Industrial applications of acoustic camera

Kiril Alexiev
alexiev@bas.bg

Pavia, 2018
Acknowledgements

The preparation of this presentation and lecture in the University of Pavia are supported by Erasmus+ program under Mobility Agreement “Staff Mobility For Teaching” between Bulgarian Academy of Sciences (Erasmus code BG SOFIA30) and University of Pavia (Erasmus code I PAVIA01).
Mathematical Methods for Sensor Information Processing Department
A little history

The Department was established about 30 years ago for R&D in Bulgarian industry and military electronics. Almost all Bulgarian serial manufactured radars for meteorological, air-defence and marine surface surveillance were developed with participation of the members from our team. We participated also in R&D of new military communication systems.
Since 1987 the team was moved in Bulgarian Academy of Sciences in a newly established department named “Mathematical methods for sensor information processing”. The main idea was by employing complex mathematical approaches on high performance computers to solve basic problems of sensor systems like:

- Artificial Intelligence;
- Multiple sensor data fusion;
- Change detection, behaviour estimation;
- Data association problems;
- Estimation of non-linear and non-Gaussian dynamic systems, etc.
Annually we publish about 20 peer-reviewed papers, most of them in journals with IF or SJR;

We had several successfully graduated PhD students, and several PhD students, which were going to finish their theses … somewhere in Europe and Canada;

We had 3 Postdocs – one from Bristol University, England; one from Kharkov, Ukraine and another one from Kiev, Ukraine;

Two of us are participating actively in educational process at the Universities having regular courses;

Every year many students conducted their practice in the department, now we have two of them appointed on temporary contracts;
We have regular thematic interdisciplinary seminar;
In the last 5 years we have organized regularly annual symposiums in the framework of bigger international conferences and one IEEE conference on intelligent applications;
All scientists are members of different Bulgarian and international scientific professional organisation like IEEE, ISIF, UAI, UMB, etc.,
We organized one NATO ASI and participated in several others NATO ASI on the hot topics of research; A year ago we organized a meeting on radars (NATO serias)
We participated in two COST actions;
We have well-established scientific collaboration with colleagues from ONERA – France, from the University of Bradford, Lancaster University in England, University of Sheffield, “Lucian Blaga”- University of Sibiu, University of Pavia and etc.
Currently running projects

- Mathematical methods for sensor information processing – budget;
- Center for Excellence in Informatics and Information and Communication Technologies 2018-2023.
Equipment – acoustic camera

Acoustic camera produced by Brüel & Kjær (Sound and Vibration Measurement A/S). The device includes:

- 18 precision array microphones (10 Hz – 20 kHz) in an array with a diameter about 0.33 m;
- input modules;
- laptop with software;
- optic camera.
<table>
<thead>
<tr>
<th>ID</th>
<th>Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>3660-C-000 5 slot Mainframe LAN-XI</td>
</tr>
<tr>
<td>2.</td>
<td>3050-B-060 6-ch Input Module LAN-XI 51.2kHz (CCLD, V)</td>
</tr>
<tr>
<td>3.</td>
<td>3053-B-120 12-ch Input Module LAN-XI 25.6kHz (CCLD, V)</td>
</tr>
<tr>
<td>4.</td>
<td>3099-A-N1 PULSE LAN-XI Single Module Front-End Driver</td>
</tr>
<tr>
<td>5.</td>
<td>UA-2145 Array Front Panel LAN-XI Modules</td>
</tr>
<tr>
<td>6.</td>
<td>8607-N PULSE Array Acoustic Holography</td>
</tr>
<tr>
<td>7.</td>
<td>7761-N PULSE Acoustic Test Consultant</td>
</tr>
<tr>
<td>8.</td>
<td>BZ-5637-N PULSE Array Acoustic Conformal Calculations</td>
</tr>
<tr>
<td>9.</td>
<td>WA-1558-P-1CH Sector Wheel Beam Forming and SONAH array, Size 0.55-1.5 m, Channels 36, 60, 84, 108</td>
</tr>
<tr>
<td>10.</td>
<td>4959 Very Short Array Microphone for Handheld Arrays</td>
</tr>
<tr>
<td>11.</td>
<td>4228 Pistonphone calibrator, 250 Hz, 124 dB, Class 0</td>
</tr>
<tr>
<td>12.</td>
<td>WA-0728- W-003 Adaptor for 6-Channel Pistonphone, short version for all Array Microphones</td>
</tr>
</tbody>
</table>
Hardware – acoustic camera
Applications 1

• Noise pollution
  o Airport noise
  o Urban/Street noise
  o Instrument noise

• Noise identification. Find the source of specific noise
  o Sound quality analysis
  o Data/music recording
  o Multimedia product analysis

• Production testing and machine diagnostics by spectral analysis, time-frequency analysis, trend detection in sound intensity signals, noise intensity analysis, shock response analysis, without disassembling.
  o machine noise localization and analysis (turbines, car engine, etc.)
  o vibration testing
Applications 2

• Occupational health
  o Noise exposure
  o Hearing protection
  o Human vibration
  o Noise reduction
  o Factory hall acoustic

• Military/security applications
  o noise barrier detectors
  o noise localization
  o noise recognition

• Scientific tool for research in
  o beamforming
  o random antenna array development
  o acoustic signal analysis
  o acoustic holography
  o signal processing/filtering
Acoustic camera modes:

- Beam forming
- Acoustic holography

- Holography (SONAH)
  - Near-field
  - 50 - 1200 Hz
  - Resolution ~ 12 cm

- Beamforming
  - Far-field
  - 500 - 20000 Hz
  - Resolution = L/D*λ

(L is the distance from array to source, D is the size of the array)
Beam forming
Beam pattern in polar coordinates

d=0.5\lambda
Pure antenna pattern

$$d = \lambda$$

$$d = 1.5\lambda$$
Two noise sources at 10 cm on 75 cm from the antenna
Acoustic Camera Characteristics
Object: KEMET Electronics
Kyustendil, Bulgaria

Researchers: Volodymyr V. Kudriashov\textsuperscript{1}, Vladislav V. Ivanov\textsuperscript{2}, Kiril M. Alexiev\textsuperscript{1}

\textsuperscript{1}: Transport Faculty of Technical University of Sofia;
\textsuperscript{2}: Mathematical Methods for Sensor Information Processing Department, Institute of Information and Communication Technologies, Bulgarian Academy of Sciences
Electric Motor

The motor has an acoustic noise source, after replacement of the “front” bearing (Figure 1).

The estimate of the acoustic noise incoming from the source is $38.7 - 79.6 \text{ dB}_{20\text{mkPa}}$ at “center” frequencies $50 \text{ Hz} - 16 \text{ kHz}$ (Figure 1, the spectrum at “bottom left”).

Later it was detected, that the noise had appeared after welding front cover.
Acoustic camera data
Measured
The front cover were dismounted and measured by 3D measurement tool. It was proved that at the pointed place there is cover deformation which leads to increased level of noise and accelerated failure of front bearing. The most possible reason for cover deformation is welding repair with uncontrolled heating.
A Vacuum Generator

The measurements detected following acoustic noise sources: two motors and wheel at the left side of mechanical part of the installation.

The acoustic noise was measured three times.

First two measurements (Rec. 874, 901) were carried out when the motor was switched off (for estimation of interfering background acoustic noise).

The 3rd measurement (Rec. 898) estimated acoustic noise of both the motor and the background.
Measured Noise $\sim 10\text{kHz}$
A Vacuum Generator

a) the motor is switched off;

b) the motor is switched on.

The spectra of main noise source
Measured noise $\sim 2.8$ kHz
The acoustic noise from motor increases about 33 dB (4 dB), at center frequency 5 kHz (1 kHz) when the motor is switched on. The frequency of this “difference” depends on:

(i) a spectrum of acoustic noise of the motor,
(ii) a decreasing of the directivity of the microphone array with decreasing of the center frequency,
(iii) other factors.

With respect to the directivity of the microphone array, the measurements have fine quality, at a high frequencies (above 1 kHz, roughly).
Mechanical part (a belt drive and three wheels)

temperature deformation
Summary

The noise from vacuum generator corresponds to the sources (electrical engines) and their revolutions per minute. The only suspicious noise, generated by the belt drive is concentrated on one of the wheel. The bearing condition of this wheel has to be checked.
"Леми Трафо"

Researchers: *Petia Koprinkova*¹, *Kiril M. Alexiev*¹

¹: Mathematical Methods for Sensor Information Processing Department, Institute of Information and Communication Technologies, Bulgarian Academy of Sciences
The problem

The measuring of generated noise from power transformer without load (the noisest regime of work) were carried out in acoustic isolated room. However, the acoustic room faded significantly industrial noise, without removing entirely it.
Measurement room
Background noise
Frontal noise
Side noise (right)
Side noise (left)
The noise level of measured transformer is 3-5 dB. It important to note, that all harmonics of 100 Hz have a level, about 30 dB higher the rest of spectrum. The noise level is fading for frequencies 600 Hz and more.

Remark: the antena accuracy for noise source localization at frequencies lower than 600 Hz is poor!
Solvay Sodi, Devnya

Researchers: Volodymyr V. Kudriashov¹, Kiril M. Alexiev¹

¹: Mathematical Methods for Sensor Information Processing Department, Institute of Information and Communication Technologies, Bulgarian Academy of Sciences
Problem

The noise level of steam generator exceeds 110 dB and the environment is not “friendly” for the workers around.
Object – steam generator
The acoustic noise was measured from seven positions. The first five measurements enabled to localize the main noise sources of the steam generator installation. The last two measurements were focused on noise emissions of several of the localized sources.
Measurements

Position 2
“45° Portal”
Range ≈ 45 m

Position 3
“90° Field”
Range ≈ 32 m

Position 4
“45°”
Range ≈ 32 m

Position 1
“Portal”
Range ≈ 34(36) m

The noise sources

Building (Metal Walls)

Grass
Asphalt
Concrete

Position 5
“Near the Building”
Range ≈ 51.42 m

Positions 6 & 7
“Near to the noise sources”
Position 4
Position 5
Summary

The sources of the noise are accurately localized and measured. This information will help acoustic engineers to find effective solutions for noise reduction.
Summary

The detected main noise sources are as following: (i) the motor, (ii) the horizontal pipeline and (iii) the horizontal pipes of the installation, including the corner of the vertical pipe and the connection of the pipes.

The information is applicable to formulate a task for design of a cloak for suppression of the acoustic noise of the installation. Additionally, the information may be used to check quality of the developed/installed cloak.
Arena “Armeec” hall
Arena “Armeec” hall
Arena “Armeec” hall
The problem

The hall will be used for 2018 Rhythmic Gymnastics World Championships, the 36th edition, from 10 September to 16 September 2018 and since 21 September 2018 FIVB Volleyball Men’s World Championship Italy-Bulgaria. Its acoustics has to respond in the first case to the requirement of music halls, and in the second case to the requirement of sport events.
Optimal reverberation time
Arena Armeec ceiling
tribune
Summary

The measured reverberation time is about 3 times greater than recommended one for Rhythmic Gymnastics World Championships and it is absolutely suitable for Volleyball Men’s World Championship. The most appropriate engineering solution to enhance the acoustic of the hall for the first case is to switch off the general hall acoustic system and to accommodate local one near to the gymnastics carpet. There were recommended some actions in order to reduce acoustic reflection.