

Ist Workshop on Eye Tracking Techniques, Applications and Challenges

https://vision.unipv.it/ettac2020/

10 January 2021

In conjunction with

Eye Movement Classification with Temporal Convolutional Networks

Carlos Elmadjian Candy Gonzales Carlos H. Morimoto

University of São Paulo - Brazil

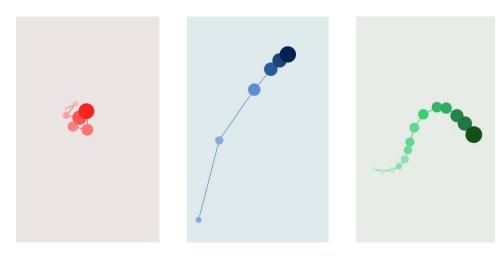
What is this work about?

What is this work about?

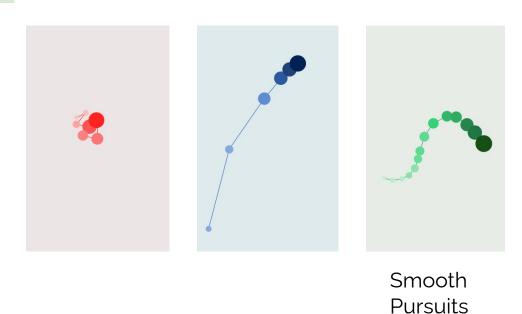
improving the state of the art of the EMCP

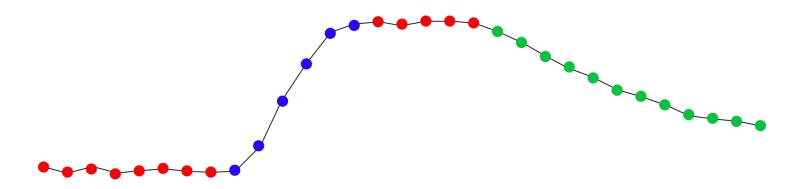
What is this work about?

- improving the state of the art of the EMCP
- improving our understanding of the problem

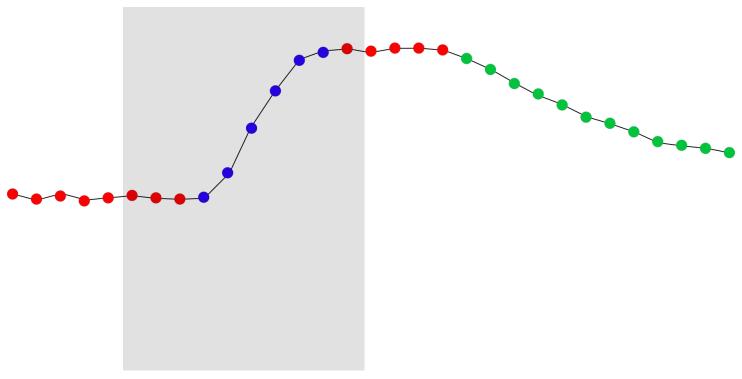


Fixations









ETTAC 2020 - Elmadjian, C.; Gonzales, C.; Morimoto, C.H. Eye Movement Classification with Temporal Convolutional Networks

threshold-based classification

- threshold-based classification
- probabilistic methods

- threshold-based classification
- probabilistic methods
- deep learning models

Pros Cons

Pros

high accuracy

Pros

- high accuracy
- no parameter setting

Pros

- high accuracy
- no parameter setting
- user independent

Pros

- high accuracy
- no parameter setting
- user independent

Cons

computational cost

Pros

- high accuracy
- no parameter setting
- user independent

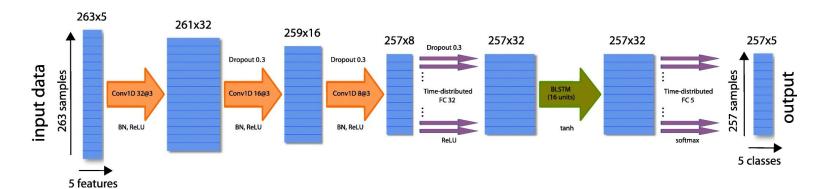
- computational cost
- large datasets

Pros

- high accuracy
- no parameter setting
- user independent

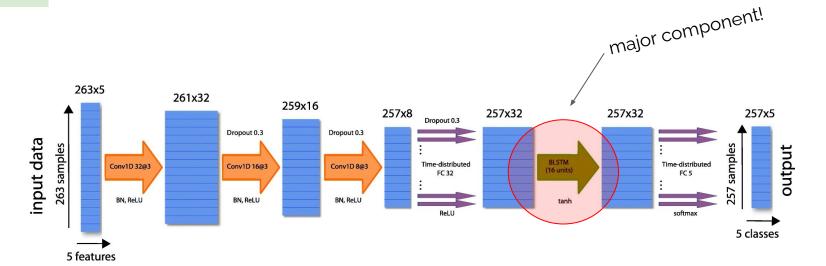
- computational cost
- large datasets
- re-training

The 1D CNN-BLSTM model



SOURCE: https://link.springer.com/article/10.3758/s13428-018-1144-2/figures/1

The 1D CNN-BLSTM model



SOURCE: https://link.springer.com/article/10.3758/s13428-018-1144-2/figures/1

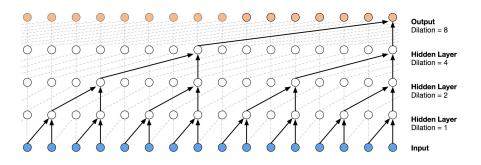
performance >= LSTMs, GRUs...

- performance >= LSTMs, GRUs...
- highly parallel

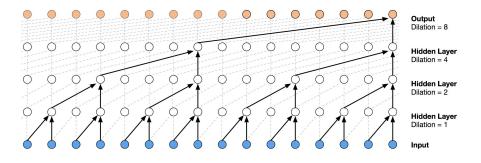
- performance >= LSTMs, GRUs...
- highly parallel
- memory footprint

- performance >= LSTMs, GRUs...
- highly parallel
- memory footprint
- long-term dependencies

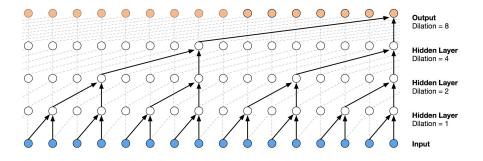
causal convolutions



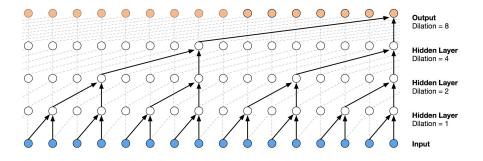
- causal convolutions
- dilations



- causal convolutions
- dilations
- residual block



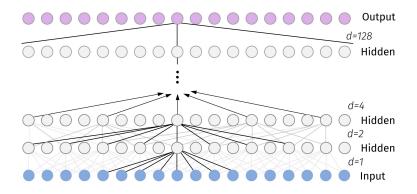
- causal convolutions
- dilations
- residual block
- variable input length



Our TCN

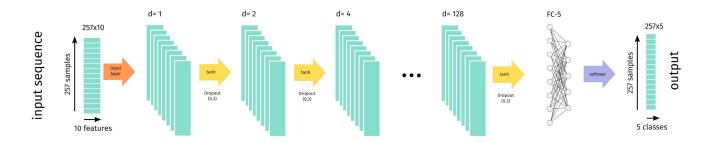
Our TCN

non-causal convolutions



Our TCN

- non-causal convolutions
- tanh activation



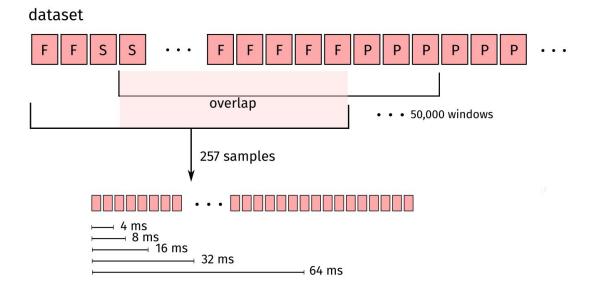
Our TCN

- non-causal convolutions
- tanh activation
- specifics:

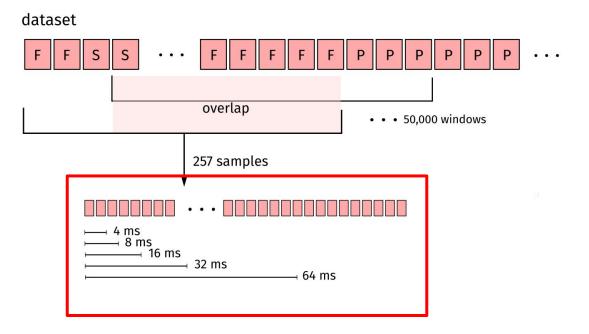
https://github.com/elmadjian/3EMCP-with-TCNs

• feature space _____ speed, direction, displacement, stddev

- feature space
- feature scale

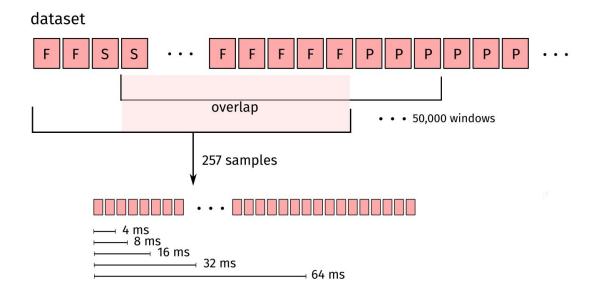


- feature space
- feature scale

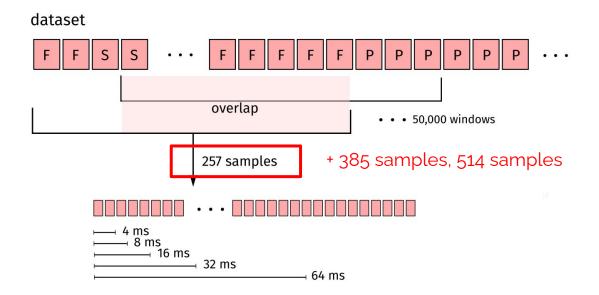


+128 ms, 256 ms, 512 ms

- feature space
- feature scale
- window size



- feature space
- feature scale
- window size

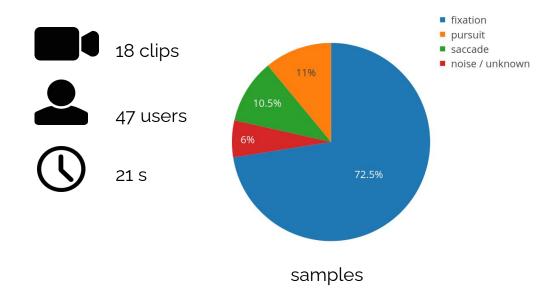


GazeCom dataset

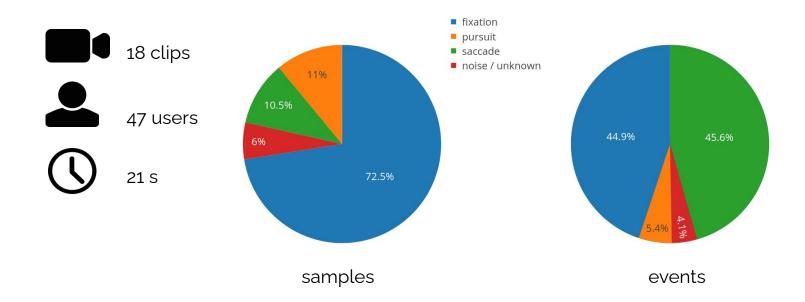
47 users

21 S

GazeCom dataset



GazeCom dataset



LOVO, as described by Startsev et al. [1], **except** for:

LOVO, as described by Startsev et al. [1], **except** for:

no input padding

LOVO, as described by Startsev et al. [1], **except** for:

- no input padding
- ADAM optimizer (lr = 0.0001)

LOVO, as described by Startsev et al. [1], **except** for:

- no input padding
- ADAM optimizer (lr = 0.0001)
- 20 epochs (large receptive field)

LOVO, as described by Startsev et al. [1], **except** for:

- no input padding
- ADAM optimizer (lr = 0.0001)
- 20 epochs (large receptive field)
- batch size = 128

LOVO, as described by Startsev et al. [1], **except** for:

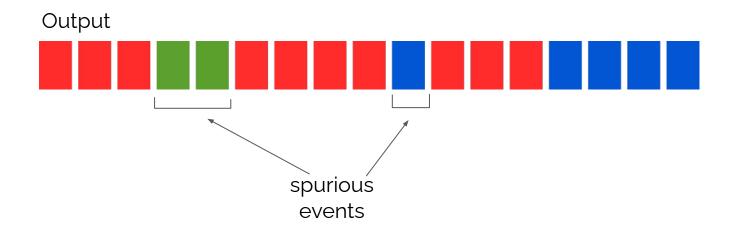
- no input padding
- ADAM optimizer (lr = 0.0001)
- 20 epochs (large receptive field)
- batch size = 128
- tensorflow 2

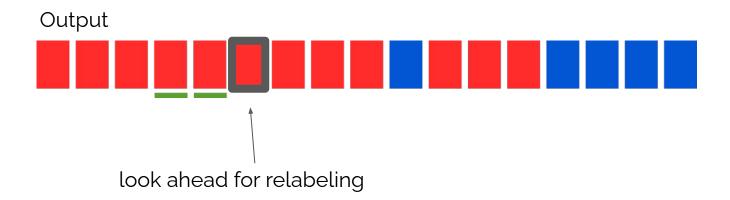
sp_tool

- sp_tool
- F1-score (samples and events)

- sp_tool
- F1-score (samples and events)
- Events according to Hooge et al. [2]

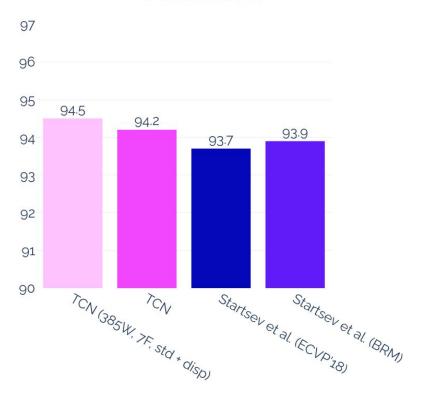
[2] Hooge, Ignace TC, et al. "Is human classification by experienced untrained observers a gold standard in fixation detection?." *Behavior Research Methods* 50.5 (2018): 1864-1881.





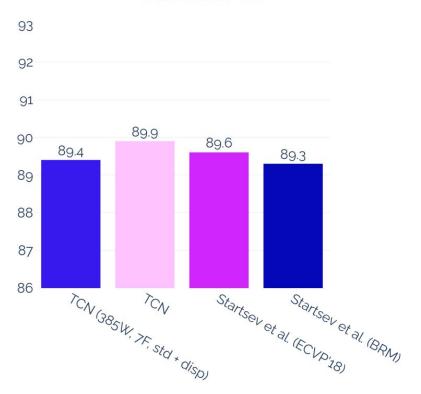
Fixation F1

sample level



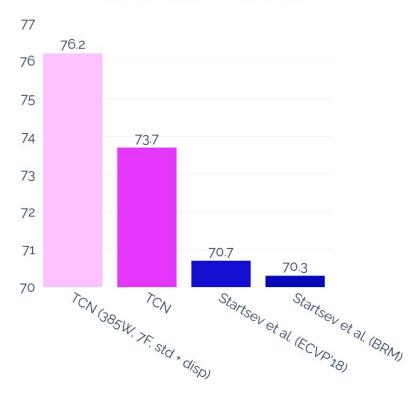
Saccade F1

sample level

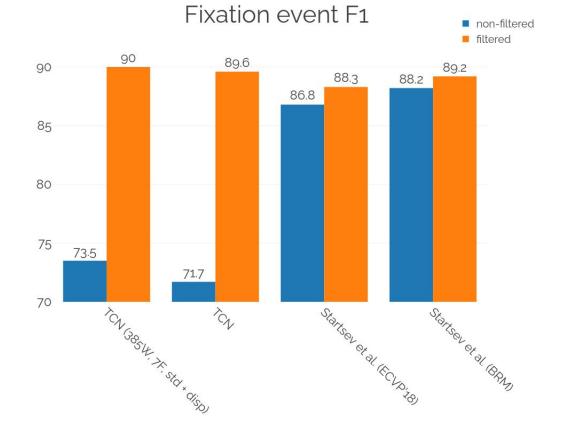


Smooth Pursuit F1

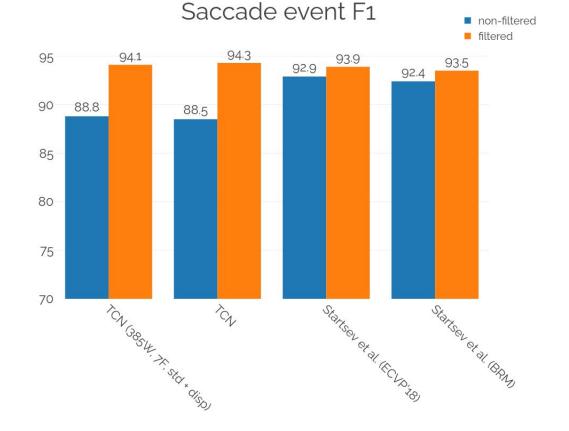
sample level



- sample level
- event level



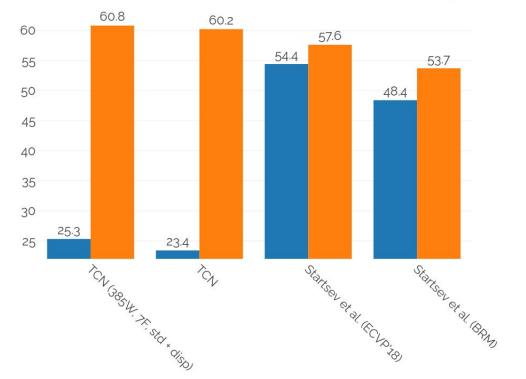
- sample level
- event level



Smooth Pursuit event F1

non-filteredfiltered

- sample level
- event level

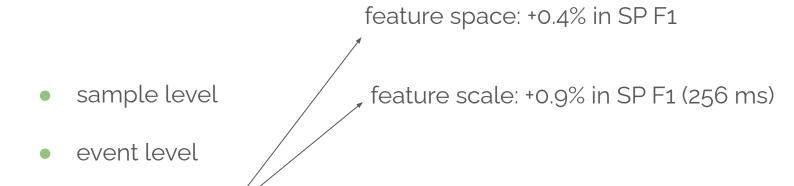


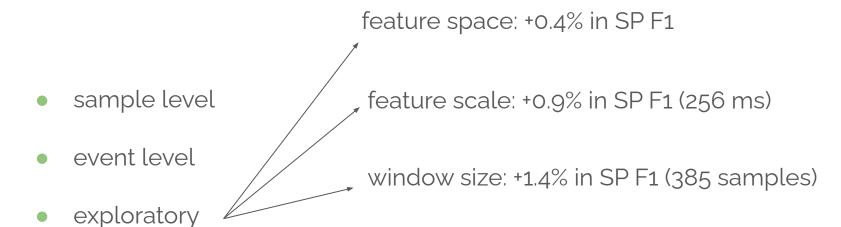
- sample level
- event level
- exploratory

feature space: +0.4% in SP F1

- sample level
- event level
- exploratory

exploratory





• TCNs = improvement on the state of the art

- TCNs = improvement on the state of the art
- feature expansion helps, but slightly

- TCNs = improvement on the state of the art
- feature expansion helps, but slightly
- architectural advantages

- TCNs = improvement on the state of the art
- feature expansion helps, but slightly
- architectural advantages
- **future work**: online classification

- TCNs = improvement on the state of the art
- feature expansion helps, but slightly
- architectural advantages
- **future work**: online classification

https://github.com/elmadjian/3EMCP-with-TCNs

Q&A