
Theoretical Introduction and Applications
of Machine and Deep Learning

Luca Bianchi — 2021-06-18

Introduction to SageMaker
and PyTorch Lightning

Who am I?
Luca Bianchi

AWS Hero, passionate about
serverless and machine learning

github.com/aletheia

https://it.linkedin.com/in/lucabianchipavia

https://speakerdeck.com/aletheia

www.ai4devs.io

@bianchiluca

http://www.ai4devs.io

“deep learning is a great phrase,
it seems so deep”

understanding your problem

Beyond Deep Learning
Structured data doesn’t need deep learning, but it could be “just” a machine learning or a big
data problem

What problem are you solving?
Unstructured data type, deep learning task, and business domain

Deep Learning Species
A Cambrian Explosion

a real-life scenario

Real-Life Machine Learning Workflow

1. Frame and understand your problem

2.Explore data with Analysis tools

3.Engineer features relevant to your use case

4.Partial train small models to build features

5.Explore existing pre-trained models to be adapted (i.e. using transfer learning)

6.Write specific neural network code

7. Train, validate, evaluate ML model

Machine Learning starts before writing a single line of a neural network code

Implementing a ML model in real-life

In this phase, the business problem is framed as a machine learning problem: what is observed

and what should be predicted (known as a label or target variable). Determining what to predict

and how performance and error metrics need to be optimized is a key step in ML.

For example, imagine a scenario where a manufacturing company wants to identify which products
will maximize profits. Reaching this business goal partially depends on determining the right number
of products to produce. In this scenario, you want to predict the future sales of the product, based on
past and current sales. Predicting future sales becomes the problem to solve, and using ML is one
approach that can be used to solve it.

ML problem framing

• Define criteria for a successful outcome of the project

• Establish an observable and quantifiable performance metric for the project, such as accuracy,
prediction latency, or minimizing inventory value

• Formulate the ML question in terms of inputs, desired outputs, and the performance metric to
be optimized

• Evaluate whether ML is a feasible and appropriate approach

• Create a data sourcing and data annotation objective, and a strategy to achieve it

• Start with a simple model that is easy to interpret, and which makes debugging more
manageable

ML problem framing

• Amazon Customer Reviews Dataset

• https://s3.amazonaws.com/amazon-
reviews-pds/readme.html

• s3://amazon-reviews-pds/tsv/

• crawler with name “tsv”

• MSCK REPAIR TABLE tsv

Start exploring our dataset

Data collection

s3://amazon-reviews-pds/tsv/

Start exploring our dataset

Data collection

Prepare data to be suitable for ML

Data preparation

A workflow management tool for data analysis and preparation

SageMaker Data Wrangler

Offload SageMaker tasks to external workers

SageMaker Processing Platform

• A single feature corresponds to a column in your dataset. A feature group is a predefined
schema for a collection of features - each feature in the feature group has a specified data type
and name. A single record in a feature group corresponds to a row in your dataframe. A feature
store is a collection of feature groups.

• Record identifier name is the name of the feature defined in the feature group's feature
definitions whose value uniquely identifies a Record defined in the feature group's feature
definitions.

• Event time feature name is the name of the EventTime feature of a Record in FeatureGroup. An
EventTime is a timestamp that represents the point in time when a new event occurs that
corresponds to the creation or update of a Record in the FeatureGroup. All Records in the
FeatureGroup must have a corresponding EventTime.

SageMaker Feature Store

• After the model has been trained, evaluate it to determine if its performance and accuracy will enable you
to achieve your business goals. You might want to generate multiple models using different methods and
evaluate the effectiveness of each model. For example, you could apply different business rules for each
model, and then apply various measures to determine each model's suitability. You also might evaluate
whether your model needs to be more sensitive than specific, or more specific than sensitive. For
multiclass models, evaluate error rates for each class separately.

• You can evaluate your model using historical data (offline evaluation) or live data (online evaluation). In
offline evaluation, the trained model is evaluated with a portion of the dataset that has been set aside as
a holdout set. This holdout data is never used for model training or validation—it’s only used to evaluate
errors in the final model. The holdout data annotations need to have high accuracy for the evaluation to
make sense. Allocate additional resources to verify the accuracy of the holdout data.

• AWS services that are used for model training also have a role in this phase. Model validation can be
performed using Amazon SageMaker, AWS Deep Learning AMI, or Amazon EMR.

• Based on the evaluation results, you might fine-tune the data, the algorithm, or both. When you fine-tune
the data, you apply the concepts of data cleansing, preparation, and feature engineering.

How to know we arrived there?

Model Evaluation

• Have a clear understanding of how you measure success

• Evaluate the model metrics against the business expectations for the project

• Plan and execute Production Deployment (Model Deployment and Model Inference)

Apply these best practices:

• Monitor model performance in production and compare to business expectations

• Monitor differences between model performance during training and in production

• When changes in model performance are detected, retrain the model. For example, sales expectations
and subsequent predictions may change due to new competition

• Use batch transform as an alternative to hosting services if you want to get inferences on entire
datasets

• Take advantage of production variants to test variations of a new model with A/B testing

How to know we arrived there?

Model Evaluation

AWS ML Stack

The AWS machine learning stack
Broadest and most complete set of Machine Learning capabilities

PyTorch Lightning

• Amazon SageMaker is a platform to run training and

inference from your laptop, directly in cloud.

• SageMaker training jobs allow setting up and tearing

down cloud infrastructure

• Can run training jobs locally on bare metal or

SageMaker containers

Amazon SageMaker
A Machine Learning platform

PyTorch

• is pythonic (its n-dimensional tensor is similar to numpy) with a quite easy learning curve

• built-in support for data parallelism

• support for dynamic computational graphs

• Imperative programming model

A deep learning platform

PyTorch on SageMaker
Running training on Amazon SageMaker

Initializes SageMaker session which holds context data

The bucket containig our input data

The IAM Role which SageMaker will impersonate to run the estimator
Remember you cannot use sagemaker.get_execution_role()

if you're not in a SageMaker notebook, an EC2 or a Lambda (i.e. running
from your local PC)

name of the runnable script containing __main__ function (entrypoint)

path of the folder containing training code. It could also contain a
requirements.txt file with all the dependencies that needs to be installed

before running

these hyperparameters are passed to the main script as arguments and can
be overridden when fine tuning the algorithm

Call fit method on estimator, which trains our model, passing training and
testing datasets as environment variables. Data is copied from S3 before

initializing the container

• A PyTorch implementation of MNIST

neural network is given.

• The network is built at forward pass.

• Each batch of data of each epoch

within train method

- loads data

- resets optimizer

- computes output

- computes loss

- optimizes weights

Amazon SageMaker

Published in 2019, it is a framework to structure a PyTorch project,

gain support for less boilerplate and improved code reading.

The simple interface gives professional production

teams and newcomers access to the latest state of the art

techniques developed by the PyTorch and PyTorch Lightning

community.

• 96 contributors

• 8 research scientists

• rigorously tested

PyTorch Lightning
With Lightning, PyTorch gets both simplified AND

on steroids

Principle 1 
Enable maximal flexibility.

Principle 2 
Abstract away unnecessary boilerplate, but make it
accessible when needed.

Principle 3 
Systems should be self-contained (ie: optimizers,
computation code, etc).

Principle 4 
Deep learning code should be organized into 4 distinct
categories.
• Research code (the LightningModule).
• Engineering code (handled by the Trainer).
• Non-essential research code (in Callbacks).
• Data (PyTorch Dataloaders).

Getting Started
Step 0: imports

Import PyTorch standard packages such as nn and Functional and
DataLoader

Import Transforms from torchvision (when needed)

Import pytorch_lightning core class

Getting Started
Step 1: Lightning module

dataset preparation and loading

neural network definition

loss computation

optimizers definition

validation computation and stacking

Build a class extending pl.LightningModule and implement utility

methods which will be called by trainer during the training loop

Getting Started
Step 2: Trainer

Lightning Trainer class controls flow execution, multi-GPU

parallelization and intermediary data saving to default_root_dir

Our defined model class is istantiated passing all the required

hyperparams, then fit method is called on trainer, passing params as

an argument

Training on multiple GPUs is easy as setting an argument

MNIST

MNIST is the new Hello World

The MNIST database of handwritten digits has a training set

of 60,000 examples, and a test set of 10,000 examples. It is

a subset of a larger set available from NIST. The digits have

been size-normalized and centered in a fixed-size image.

It is a good database for people who want to try learning

techniques and pattern recognition methods on real-world

data while spending minimal efforts on preprocessing and

formatting.

It’s a well known problem, that can be used as a reference

SageMaker job script
Can be run from a Notebook or any Python environment

• Configure SageMaker Session

• Setup an Estimator, configuring instance count, PyTorch container

version and instance type

• Pass training and testing datasets paths from S3. Data is copied

from S3 before initalizing the container and mapped to local folders

• After training containers get dismissed and instances destroyed

Training class
Use PyTorch Lightning Trainer class

• Receives arguments from SageMaker (as arg variables)

• Instantiates a Trainer class

• Instantiates a classifier passing training parameters

• calls .fit method on trainer, passing the model

• saves trained model to local model_dir which is mirrored to S3 by

SageMaker when container is dismissed

MNISTClassifier

MNISTClassifier

MNISTClassifier

PyTorch Lightning Bolts

PyTorch
https://pytorch.org/

PyTorch Lightning
https://github.com/PyTorchLightning/pytorch-lightning

PyTorch Lightning Bolts 
https://github.com/PyTorchLightning/pytorch-lightning-bolts

AWS re:Invent getting started video 
https://www.youtube.com/watch?v=6IhI7hPFpX8

Getting started with PL and Sagemaker
https://towardsdatascience.com/building-a-neural-network-on-amazon-sagemaker-with-pytorch-lightning-63730ec740ea

Useful resources

thank you.

