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Back to our simple motivator

Objective of the procedure
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Panoramic reconstruction

Problem
» Corner detection and association

» Observation (x, y,x’,y’) : the corner (x,y) in the first image is associated to
the corner (x’,y’) in the second image

» if pure camera rotation pure between the two images X’ = HX where :
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by developping, we get :
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Panoramic reconstruction

Problem
> the unknowns are the different hj;

x'(hoox + ho1y + h») = hoox + hory + hoo
¥ (hoox + ho1y + h2p) = hiox + hiiy + hia
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Panoramic reconstruction
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H is determined modulo a multiplicative factor, thus we can set hy, to 1.
We note that in order to estimate the homography we need n = 4 observations.
We must solve Ah = b - easy!
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Panoramic reconstruction
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If n > 4, then the system is overdetermined.
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solution for Ah = b, one has to :

1. compute the Singular Value Decomposition (the SVD) of A : A = UDV "

2. compute b’ =U"b
3. find y defined as y;
4. the solution is h =
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In order to find the least square
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Robust estimation

What if some of the n observations are wrong ?

» this will create major problems
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Robust estimation

What if some of the n observations are wrong ?

> this will create major problems

» obviously for n = 4 we will get a different solution
> but even for an over determined system, the outlier(s) will have a significant
impact (even one outlier may be very detrimental)

» all least-square based optimizations are sensitive to outliers

Objective
» solve a Computer Vision problem which requires observations
> .. while at the same time, pruning the bad observations

» underlying idea : outliers participate to “strange” solutions
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Robust estimation

Problem framework :
» observations provided by images

> interest points (but sometimes contours, regions etc.)
> associations : matches, optical flow fields, etc.
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Robust estimation

Problem framework :
> observations provided by images

> interest points (but sometimes contours, regions etc.)
> associations : matches, optical flow fields, etc.

» a significant part of the observations is generated by a mathematical model
characterized by a set of parameters 6

Objective
» détermine the parameters 6

> in robotics : often a movement estimation/information
» tracking some targets
> the state of a physical system etc.

> the number of observations is large enough in order to allow us to estimate 6
but ...

» presence of outliers which do not respect the model
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Toy example

The elastic constant of a string

> Hooke's law : F = kx
> Objectve : 8 = {k}
» we vary N times the applied force, we measure the deformation
N observations {(Fi, xi)}
minimal set of measures for determining 8 : K =2

in practice we use the N observations for a least square estimation, as the
observations are noisy

v

v

v

» no outliers, all observations are explained by the model
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Example in vision

Estimating ego-mouvement
> N observations {x;}1<i<n (one obs. per pixel)
» minimal set of size K, N > K
> objective : 0 = {R, t}
> an algorithm f which provides 0 = f(x1,...,xx)}
» problem : static scene hypothesis
>

dynamic elements = observations which do not respect the model 6

Objective : determine 0 and the valid observations
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The source of the problem

Influence of outliers
> one may not ignore the outliers and determine the parameters of the model
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— Regular linear fit
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> the least square based methods are very sensitive to outliers due to the

quadratic error function p(r;) = r?
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Two types of approaches

Analysis of the set of residuals

> Least Median of Squares (LMedS) ; we replace the sum by the median of
residuals :
mein med p(r;)
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> Least Median of Squares (LMedS) ; we replace the sum by the median of
residuals :
mein med p(r;)

> Least Trimmed Squares (LTS); sorting the residuals and selecting the first
N2<M<N

M
min Z p(ri)
i=1
» Exhaustive research necessary for K-tuples; breakdown point ~ 50%

Modifying p
Using instead of the quadratic error a different symmetric, positive definite
function (see Huber, Tukey etc.) Breakdown point inferior to 1/K

In any case, we must separate the inliers, and only then we can apply the classical

LMS.

E. Aldea (CS&MM- U Pavia) COMPUTER VISION Chap Il : Robust estimation

(12/23)



RANSAC

Random Sample Consensus

1. For T iterations / While we still have computing time
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2. validate 8 having the most consistent support

3. compute ] by LMS across the support of 0
Parameters

» 7 for including an observation in the support set
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RANSAC

Random Sample Consensus

1. For T iterations / While we still have computing time

» random selection of K observations
» exact determination of @
» compute the cardinal of the support for 8 : {x; t.q p(x;,0) <7}

2. validate 8 having the most consistent support

3. compute ] by LMS across the support of 0

Parameters
» 7 for including an observation in the support set
> the number of draws P

» depending on the application and on the inlier proportion
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Example in 2D

Initial set
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Example in 2D

3 inlier o ©
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O

Fit line - 3 inliers
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Example in 2D
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Fit line - 4 inliers
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Example in 2D

8 inlier

Fit line - 8 inliers
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Example in 2D

9 inlier

Fit line - 9 inliers
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Example in 2D

Final estimation by least squares
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RANSAC

Question 1
Let us consider a parameter estimation problem with @ € IR>. Assuming that the

observations exhibit an outlier percentage f = 0.4, what is the number of draws T
we should perform in order to recover the correct model parameters with a

probability p = 0.997
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RANSAC

Question 2
Using a LASER device, a small robot has mapped an empty room. The result is a

point cloud, in which 40%, 30% et 20% of the points belong to three walls
respectively, and 10% of the points represent outliers. What is the number of
draws required in order to recover the largest wall with a probability p =0.997
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RANSAC

Question 3
For the same setting as in Question 2, what is the number of draws required in

order to recover any wall with a probability p = 0.997
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RANSAC

Question 4
For the same setting as in Question 2, propose an algorithm for extracting all the

walls from the point cloud.
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