorithm, with their genus and number of vertices.

Mesh Name Vertices Genus

Horse 2450 0

Bunny 3052 0

Dinopet 4500 0

Torus 359 1

Double Torus 319 2

Genus3 782 3

HandG5 4037 5

HandG8 3639 8

Heptoroid 10851 22

5.2.2 Robustness to di�erent mesh densities

We tested the DRGSS algorithm with meshes having di�erent densities. We

also decimated and thickened the same meshes as in the case of the double

torus and the Genus3 of Table 5.2.

To prove the noise resistance of the SRG, we added, with (CNR12), random

disturbance on the vertices of some meshes (the ones indicated in the latter

table with the Noisy attribute), making their surfaces rougher.

In all the test cases the DRGSS produced a correct Reeb graph. As can

be seen also in Fig. 5.7, DRGSS proved to be robust to variation in mesh

density.

5.2.3 The random function

We tested the DRGSS algorithm also with a set of meshes having f =

random. In Table 5.3 are some of the meshes of the random test set,

together with their number of vertices and genus.

Also in the case of the random function, for all of the meshes of the test

set, the algorithm computed a graph with a number of loops equal to the

genus of the shape.

5.2. Results 111

(a) 12286 ver-
tices

(b) 766 vertices (c) 190 vertices

Figure 5.7 � The original, high-resolution mesh with 12.286 vertices (a), two
increasingly decimated versions with random disturbance added, with 766
vertices (b) and 190 vertices (c).

5.2.4 Intrinsic function variants

Considering the variants of the intrinsic function (see Sec. 5.1.2.2), each

mesh has its speci�c con�guration of diameter vertices that, in general,

changes when changing the starting point. Results show that if the mesh

has a symmetry but does not have a principal direction (like in the case of

the torus), choosing at each iteration a di�erent starting point will result in

many di�erent couples of diameter vertices. On the other hand, if the mesh

is elongated (i.e. it has a principal direction, like in the case of the bunny

or in the case of the hand), choosing at each iteration a di�erent starting

point will result in a few distinct couples of diameter vertices. Table 5.4

shows the number of di�erent con�gurations of diameter vertices for some

of the meshes of the test set.

112 Chapter 5. Experimental evidence

(a) Genus 0 (b) Genus 0 (c) Genus 0

(d) Genus 1 (e) Genus 3

(f) Genus 5 (g) Genus 22

Figure 5.8 � A few meshes in the test set: Reeb graphs are painted in black,
segmentations are highlighted with di�erent vertices colors. Multiple vertex
memberships are not represented in these images.

5.2. Results 113

(a) segmenta-
tion for f = z

(b) SRG for
f = z

(c) segmenta-
tion for f = x

(d) SRG for
f = x

(e) segmenta-
tion for f in-

trinsic

(f) SRG for f
intrinsic

(g) segmenta-
tion for f ran-

dom

(h) SRG for f
random

Figure 5.9 � Di�erent segmentations and Reeb graphs for the same mesh with
di�erent scalar functions f .

114 Chapter 5. Experimental evidence

Table 5.2 � These are some of the variants, in terms of densities, of the meshes
on which the DRGSS algorithm has been tested: the double torus mesh with
vertices ranging from 12.286 to 190 and the Genus3 mesh with vertices ranging
from 26.620 to 412. In some meshes (indicated in the table with Noisy in the
name) also random disturbance has been applied (always with (CNR12)).

Mesh Name Number of vertices Genus

Double Torus

12286

2
3070
766
382
190

Double Torus Noisy
766

2382
190

Genus3

26620

3

6652
3324
1660
828
412

Table 5.3 � These are the mesh tested with the random function. In all the
cases the number of loops of the obtained SRG was equal to the mesh genus.

Mesh Name Number of vertices Genus

Bunny 3052 0

Double Torus

3070

2
766
382
190

Double Torus Noisy
766

2382
190

Genus3
828

3782
412

HandG5 4037 5

HandG8 3639 8

Heptoroid 10851 22

5.2. Results 115

Table 5.4 � Here following, for each mesh of the test set, it is showed the
resulting number of all the possible function variants that have been discovered
and used for testing the DRGSS algorithm, on each mesh. Variants have been
discovered taking, at each run, a di�erent starting point in order to �nd mesh
diameter vertices and then mesh feature points.

Mesh Name Vertices Number of variants of the intrinsic function

Dinopet 4500 2

Bunny 3052 2

Horse 2450 6

Torus 359 27

Double Torus

12286 41
3070 28
766 13
382 8
319 5
190 2

Double Torus Noisy
766 11
382 5
190 2

Genus3

26620 1376
6652 496
3324 95
1660 39
828 28
782 32
412 11

HandG5 4037 2

HandG8 3639 2

Heptoroid 10851 96

Chapter 6

SRG for human striatum

Contents

6.1 Stating the problem . 117

6.2 Striatum shape processing 120

6.3 SRG-based Registration of Striatal Meshes 122

6.4 Results . 123

6.5 Conclusions . 128

The DRGSS algorithm has been applied in medical imaging, using the SRG

as graph-like shape descriptor of the human striatum (i.e. a part of the

brain, see Fig. 6.1).

We present in this chapter the image and mesh processing pipeline that,

starting from 3D T1-weighted MR images, extracts the SRG of the striatal

shapes and uses it for mesh registration, decomposition and shape compar-

ison. Further details about this application can be found in (PBP+12).

In literature, at the best of our knowledge, there are no previous works

using the Reeb graph of the striatum for such purposes.

6.1 Stating the problem

Human striatum is an highly innervated group of nuclei in the brain (LSB01)

(see Fig 6.1). It is of great interest from a medical point of view because it

118 Chapter 6. SRG for human striatum

Figure 6.1 � The human striatum (Wik09).

is implicated in both motor processes and in a number of non-motor pro-

cesses such as cognitive functions, learning, attention, memory, motivation,

reward, and addiction (BBS+03; GPO08; KHN+07). Striatum is composed

by three regions: caudate, putamen, and nucleus accumbens. This subdi-

vision is important because of the di�erent roles (Seg08) of each region.

In particular, striatal structures are of high interest in diseases in which

cognitive functions are impaired (like schizophrenia).

The three regions of the striatum have been studied with di�erent tech-

niques: both volumetric studies (BSB+03; LSB01) and local and global

morphometric techniques (VGS00; KHN+07).

In the past, deformation and surface based methods have been applied:

usually they require the establishment of the point to point correspondence

among surfaces (RWSN09). Computing the point to point correspondence is

computationally demanding (except if ad-hoc strategies are used (PZT+11))

and it often requires remeshing. On the other hand, these methods provide

spatially localized shape information that is relatively straightforward to

interpret.

In recent years, a set of global shape approaches have been used in medical

imaging for the compact representation and analysis of neuroanatomical

shapes: medial representation (SSP+03), spherical harmonic description

(HLD+06), Laplace-Beltrami eigenvalues (SLK+08; RWSN09).

As we have seen in previous chapters, Reeb graphs have an interesting

property: they are more robust than other skeletal descriptors since they

are less sensitive to small and localized changes on the mesh (BMMP03;

SLK+08).

In this application we will use the SRG as a compact descriptor for the

6.1. Stating the problem 119

striatal shapes for the purposes of automatic inter-subject mesh registra-

tion, automatic mesh decomposition, and for the inter-group striatal shapes

comparison.

6.1.1 Automatic inter-subject mesh registration

Surface-based registration techniques are computationally expensive in that

they imply establishing the point to point correspondence among the ver-

tices of the meshes.

In this work we propose a SRG-based registration technique, that uses the

SRG nodes, instead of the mesh vertices, to register a group of meshes.

6.1.2 Automatic mesh decomposition

Striatal sub-segmentation is important because each striatal region is di�er-

ently a�ected in diseases like schizophrenia (BSB+03). The sub-segmentation

of the striatum is a challenging task, in that the signal intensity alone is

not su�cient to distinguish among striatum sectors (FSB+02), and man-

ual or semi-automatic methods are still regarded as the gold standard. We

used the DRGSS algorithm to automatically decompose the striatal mesh

into its three primary anatomical regions (caudate, putamen and nucleus

accumbens). The proposed sub-segmentation does not require an a-priory

knowledge of the striatal surface representation (e.g. number of mesh ver-

tices).

6.1.3 Inter-group striatal shapes comparison

In this application we used the SRG as shape descriptor to detect shape

variations of the striatum between di�erent groups of subjects. The objec-

tive was to detect and analyse neuroanatomical morphological di�erences

(both within and between groups).

120 Chapter 6. SRG for human striatum

6.2 Striatum shape processing

6.2.1 The dataset

In this application we used 3-D T1-weighted MR brain images of 40 subjects:

22 normal controls, and 18 neuroleptic-naïve patients.

MRI brain scans were acquired using a 1.5 T Siemens Magnetom (Erlangen,

Germany) as detailed in (LTS+01). The voxel size of the MR images was

1.5× 1.5× 1.0 mm3 and the size of the images varied from 256× 256× 150

to 256 × 256 × 170 voxels. The triangulated meshes have been obtained

from the MRI volumes by non-rigid deformation of the same triangulated

surface model, using an interactive 3D software tool (LRMT99; KHN+07).

Finally the obtained striatal shapes were decomposed into two mesh sur-

faces representing the left and right striatum separately (see (PBP+12) for

details).

6.2.2 Computing SRG

The DRGSS algorithm was applied to each mesh to obtain a simpli�ed Reeb

graph (SRG) and a mesh partitioning. To best �t the DRGSS algorithm to

the striatum problem we adopted some special provisions, as described in

the following paragraphs.

6.2.2.1 The scalar function

In this speci�c application we used a variant of the intrinsic function de-

scribed in (BP12). In its original implementation indeed, this function

is computed applying an heuristic: a starting point is selected at random

among mesh vertices to �nd the diameter vertices and this choice in�uences

the computation of the scalar function f and thus the SRG. Applying the

DRGSS to the striatum problem required to make the SRG independent

from this random choice and uniquely de�ned when applied to the same

mesh. The devised solution was to choose the starting point corresponding

to the maximal distance between the diameter vertices.

6.2. Striatum shape processing 121

(a) (b) (c)

(d) (e) (f)

Figure 6.2 � Vertices colors represent increasing values (from dark red to dark
blue) of the f function; feature points are magni�ed and represented in red.
(a). Contours start at each function minima (b) and they are evolved in the
direction of ascending values of the f function (c). Two contours merge in a
new one (d). In this application each node in the SRG is either a minimum
point or the centroid of a segment (e), arcs of the SRG describe adjacency
relations (f).

122 Chapter 6. SRG for human striatum

(a) (b) (c)

Figure 6.3 � SRG obtained by applying the proposed algorithm to three ex-
amples of striatal shapes.

6.2.2.2 The segmentation

Once the mesh has been swept, the SRG is built assigning a node to each

segment (nodes are positioned in segments centroid). Graph arcs encode

adjacency relations between segments. The graph is completed by the nodes

representing the function minima, together with an arc between each mini-

mum and the centroid of the segment generated by the contour started at

that minimum.

The selected f may have several local maxima which generate extra branches

in the Reeb graph (see Fig. 6.3). But all the striatal meshes have genus

0, thus their Reeb graphs are guaranteed to contain no loops. All extra

branches in the Reeb graph have a common root and thus the corresponding

segments could be safely merged with this root segment. This also involved

recomputing the balanced centroid of the root segment (as a consequence

of the merging of the extra segments). As a result of this procedure, all the

obtained SRG were made of 5 nodes and 4 edges.

6.3 SRG-based Registration of Striatal Meshes

The striatal meshes were registered using an iterative algorithm based on

a 7-parameter linear registration by matching their SRG descriptors using

Full Procrustes Superimposition (Ken89) (FPS). The algorithm is composed

of three consecutive steps:

• Step 1: One of the N graphs xi, is randomly selected as the refer-

ence graph xr. All other graphs xi are registered to this one by mini-

6.4. Results 123

mization of the sum of square di�erences
∑V

j=1 ‖xrj − (siRixi,j + ti)‖2
w.r.t. si, ti,Ri using FPS. Here V = 5 is the number of nodes in each

graph; xrj and xi,j are the 3D coordinates of the j-th node of the

reference graph and of the i-th individual graph, respectively; si, ti,

Ri are the isotropic scaling factor, translation vector, and rotation

matrix, for the i-th graph respectively. After this step each graph

xi is transformed (with the T (s̃, t̃, R̃)) in a graph x̃i aligned to the

reference graph xr.

• Step 2:The registration accuracy might be signi�cantly impaired if the

reference graph xr is not a good representative of the mean SRG in

the dataset. For this reason a second iterative registration routine is

implemented:

(i) The routine computes the mean shape x̃m (as the arithmetic

mean of the previously registered graphs x̃i).

(ii) Graphs (x̃i) are aligned to x̃m by minimizing∑V
j=1 ‖x̃mj − (s̃iR̃ix̃i,j + t̃i)‖2 w.r.t. s̃i, t̃i, R̃i using FPS.

(iii) The mean shape x̃m is updated and the transformation

T (s̃, t̃, R̃) is composed to the one calculated at the previous

stages.

Points (ii) and (iii) are repeated until there are no signi�cant im-

provements to the SRG superimposition or a maximum number of

iterations is achieved.

• Step 3: The composed transformation T (s̃, t̃, R̃) that best matches

each SRG to the mean graph shape is applied to the corresponding

original meshes, from which each SRG was extracted.

6.4 Results

6.4.1 SRG-based Registration of Striatal Meshes: a quanti-

tative assessment

We tested the SRG-based registration routine described in Section 6.3 for

the linear alignment of striatal surfaces (left and right striatum separately).

124 Chapter 6. SRG for human striatum

To make a quantitative comparison with the traditional mesh-based ap-

proach, the same striatal meshes were also linearly aligned to each other

with the same method illustrated in Section 6.3 but applied to the whole

mesh. In this more traditional approach the linear transformation is ex-

tracted using all the vertices of the mesh. This transformation is then

applied to the corresponding SRG for comparison.

We compared the SRG based registration also in respect to a second surface-

based registration routine, similar to the one in (KHN+07): a mean mesh

was calculated and all the individual meshes were a�nely registered to that

using Arun's method (AHB87); the mean mesh was �nally registered back

to the previously (a�nely) registered meshes using again (AHB87). Exam-

ples of the SRG and striatal meshes, prior and after registration, are shown

in Fig. 6.4.

Since a ground truth for the striatal surface registration was not available,

we quantitatively compared the results of the SRG-based registration of stri-

atal meshes to the aforementioned (using FPS and Arun's method) more

traditional surface-based methods. Results were quantitatively validated

using the Hausdor� Distance (HD) (HKR93) (see Table 6.1). This provides

a measure of the maximum symmetrical distance between two surfaces and

thus can be used to validate the surface registration. Particularly, two mea-

sures based on the HD were computed:

• HD1: mean of the HD computed between each registered surface and

the mean surface mesh. HD1 can be interpreted as a measure of the

dispersion of the registered surfaces as compared to the mean shape,

and therefore as a measure of the remaining mis-alignment.

• HD2: mean of the HD computed for each mesh with respect to each

other mesh. HD2 can be interpreted as a measure of the mean max-

imal di�erence between each pair of surfaces in the database (after

their alignment), and therefore also as a measure of the shape vari-

ability within the given dataset.

Using the SRG we obtained a registration accuracy that was qualitatively

(see Fig. 6.4) and quantitatively (as measured by the HD, see Table 6.1)

comparable to, and in some cases outperforming, the registration accuracy

obtained by the surface-based approaches. The surface-based registration

algorithms estimate optimal registration parameters in presence of point

6.4. Results 125

Table 6.1 � Accuracy of the SRG-based registration compared to the surface-
based registration. The accuracy of the striatal mesh registration was evalu-
ated with two measures derived from the Hausdor� distance.

SRG-based surface-based
FPS FPS Arun

Left Right Left Right Left Right

HD1 [mm] 3.4751 2.9124 3.4187 3.0510 3.4264 3.1653

HD2 [mm] 4.8307 4.1326 4.8512 4.3999 4.9386 4.6012

correspondence, but this point correspondence is computationally demand-

ing, especially for dense surfaces, and it often requires remeshing. Remesh-

ing could in turn in�uence shape comparisons done on surfaces (RWSN09).

Our experimental results suggest that in case of 7-parameters linear motion

the SRG is a good descriptor for doing mesh registration. This SRG-based

registration only requires triangulated closed meshes and it is not limited

to meshes having the same number of vertices. The implications of these

results might thus be extended to shapes other than the human striatum,

although further testing is required.

6.4.2 SRG-based Surface Decomposition: a qualitative as-

sessment

The automatic SRG extraction and mesh decomposition provides three dis-

tinct mesh sectors from each striatal surface. By visual inspection, results

of the mesh decomposition were consistent within (left and right striatum)

and between subjects, for the whole database. An example of mesh decom-

position produced by our pipeline is depicted in Fig. 6.2.(e).

A probabilistic map of the resulting striatal decomposition was then ob-

tained by calculating the probability of each surface vertex to be assigned

to each mesh sector in the whole database. This mesh decomposition into

three sectors corresponded to the anatomical sub-segmentation of human

striatum into nucleus accumbens, caudate and putamen (depicted in Fig. 6.5

in violet, green and red colors, respectively).

126 Chapter 6. SRG for human striatum

(a) (b) (c)

(d) (e) (f)

Figure 6.4 � A comparison between the SRG-based and surface-based regis-
tration performed on the whole database of 40 subjects. In the �rst column,
striatal meshes in the native space (a) are shown with their corresponding
SRG (d). In the second column, the SRG in the native space (d) are aligned
by SRG-based registration (e) and the obtained transformations are applied
back to the corresponding meshes (a) to obtain (b). In the third column,
meshes in the native space (a) are aligned by a surface-based registration us-
ing FPS (c) and the obtained transformations are applied to the corresponding
SRG graphs (d) to obtain (f).

6.4. Results 127

(a) (b) (c) (d)

(e)

Figure 6.5 � In this �gure it is shown a probabilistic map, for the left and
right striatal separately, of the mesh decomposition, on the whole database.
Meshes are depicted in frontal (a), posterior (b), and lateral (c and d) views.
Maps were obtained by calculating the probability of each surface vertex to be
assigned to each mesh sector. It is easy to see how the mesh decomposition of
the striatal shapes into three sectors actually corresponds to the anatomical
sub-segmentation of human striatum into nucleus accumbens (violet), caudate
(green) and putamen (red).

6.4.3 Inter-group comparison

Fig. 6.7 shows the mean SRG in schizophrenia and in control groups. The

analysis of the mean SRG obtained showed that the SRG descriptor is

sensible to mesh variations. The use of simpli�ed Reeb graphs as a tool

for studying the intra-group shape variability (or for discriminating among

groups based on their shapes) has not been explored quantitatively, even if

these results inspires further investigations on the use of the SRG descriptor

for the detection and analysis of neuroanatomical morphological di�erences

within and between groups.

6.4.4 Stability of the SRG to Mesh Resolution

Applying the SRG algorithm to meshes progressively decimated we can see

that the resulting segmentation is stable, and the corresponding SRG are

consistent (see Fig. 6.6).

128 Chapter 6. SRG for human striatum

(a) (b) (c) (d) (e)

Figure 6.6 � The SRG is robust to mesh resolution. These are SRG of the
same mesh progressively decimated: 3293 vertices (a), 1647 vertices (b), 824
vertices (c), 413 vertices (d), 207 vertices (e).

6.5 Conclusions

The results presented in Sec. 6.4.1 show that the registration obtained

via SRG is qualitatively comparable and quantitatively (as measured by

the Hausdor� distance) outperforming the surface-based registration (see

Tab. 6.1), while being computationally simpler. SRG-based registration

does not require neither the computation of the point correspondence among

mesh vertices, nor is limited to meshes having the same number of vertices.

The experiments described in Sec. 6.4.2 show the e�cacy of the proposed

method for mesh partitioning: the sub-segmentation of the striatal surfaces

into caudate, putamen, and nucleus accumbens is qualitatively meaningful,

even if this method is still not quantitatively validated.

Finally, Sec. 6.4.3 shows that, despite its compactness, SRG can be used as

a compact descriptor for group speci�c mean-shapes of the human striatum.

Due to its geometrical and topological properties, the SRG is thus e�ective

as a basis for inter-subject registration, shape representation, and mesh

decomposition of striatal surfaces.

6.5. Conclusions 129

(a)

Figure 6.7 � The �gure shows the mean SRG in schizophrenia (depicted in
red) and in normal controls (depicted in black) overlaid to the mean striatal
surface in frontal view. This is an illustration of the potentialities of the SRG
as a descriptor for group-speci�c mean shapes, although we are aware that
the role of this descriptor as a tool to discriminate among groups has not been
validated, and no medical conclusions should be derived from it.

Chapter 7

Conclusions

Reeb graphs are compact and faithful shape descriptors: thanks to their

topological properties, when embedded in R3, they encode both the topo-

logical and the geometric features of a shape and for this reason they have

found several applications in di�erent �elds of Computer Graphics.

Since Reeb graphs introduction in Computer Graphics (SKK91), a lot of

contributions have been proposed to �nd a computationally simpler alter-

native to the level lines of the scalar function f de�ned on the shape.

This work introduces a 1-skeleton representation of the level lines induced

on a closed, orientable, triangulated 2-manifold, by a general scalar function

f de�ned on the vertices of the triangulation.

The augmented ULS is made of existing mesh edges and vertices, with pos-

sible multiplicity m ≥ 1. Contours are ULS connected components, and

they are in the same way augmented with multiplicity. Contours proved to

have a topological correspondence (see Chap. 2) with the connected com-

ponents of the level lines induced by f on the surface. These theoretical

properties lead to the implementation of the Discrete Reeb Graph and Sur-

face Segmentation algorithm (DRGSS), that computes in one-pass both the

correct Reeb graph and the surface segmentation for any input general

scalar function f .

The resulting graph is called simpli�ed Reeb graph (SRG) because all the

nodes corresponding to regular vertices between two critical vertices are

merged in the centroid of the corresponding segment.

132 Chapter 7. Conclusions

The resulting segmentation is a partition of mesh vertices. This work in-

troduces special provisions to preserve segments connectedness that could

be compromised in case of low density meshes. Indeed, when mesh density

(intended informally as the number of vertices per unit of surface) is low,

it can happen that one or more faces are shared between more than two

segments. The DRGSS algorithm identify those faces and let some of their

vertices to be multiple, i.e. to belong to more than 1 segment.

The DRGSS algorithm is a sweep algorithm in which contours are initialized

at f minima and evolve in the direction of ascending value of f . At each

step the DRGSS algorithm uses only information local to the considerate

candidate vertex. Furthermore, contour events can be detected by looking

at candidate vertex multiplicity only. Solely in case of a split/merge event

the entire contour is walked in order to identify its connected components.

But also in this case only informations in the 1-neighborhood of the contour

are used. When all contours have reached a maximum, both the SRG and

the segmentation are given (see Chap. 4). The computational complexity of

the overall algorithm is thus O(n log n) (where n is the number of vertices

in X), the same as the best sweeping algorithm (CMEH+03) in literature.

Extensive experimental validation (see Chap. 5) has been carried out consid-

ering di�erent test dimensions: shape genus, mesh density, scalar function.

The test set included shapes ranging from genus 0 up to genus 22. Di�er-

ent mesh densities have been considered, either for di�erent meshes either

considering di�erent density values for the same mesh. The input scalar

functions have been selected among di�erent classes: height functions, in-

trinsic functions, random functions.

For all the considered test dimensions, the DRGSS algorithm always com-

putes a Reeb graph that has the same number of loops as the shape genus,

also when the random scalar function is used.

This is the only algorithm for both Reeb graph extraction and mesh seg-

mentation that, at the best of information available, has been reportedly

validated with the random function in literature.

Finally, in Chap. 6, an application is presented in which the SRG is used,

with very good results, as a descriptor for the human striatum (i.e. a part of

the brain). SRG nodes are used in place of mesh vertices to register a group

133

of striatal meshes, obtaining a registration accuracy comparable with, and

in some cases outperforming, the surface-based methods. In this context,

the SRG is also applied to automatic striatal mesh decomposition and an

application of the SRG graph for inter-group comparison of striatal shapes

is shown.

These results inspire future works in several directions, both theoretical (e.g.

in terms of how the contours can be advanced, exploiting shape properties),

both toward other possible applications.

Bibliography

[AEHW06] Pankaj K. Agarwal, Herbert Edelsbrunner, John Harer, and

Yusu Wang. Extreme elevation on a 2-manifold. Discrete and

Computational Geometry, 36:553�572, 2006.

[AFS06] Marco Attene, Bianca Falcidieno, and Michela Spagnuolo. Hi-

erarchical mesh segmentation based on �tting primitives. The

Visual Computer, 22:181�193, 2006.

[AHB87] K. Arun, Thomas Huang, and Steven Blostein. Least-squares

�tting of two 3-d point sets. IEEE Trans. Pattern. Ana.l Mach.

Intell., 9(5):698�700, 1987.

[AKM+06] Marco Attene, Sagi Katz, Michela Mortara, Giuseppe Patané,

Michela Spagnuolo, and Ayellet Tal. Mesh segmentation - a

comparative study. In Shape Modeling and Applications, 2006.

SMI 2006. IEEE International Conference on, page 7, june

2006.

[Ban70] Thomas Francis Bancho�. Critical points and curvature for

embedded polyhedral surfaces. The American Mathematical

Monthly, 77(5):475�485, 1970.

[BBS+03] Adam M. Brickman, Monte S. Buchsbaum, Lina Shihabuddin,

Erin A. Hazlett, Joan C. Borod, and Richard C. Mohs. Striatal

size, glucose metabolic rate, and verbal learning in normal

aging. Cognitive Brain Res., 17(1):106 � 116, 2003.

[BDBP09] Stefano Berretti, Alberto Del Bimbo, and Pietro Pala. 3D

mesh decomposition using Reeb graphs. Image and Vision

136 Bibliography

Computing, 27(10):1540 � 1554, 2009. Special Section: Com-

puter Vision Methods for Ambient Intelligence.

[BFS00] Silvia Biasotti, Bianca Falcidieno, and Michela Spagnuolo. Ex-

tended Reeb graphs for surface understanding and descrip-

tion. In Gunilla Borgefors, Ingela Nyström, and Gabriella

di Baja, editors, Discrete Geometry for Computer Imagery,

volume 1953 of Lecture Notes in Computer Science, pages 185�

197. Springer Berlin / Heidelberg, 2000.

[BGSF08] Silvia Biasotti, Daniela Giorgi, Michela Spagnuolo, and Bianca

Falcidieno. Reeb graphs for shape analysis and applications.

Theoretical computer science, 392:5�22, 2008.

[BHEP04] Peer-Timo Bremer, Bernd Hamann, Herbert Edelsbrunner,

and Valerio Pascucci. A topological hierarchy for functions

on triangulated surfaces. Visualization and Computer Graph-

ics, IEEE Transactions on, 10(4):385 �396, july-aug. 2004.

[Bia04] Silvia Biasotti. Computational Topology Methods for Shape

Modelling Applications. PhD thesis, Universitá degli Studi di

Genova, May 2004.

[BMMP03] Silvia Biasotti, Simone Marini, Michela Mortara, and

Giuseppe Patané. An overview on propertiers and e�cacy

of topological skeletons in shape modeling. In Shape Modeling

International 2003 (SMI'03). IEEE, 2003.

[BMS00] Silvia Biasotti, Michela Mortara, and Michela Spagnuolo. Sur-

face compression and reconstruction using Reeb graphs and

shape analysis. In Proceedings of 16th Spring Conference on

Computer Graphics, pages 175�184. ACM press, 2000.

[BP12] Laura Brandolini and Marco Piastra. Computing the Reeb

graph for triangle meshes with active contours. In In Proc. of

ICPRAM 2012, Volume 2, pages 80�89. SciTePress, 2012.

[BSB+03] Monte S. Buchsbaum, Lina Shihabuddin, Adam M. Brickman,

Ruben Miozzo, Radovan Prikryl, Robert Shaw, and Kenneth

Davis. Caudate and putamen volumes in good and poor out-

come patients with schizophrenia. Schizophr. Res., 64(1):53 �

62, 2003.

Bibliography 137

[BVLD09] Halim Benhabiles, Jean-Philippe Vandeborre, Guillaume

Lavoué, and Mohamed Daoudi. A framework for the objective

evaluation of segmentation algorithms using a ground-truth

of human segmented 3D-models. In IEEE International Con-

ference on Shape Modeling and Applications (Shape Modeling

International 2009), Beijing, China, June 26-28 2009. short

paper.

[BW12] Margherita Barile and Eric W.Weisstein. Betti numbers, 2012.

URL: http://mathworld.wolfram.com/BettiNumber.html.

[Car09] Gunnar Carlsson. Topology and Data. Bulletin of the Ameri-

can Mathematical Society, 2009.

[CDST97] Bernard Chazelle, David P. Dobkin, Nadia Shouraboura, and

Ayellet Tal. Strategies for polyhedral surface decomposition:

An experimental study. Computational Geometry, 7(5-6):327

� 342, 1997.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,

and Cli�ord Stein. Introduction to Algorithms. MIT PRESS,

2009.

[CMEH+03] Kree Cole-McLaughlin, Herbert Edelsbrunner, John Harer,

Vijay Natarajan, and Valerio Pascucci. Loops in Reeb graphs

of 2-manifolds. In Proceedings of the nineteenth annual sympo-

sium on Computational geometry, SCG 2003, pages 344�350,

New York, NY, USA, 2003. ACM.

[CNR12] Visual Computing Lab ISTI CNR. Meshlab, 2012. URL: http:

//meshlab.sourceforge.net/.

[Coh73] Marshal M. Cohen. A course in simple-homotopy theory, 1973.

[COH+12] Fang Chen, Harald Obermaier, Hans Hagen, Bernd Hamann,

Julien Tierny, and Valerio Pascucci. Topology analysis of time-

dependent multi-�uid data using the Reeb graph. Computer

Aided Geometric Design, (0):�, 2012.

[CSA00] Hamish Carr, Jack Snoeyink, and Ulrike Axen. Computing

contour trees in all dimensions. In Proceedings of the eleventh

http://mathworld.wolfram.com/BettiNumber.html
http://meshlab.sourceforge.net/
http://meshlab.sourceforge.net/

138 Bibliography

annual ACM-SIAM symposium on Discrete algorithms, SODA

'00, pages 918�926, Philadelphia, PA, USA, 2000. Society for

Industrial and Applied Mathematics.

[dBvK97] Mark de Berg and Marc van Kreveld. Trekking in the alps

without freezing or getting tired. Algorithmica, 18:306�323,

1997.

[DE93] Cecil Jose A. Del�nado and Herbert Edelsbrunner. An incre-

mental algorithm for Betti numbers of simplicial complexes.

In Proceedings of the ninth annual symposium on Computa-

tional geometry, SCG 1993, pages 232�239, New York, NY,

USA, 1993. ACM.

[DE95] Cecil Jose A. Del�nado and Herbert Edelsbrunner. An incre-

mental algorithm for Betti numbers of simplicial complexes on

the 3-sphere. Computer Aided Geometric Design, 12(7):771 �

784, 1995.

[Dij59] Edsger W. Dijkstra. A note on two problems in connexion

with graphs. Numerische Mathematik, 1:269�271, 1959.

[DN09] Harish Doraiswamy and Vijay Natarajan. E�cient algorithms

for computing Reeb graphs. Computational Geometry, 42(6-

7):606 � 616, 2009.

[DN12a] Harish Doraiswamy and Vijay Natarajan. Computing Reeb

graphs as a union of contour trees. Visualization and Computer

Graphics, IEEE Transactions on, PP(99):1, 2012. doi:10.

1109/TVCG.2012.115.

[DN12b] Harish Doraiswamy and Vijay Natarajan. Output-sensitive

construction of Reeb graphs. Visualization and Computer

Graphics, IEEE Transactions on, 18(1):146 �159, jan. 2012.

[Ede01] Herbert Edelsbrunner. Geometry and Topology for Mesh Gen-

eration. Cambridge University Press, New York, NY, USA,

2001.

[EH10] Herbert Edelsbrunner and John Harer. Computational topol-

ogy: an introduction. Amer Mathematical Society, 2010.

http://dx.doi.org/10.1109/TVCG.2012.115
http://dx.doi.org/10.1109/TVCG.2012.115

Bibliography 139

[EHZ03] Herbert Edelsbrunner, John Harer, and Afra Zomorodian.

Hierarchical Morse-Smale complexes for piecewise linear 2-

manifolds. Discrete and Computational Geometry, 30(1):87�

107, 2003.

[Fal04] Bianca Falcidieno. AIM@SHAPE project presentation. In

Proc. Shape Modeling Applications 2004, page 329, june 2004.

[Fou12] The Eclipse Foundation. Eclipse, 2012. URL: http://www.

eclipse.org//.

[FSB+02] Bruce Fischl, David Salat, Evelina Busa, Marilyn Albert,

Megan Dieterich, Christian Haselgrove, Andre van der Kouwe,

Ron Killiany, David Kennedy, Shuna Klaveness, Albert Mon-

tillo, Nikos Makris, Bruce Rosen, and Anders M. Dale. Whole

brain segmentation: automated labeling of neuroanatomical

structures in the human brain. Neuron., 33:341�355, 2002.

[GPO08] Jessica A. Grahn, John A. Parkinson, and Adrian M. Owen.

The cognitive functions of the caudate nucleus. Prog. Neuro-

biol., 86(3):141 � 155, 2008.

[GWH01] Michael Garland, Andrew Willmott, and Paul S. Heckbert.

Hierarchical face clustering on polygonal surfaces. In Proceed-

ings of the 2001 symposium on Interactive 3D graphics, I3D

'01, pages 49�58, New York, NY, USA, 2001. ACM.

[HA03] Franck Hetroy and Dominique Attali. Topological quadrangu-

lations of closed triangulated surfaces using the Reeb graph.

Graphical Models, 65(1-3):131 � 148, 2003.

[Hen94] Michael Henle. A Combinatorial Introduction to Topology.

Courier Dover Publications, 1994.

[HKR93] Daniel P. Huttenlocher, Gregory A. Klanderman, and

William J. Rucklidge. Comparing images using the Hausdor�

distance. IEEE Trans. Pattern Anal. Mach. Intell., 15(9):850

� 863, sep 1993.

[HLD+06] Jaeuk Hwang, In Kyoon Lyoo, Stephen R. Dager, Seth D.

Friedman, Jung Su Oh, Jun Young Lee, Seog Ju Kim, David L.

http://www.eclipse.org//
http://www.eclipse.org//

140 Bibliography

Dunner, and Perry F. Renshaw. Basal ganglia shape alter-

ations in bipolar disorder. Am. J. Psychiatry, 163(2):276�285,

2006.

[HSKK01] Masaki Hilaga, Yoshihisa Shinagawa, Taku Kohmura, and

Tosiyasu L. Kunii. Topology matching for fully automatic

similarity estimation of 3D shapes. In Proceedings of the 28th

annual conference on Computer graphics and interactive tech-

niques, SIGGRAPH '01, pages 203�212, New York, NY, USA,

2001. ACM.

[HWW10] William Harvey, Yusu Wang, and Rephael Wenger. A random-

ized o(m log m) time algorithm for computing Reeb graphs

of arbitrary simplicial complexes. In Proceedings of the 2010

annual symposium on Computational geometry, SoCG 2010,

pages 267�276, New York, NY, USA, 2010. ACM.

[Ken89] David G. Kendall. A survey of the statistical theory of shape.

Statist. Sci., 4(2):87�99, 1989.

[KG00] Zachi Karni and Craig Gotsman. Spectral compression of

mesh geometry. In Proceedings of the 27th annual confer-

ence on Computer graphics and interactive techniques, SIG-

GRAPH '00, pages 279�286, New York, NY, USA, 2000. ACM

Press/Addison-Wesley Publishing Co.

[KHN+07] Juha Koikkalainen, Jussi Hirvonen, Mikko Nyman, Jyrki

Lötjönen, Jarmo Hietala, and Ulla Ruotsalainen. Shape vari-

ability of the human striatum - e�ects of age and gender. Neu-

roImage, 34(1):85 � 93, 2007.

[Kle27] Felix Klein. Vorlesungen uber nicht-euklidische Geometrie.

Rosemann, 1927.

[KLT05] Sagi Katz, George Leifman, and Ayellet Tal. Mesh segmen-

tation using feature point and core extraction. The Visual

Computer, 21:649�658, 2005.

[Knu98] Donald Ervin Knuth. The Art of Computer Programming Vol.

2: Seminumerical Algorithms. Addison Wesley, 3rd edition,

1998.

Bibliography 141

[Kob05] Jianhua Wu Leif Kobbelt. Structure recovery via hybrid vari-

ational surface approximation. Computer Graphics Forum,

24(3):277�284, 2005.

[KT96] Alan D. Kalvin and Russel H. Taylor. Superfaces: polygonal

mesh simpli�cation with bounded error. Computer Graphics

and Applications, IEEE, 16(3):64 �77, may 1996.

[LKA06] Jyh-Ming Lien, John Keyser, and Nancy M. Amato. Simulta-

neous shape decomposition and skeletonization. In Proceedings

of the 2006 ACM symposium on Solid and physical modeling,

SPM '06, pages 219�228, New York, NY, USA, 2006. ACM.

[LLKR07] Yu-Shen Liu, Min Liu, Daisuke Kihara, and Karthik Ramani.

Salient critical points for meshes. In Proceedings of the 2007

ACM symposium on Solid and physical modeling, SPM '07,

pages 277�282, New York, NY, USA, 2007. ACM.

[LLS+05] Yunjin Lee, Seungyong Lee, Ariel Shamir, Daniel Cohen-Or,

and Hans-Peter Seidel. Mesh scissoring with minima rule and

part salience. Computer Aided Geometric Design, 22(5):444 �

465, 2005. Geometry Processing.

[LLT03] Thomas Lewiner, Hélio Lopes, and Geovan Tavares. Optimal

discrete morse functions for 2-manifolds. Computational Ge-

ometry, 26(3):221 � 233, 2003.

[LRMT99] J. Lötjönen, P.-J. Reissman, I.E. Magnin, and T.Katila. Model

extraction from magnetic resonance volume data using the de-

formable pyramid. Med. Image Anal., 3(4):387 � 406, 1999.

[LSB01] Martin Lauer, Dieter Senitz, and Helmut Beckmann. Increased

volume of the nucleus accumbens in schizophrenia. J. Neural

Transmission, 108:645�660, 2001.

[LTS+01] M.P Laakso, J Tiihonen, E Syvälahti, H Vilkman, A Laakso,

B Alakare, V Räkköläinen, R.K.R Salokangas, E Koivisto, and

J Hietala. A morphometric mri study of the hippocampus in

�rst-episode, neuroleptic-naïve schizophrenia. Schizophr. Res.,

50(1 - 2):3 � 7, 2001.

142 Bibliography

[LV99] Francis Lazarus and Anne Verroust. Level set diagrams of

polyhedral objects. In Fifth Symposium on Solid Modeling,

pages 130�140. ACM, 1999.

[LVB+12] Guillaume Lavoue, Jean-Philippe Vandeborre, Halim Benhab-

iles, Mohamed Daoudi, K. Huebner, and Michela Mortara,

Michela Spagnuolo. Shrec'12 track: 3d mesh segmentation. In

Eurographics 2012 Workshop on 3D Object Retrieval, 2012.

[LZ04] Rong Liu and Hao Zhang. Segmentation of 3D meshes through

spectral clustering. In Computer Graphics and Applications,

2004. PG 2004. Proceedings. 12th Paci�c Conference on, pages

298 � 305, oct. 2004.

[LZ07] Rong Liu and Hao Zhang. Mesh segmentation via spectral

embedding and contour analysis. Computer Graphics Forum,

26(3):385�394, 2007.

[Mil63] John Milnor. Morse Theory. Princeton University Press, 1963.

[Mil64] John Milnor. On the Betti numbers of real varieties. In Proc.

Amer. Math. Soc., 1964.

[Mor31] Marston Morse. The critical points of a function of n variables.

Trans. Amer. Math. Soc, 33(1):72�91, 1931.

[MP02a] Michela Mortara and Giuseppe Patané. A�ne-invariant skele-

ton of 3D shapes. Shape Modeling and Applications, Interna-

tional Conference on, 0:245�252, 2002.

[MP02b] Michela Mortara and Giuseppe Patané. Shape-covering for

skeleton extraction. International Journal of Shape Modeling,

08(02):139�158, 2002.

[MPS+04] Michela Mortara, Giuseppe Patané, Michela Spagnuolo,

Bianca Falcidieno, and Jarek Rossignac. Blowing bubbles for

multi-scale analysis and decomposition of triangle meshes. Al-

gorithmica, 38:227�248, 2004.

[NGH04] Xinlai Ni, Michael Garland, and John C. Hart. Fair Morse

functions for extracting the topological structure of a surface

mesh. ACM Trans. Graph., 23(3):613�622, August 2004.

Bibliography 143

[NKI02] Marcin Novotni, Reinhard Klein, and Insitut Für Informatik

Ii. Computing geodesic distances on triangular meshes. In In

Proc. of WSCG-2002, pages 341�347, 2002.

[PBP+12] Antonietta Pepe, Laura Brandolini, Marco Piastra, Juha

Koikkalainen, Jarmo Hietala, and Jussi Tohka. Simpli�ed

Reeb graph as e�ective shape descriptor for the striatum. In

JoshuaA. Levine, RasmusR. Paulsen, and Yongjie Zhang, edi-

tors, Mesh Processing in Medical Image Analysis 2012, volume

7599 of Lecture Notes in Computer Science, pages 134�146.

Springer Berlin Heidelberg, 2012.

[Pia12] Marco Piastra. Self-organizing adaptive map: Autonomous

learning of curves and surfaces from point samples. Neural

Networks, 2012.

[PSBM07] Valerio Pascucci, Giorgio Scorzelli, Peer-Timo Bremer, and

Ajith Mascarenhas. Robust on-line computation of Reeb

graphs: simplicity and speed. ACM Trans. Graph., 26, July

2007.

[PSF09] Giuseppe Patané, Michela Spagnuolo, and Bianca Falcidieno.

A minimal contouring approach to the computation of the

Reeb graph. IEEE Transactions on Visualization and Com-

puter Graphics, 15:583�595, 2009.

[PZT+11] Antonietta Pepe, Lu Zhao, Jussi Tohka, Juha Koikkalainen,

Jarmo Hietala, and Ulla Ruotsalainen. Automatic statistical

shape analysis of local cerebral asymmetry in 3D T1-weighted

magnetic resonance images. In In Proc. of MICCAI 2011

MedMesh workshop, pages 127�134. R.R. Paulsen and J.A.

Levine, 2011.

[Ree46] George Reeb. Sur les points singuliers d une forme de Pfa�

completement integrable ou d une fonction numerique. In

Comptes rendus de l'Academie des Sciences 222, pages 847�

849, 1946.

[Rob10] Charles Roberts. Introduction to Mathematical Proofs: A

Transition. CRC Press, 2010.

144 Bibliography

[RWS11] Vanessa Robins, Peter John Wood, and Adrian P. Sheppard.

Theory and algorithms for constructing discrete Morse com-

plexes from grayscale digital images. Pattern Analysis and Ma-

chine Intelligence, IEEE Transactions on, 33(8):1646 �1658,

aug. 2011.

[RWSN09] Martin Reuter, Franz-Erich Wolter, Martha Shenton, and

Marc Niethammer. Laplace-Beltrami eigenvalues and topo-

logical features of eigenfunctions for statistical shape analysis.

Comput. Aided Design, 41(10):739 � 755, 2009.

[SAA09] Maytham Safar, Khalid Alenzi, and Saud Albehairy. Counting

cycles in an undirected graph using DFS-XOR algorithm. In

Networked Digital Technologies, 2009. NDT '09. First Inter-

national Conference on, pages 132 �139, july 2009.

[SCOGL02] Olga Sorkine, Daniel Cohen-Or, Rony Goldenthal, and Dani

Lischinski. Bounded-distortion piecewise mesh parameteriza-

tion. In Visualization, 2002. VIS 2002. IEEE, pages 355 �362,

nov. 2002.

[Seg08] Carol A. Seger. How do the basal ganglia contribute to cat-

egorization? their roles in generalization, response selection,

and learning via feedback. Neurosci. Biobehav.l R., 32(2):265

� 278, 2008.

[Sha04] Ariel Shamir. A formulation of boundary mesh segmentation.

In 3D Data Processing, Visualization and Transmission, 2004.

3DPVT 2004. Proceedings. 2nd International Symposium on,

pages 82 � 89, sept. 2004.

[Sha08] Ariel Shamir. A survey on mesh segmentation techniques.

Comput. Graphics Forum, 27(6):1539�1556, 2008.

[SK91] Yoshihisa Shinagawa and Tosiyasu L. Kunii. Constructing

a Reeb graph automatically from cross sections. Computer

Graphics and Applications, IEEE, 11(6):44 �51, nov 1991.

[SKK91] Yoshihisa Shinagawa, Tosiyasu L. Kunii, and Yannick L. Ker-

gosien. Surface coding based on Morse theory. Computer

Graphics and Applications, IEEE, 11(5):66 �78, sep 1991.

Bibliography 145

[SKK02] Thomas Sebastian, Philip Klein, and Benjamin Kimia. Shock-

based indexing into large shape databases. In Computer Vi-

sion - ECCV 2002, volume 2352 of Lecture Notes in Computer

Science, pages 83�98. Springer Berlin / Heidelberg, 2002.

[SKSI95] Yoshihisa Shinagawa, Tosiyasu L. Kunii, Hideyuki Sato, and

Masumi Ibusuki. Modeling contact of two complex objects,

with an application to characterizing dental articulations.

Computers and Graphics, 19(1):21 � 28, 1995.

[SLK+08] Yonggang Shi, Rongjie Lai, Sheila Krishna, Ivo Dinov, and

Arthur W. Toga. Anisotropic Laplace-Beltrami eigenmaps:

bridging Reeb graphs and skeletons. In In Proc. of CVPR

2008 Workshop, pages 1�7, Anchorage, AK, USA, 2008. IEEE

Computer Society.

[SSCO08] Lior Shapira, Ariel Shamir, and Daniel Cohen-Or. Consistent

mesh partitioning and skeletonization using the shape diame-

ter function. Visual Comput., 24:249�259, 2008.

[SSGD03] Hari Sundar, Deborah Silver, Nikhil Gagvani, and Sven Josef

Dickinson. Skeleton based shape matching and retrieval. In

Shape Modeling International, 2003, pages 130 � 139, may

2003.

[SSP+03] Y. K. Vetsa Sampath, Martin Styner, Stephen M. Pizer, Jef-

frey A. Lieberman, and Guido Gerig. Caudate shape discrim-

ination in schizophrenia using template-free non-parametric

tests. In In Proc. of MICCAI 2003, page Part II, 2003.

[STK02] Shymon Shlafman, Ayellet Tal, and Sagi Katz. Metamorphosis

of polyhedral surfaces using decomposition. Computer Graph-

ics Forum, 21(3):219�228, 2002.

[SY07] Scott Schaefer and Cem Yuksel. Example-based skeleton ex-

traction. In Proceedings of the �fth Eurographics symposium

on Geometry processing, pages 153�162, Aire-la-Ville, Switzer-

land, 2007. Eurographics Association.

[TGSP09] Julien Tierny, Attila Gyulassy, Eddie Simon, and Valerio Pas-

cucci. Loop surgery for volumetric meshes: Reeb graphs re-

146 Bibliography

duced to contour trees. Visualization and Computer Graphics,

IEEE Transactions on, 15(6):1177 �1184, 2009.

[TIS+95] Shigeo Takahashi, Tetsuya Ikeda, Yoshihisa Shinagawa,

Tosiyasu L. Kunii, and Minoru Ueda. Algorithms for extract-

ing correct critical points and constructing topological graphs

from discrete geographical elevation data. Computer Graphics

Forum, 14(3):181�192, 1995.

[TVD06] Julien Tierny, Jean-Philippe Vandeborre, and Mohamed

Daoudi. 3D mesh skeleton extraction using topological and

geometrical analyses. In 14th Paci�c Conference on Computer

Graphics and Applications. Paci�c Graphics, 2006.

[TVD08] Julien Tierny, Jean-Philippe Vandeborre, and Mohamed

Daoudi. Enhancing 3d mesh topological skeletons with dis-

crete contour constrictions. The Visual Computer, 24:155�172,

2008.

[TVD09] Julien Tierny, Jean-Philippe Vandeborre, and Mohamed

Daoudi. Partial 3D shape retrieval by Reeb pattern unfolding.

Computer Graphics Forum, 28(1):41�55, 2009.

[VGS00] Hans-Peter Volz, Christian Gaser, and Heinrich Sauer. Sup-

porting evidence for the model of cognitive dysmetria in

schizophrenia - a structural magnetic resonance imaging

study using deformation-based morphometry. Schizophr. Res.,

46(1):45 � 56, 2000.

[vis10] visimp. Vtkreebgraphs, 2010. URL: https://visimp.cs.

unc.edu/2010/10/26/reeb-graphs/.

[War83] Frank W. Warner. Foundations of di�erentiable manifolds and

Lie groups. Springer, 1983.

[Wei12] Eric W. Weisstein. Barycentric coordinates, 2012. URL: http:

//mathworld.wolfram.com/BarycentricCoordinates.html.

[Wik09] Wikipedia. Human striatum, 2009. URL: http://en.

wikipedia.org/wiki/File:BrainCaudatePutamen.svg.

https://visimp.cs.unc.edu/2010/10/26/reeb-graphs/
https://visimp.cs.unc.edu/2010/10/26/reeb-graphs/
http://mathworld.wolfram.com/BarycentricCoordinates.html
http://mathworld.wolfram.com/BarycentricCoordinates.html
http://en.wikipedia.org/wiki/File:BrainCaudatePutamen.svg
http://en.wikipedia.org/wiki/File:BrainCaudatePutamen.svg

Bibliography 147

[Wik12a] Wikipedia. Betti numbers, 2012. URL: http://en.

wikipedia.org/wiki/Betti_number.

[Wik12b] Wikipedia. Genus, 2012. URL: http://en.wikipedia.org/

wiki/Genus_(mathematics).

[Wik12c] Wikipedia. Klein bottle, 2012. URL: http://en.wikipedia.

org/wiki/Klein_bottle.

[Wik12d] Wikipedia. Moebius strip, 2012. URL: http://en.

wikipedia.org/wiki/Moebius_strip.

[WXS06] Naoufel Werghi, Yijun Xiao, and Jan Paul Siebert. A

functional-based segmentation of human body scans in arbi-

trary postures. Systems, Man, and Cybernetics, Part B: Cy-

bernetics, IEEE Transactions on, 36(1):153 �165, feb. 2006.

[XSW03] Yijun Xiao, Paul Siebert, and Naoufel Werghi. A discrete

Reeb graph approach for the segmentation of human body

scans. In 3-D Digital Imaging and Modeling, 2003. 3DIM 2003.

Proceedings. Fourth International Conference on, pages 378 �

385, oct. 2003.

[ZH04] Yinan Zhou and Zhiyong Huang. Decomposing polygon

meshes by means of critical points. In Multimedia Modelling

Conference, 2004. Proceedings. 10th International, pages 187

� 195, jan. 2004.

[Zom05] Afra Zomorodian. Topology for computing. Cambridge Uni-

versity Press, 2005.

http://en.wikipedia.org/wiki/Betti_number
http://en.wikipedia.org/wiki/Betti_number
http://en.wikipedia.org/wiki/Genus_(mathematics)
http://en.wikipedia.org/wiki/Genus_(mathematics)
http://en.wikipedia.org/wiki/Klein_bottle
http://en.wikipedia.org/wiki/Klein_bottle
http://en.wikipedia.org/wiki/Moebius_strip
http://en.wikipedia.org/wiki/Moebius_strip

	Introduction
	Theory
	Reeb graph in the smooth domain
	Betti Numbers
	Manifold
	Morse theory in the smooth settings
	Reeb graph

	Discrete domain
	Simplicial complexes
	Triangulated manifolds
	Morse theory in the discrete setting
	Reeb graphs of a PL-Morse function
	Contour strip Reeb graphs
	Simplified Reeb graphs

	Segmentation
	Segmenting with SRG

	Related Techniques
	Reeb Graphs
	Level Set Diagrams
	Extended Reeb graphs
	Sweep algorithm for extracting Reeb graphs of 2-manifold
	On-line computation of Reeb graphs
	Enhanced topological skeletons
	Reeb graphs based on shape diameter function
	Dynamic graphs
	Reeb graphs built on critical loops
	Other approaches

	Mesh Segmentation

	The DRGSS algorithm
	Computing the SRG and the segmentation
	The main algorithm
	Advancing Contours
	Merge and Split of contours
	Segmentation
	Constructing the Reeb Graph
	Removing folds: saddle-maximum cancellation
	Computational complexity

	Scalar function
	Implementation
	Implementation of the algorithm

	Experimental evidence
	Test description
	Number of loops of the SRG
	Scalar function
	Shape Genus
	Mesh density

	Results
	The role of multiplicity
	Robustness to different mesh densities
	The random function
	Intrinsic function variants

	SRG for human striatum
	Stating the problem
	Automatic inter-subject mesh registration
	Automatic mesh decomposition
	Inter-group striatal shapes comparison

	Striatum shape processing
	The dataset
	Computing SRG

	SRG-based Registration of Striatal Meshes
	Results
	SRG-based Registration of Striatal Meshes: a quantitative assessment
	SRG-based Surface Decomposition: a qualitative assessment
	Inter-group comparison
	Stability of the SRG to Mesh Resolution

	Conclusions

	Conclusions
	Bibliography

