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Back to our simple motivator

Objective of the procedure
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Panoramic reconstruction

Problem
◮ Corner detection and association

◮ Observation (x , y , x ′, y ′) : the corner (x , y) in the first image is associated to
the corner (x ′, y ′) in the second image

◮ if pure camera rotation pure between the two images x̃′ = Hx̃ where :
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◮ by developping, we get :

{

x ′ = h00x+h01y+h02
h20x+h21y+h22

y ′ = h10x+h11y+h12
h20x+h21y+h22
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Panoramic reconstruction

Problem
◮ the unknowns are the different hij

{

x ′(h20x + h21y + h22) = h00x + h01y + h02
y ′(h20x + h21y + h22) = h10x + h11y + h12
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Panoramic reconstruction
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H is determined modulo a multiplicative factor, thus we can set h22 to 1.
We note that in order to estimate the homography we need n = 4 observations.
We must solve Ah = b - easy !
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Panoramic reconstruction
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If n > 4, then the system is overdetermined. In order to find the least square
solution for Ah = b, one has to :

1. compute the Singular Value Decomposition (the SVD) of A : A = UDVT

2. compute b′ = UTb

3. find y defined as yi = b′i/di

4. the solution is h = Vy
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Robust estimation

What if some of the n observations are wrong ?

◮ this will create major problems

E. Aldea (CS&MM- U Pavia) COMPUTER VISION Chap II : Robust estimation (7/23)



Robust estimation

What if some of the n observations are wrong ?

◮ this will create major problems
◮ obviously for n = 4 we will get a different solution

E. Aldea (CS&MM- U Pavia) COMPUTER VISION Chap II : Robust estimation (7/23)



Robust estimation
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Robust estimation

What if some of the n observations are wrong ?

◮ this will create major problems
◮ obviously for n = 4 we will get a different solution
◮ but even for an over determined system, the outlier(s) will have a significant

impact (even one outlier may be very detrimental)

◮ all least-square based optimizations are sensitive to outliers

Objective

◮ solve a Computer Vision problem which requires observations

◮ ... while at the same time, pruning the bad observations

◮ underlying idea : outliers participate to “strange” solutions
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Robust estimation

Problem framework :
◮ observations provided by images

◮ interest points (but sometimes contours, regions etc.)
◮ associations : matches, optical flow fields, etc.

E. Aldea (CS&MM- U Pavia) COMPUTER VISION Chap II : Robust estimation (8/23)



Robust estimation

Problem framework :
◮ observations provided by images

◮ interest points (but sometimes contours, regions etc.)
◮ associations : matches, optical flow fields, etc.

◮ a significant part of the observations is generated by a mathematical model
characterized by a set of parameters θ

E. Aldea (CS&MM- U Pavia) COMPUTER VISION Chap II : Robust estimation (8/23)



Robust estimation

Problem framework :
◮ observations provided by images

◮ interest points (but sometimes contours, regions etc.)
◮ associations : matches, optical flow fields, etc.

◮ a significant part of the observations is generated by a mathematical model
characterized by a set of parameters θ

Objective
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◮ détermine the parameters θ
◮ in robotics : often a movement estimation/information
◮ tracking some targets

E. Aldea (CS&MM- U Pavia) COMPUTER VISION Chap II : Robust estimation (8/23)



Robust estimation

Problem framework :
◮ observations provided by images

◮ interest points (but sometimes contours, regions etc.)
◮ associations : matches, optical flow fields, etc.

◮ a significant part of the observations is generated by a mathematical model
characterized by a set of parameters θ

Objective
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characterized by a set of parameters θ

Objective

◮ détermine the parameters θ
◮ in robotics : often a movement estimation/information
◮ tracking some targets
◮ the state of a physical system etc.

◮ the number of observations is large enough in order to allow us to estimate θ

but ...
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Robust estimation

Problem framework :
◮ observations provided by images

◮ interest points (but sometimes contours, regions etc.)
◮ associations : matches, optical flow fields, etc.

◮ a significant part of the observations is generated by a mathematical model
characterized by a set of parameters θ

Objective

◮ détermine the parameters θ
◮ in robotics : often a movement estimation/information
◮ tracking some targets
◮ the state of a physical system etc.

◮ the number of observations is large enough in order to allow us to estimate θ

but ...

◮ presence of outliers which do not respect the model
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Toy example

The elastic constant of a string

◮ Hooke’s law : F = kx

◮ Objectve : θ = {k}
◮ we vary N times the applied force, we measure the deformation
◮ N observations {(Fi , xi )}
◮ minimal set of measures for determining θ : K = 2
◮ in practice we use the N observations for a least square estimation, as the

observations are noisy

◮ no outliers, all observations are explained by the model
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Example in vision

Estimating ego-mouvement

◮ N observations {xi}1≤i≤N (one obs. per pixel)

◮ minimal set of size K , N ≫ K

◮ objective : θ = {❘, t}

◮ an algorithm f which provides θ = f (x1, . . . , xK )}

◮ problem : static scene hypothesis

◮ dynamic elements ⇒ observations which do not respect the model θ

Objective : determine θ and the valid observations
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The source of the problem

Influence of outliers
◮ one may not ignore the outliers and determine the parameters of the model

◮ the least square based methods are very sensitive to outliers due to the
quadratic error function ρ(ri ) = r2i
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Two types of approaches

Analysis of the set of residuals

◮ Least Median of Squares (LMedS) ; we replace the sum by the median of
residuals :

min
θ

med ρ(ri )
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Two types of approaches

Analysis of the set of residuals

◮ Least Median of Squares (LMedS) ; we replace the sum by the median of
residuals :

min
θ

med ρ(ri )

◮ Least Trimmed Squares (LTS) ; sorting the residuals and selecting the first
N/2 < M < N

min
θ

M
∑

i=1

ρ(ri )

◮ Exhaustive research necessary for K-tuples ; breakdown point ∼ 50%

Modifying ρ

Using instead of the quadratic error a different symmetric, positive definite
function (see Huber, Tukey etc.) Breakdown point inferior to 1/K

In any case, we must separate the inliers, and only then we can apply the classical
LMS.
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RANSAC

Random Sample Consensus

1. For T iterations / While we still have computing time
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Random Sample Consensus

1. For T iterations / While we still have computing time
◮ random selection of K observations
◮ exact determination of θ
◮ compute the cardinal of the support for θ : {xi t.q ρ(xi ,θ) < τ}

2. validate θ̂ having the most consistent support

3. compute θ̃ by LMS across the support of θ̂
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◮ τ for including an observation in the support set

E. Aldea (CS&MM- U Pavia) COMPUTER VISION Chap II : Robust estimation (13/23)



RANSAC

Random Sample Consensus

1. For T iterations / While we still have computing time
◮ random selection of K observations
◮ exact determination of θ
◮ compute the cardinal of the support for θ : {xi t.q ρ(xi ,θ) < τ}

2. validate θ̂ having the most consistent support

3. compute θ̃ by LMS across the support of θ̂

Parameters
◮ τ for including an observation in the support set

◮ the number of draws P
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RANSAC

Random Sample Consensus

1. For T iterations / While we still have computing time
◮ random selection of K observations
◮ exact determination of θ
◮ compute the cardinal of the support for θ : {xi t.q ρ(xi ,θ) < τ}

2. validate θ̂ having the most consistent support

3. compute θ̃ by LMS across the support of θ̂

Parameters
◮ τ for including an observation in the support set

◮ the number of draws P

◮ depending on the application and on the inlier proportion
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Example in 2D

Initial set
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Example in 2D

Fit line - 3 inliers
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Example in 2D

Fit line - 4 inliers
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Example in 2D

Fit line - 8 inliers
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Example in 2D

Fit line - 9 inliers
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Example in 2D

Final estimation by least squares
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RANSAC

Question 1
Let us consider a parameter estimation problem with θ ∈ ❘5. Assuming that the
observations exhibit an outlier percentage f = 0.4, what is the number of draws T
we should perform in order to recover the correct model parameters with a
probability p = 0.99 ?
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RANSAC

Question 2
Using a LASER device, a small robot has mapped an empty room. The result is a
point cloud, in which 40%, 30% et 20% of the points belong to three walls
respectively, and 10% of the points represent outliers. What is the number of
draws required in order to recover the largest wall with a probability p = 0.99 ?
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RANSAC

Question 3
For the same setting as in Question 2, what is the number of draws required in
order to recover any wall with a probability p = 0.99 ?
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RANSAC

Question 4
For the same setting as in Question 2, propose an algorithm for extracting all the
walls from the point cloud.
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