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* To question the impact of the balance between generalization and
personalization in Deep Learning-based Gaze Estimation solutions

* To study the effect of pretraining the model over different domains
before training our system for our final application.
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In Gaze Estimation, personalization
is achieved through calibration

To calibrate: adjust system using
individual’s intrinsic aspects
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Research introduction: high resolution — Upﬂa
low resolution systems

High resolution vs low resolution

In both type of systems, calibration has probed to improve the obtained
accuracy
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Requisite to implement a Deep Two posible solutions:
Learning solution: large enough e Using synthetic databases or
databases enviroments

* Pretraining a model in a
different topic and using it as
starting point (“transfer-
learning”)

If learning in a
supervised
manner...

Requisite to implement a Deep
Learning solution: large enough
databases correctly labelled
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Research introduction: transter-learning s

Basis: if a network learns to extract
features from images to solve a task,
part of these features can be handy
to solve others image-related
problems

The closer the original domain to the
new one, the better the learning
transference

Pretrained models in frameworks:

TensorFlow O PyTorch
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Research design: databases

3 databases were ne

eded, 2 for the pretraining of the

model and 1 as target.
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They were not used in this proj
were pre-trained over them

f

ect directly. Our starting models




Image preprocessing
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Research design: network architecture sy
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The training process could be divided in two parts:

Starting point 12 trainings

| This part allow us
to study the effect
of transfer learning

in different
domains

Select among two models*:
* Model pretrained with U2Eyes
* Model with Resnet-18 weights from Imagenet

*https://github.com/GonzaloGardel/Synthetic-gaze-data-augmentation-for-improved-user-calibration
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The training process could be divided in two parts:

Starting point 12 trainings

\ )
f

The model is trained over images from I2Head. In these 12 variations, we
change the nature of the training dataset from only calibration to
calibration + generalization

With this block, we study the balance between generalization and
personalization S
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Research design: training
Model Train Calibration |Total Train Test
# Users/Images|# Users/Images| # Images |# Users/Images
ImageNet K/K*130 1/34 K*1304-34 1/130
U2Eyes K/K*130 1/34 K*130-+34 1/130
K varies from O (only calibration images in the training dataset) to 11

(calibration images + 11 additional users)

* Trained over 240 epochs A learning rate Schedule based

 Adam optimizer in Cyclic learning rate was used,

* Euclidean distance of the real although other could be used
look-at-point and the

estimated look-at-point
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Users in Mean (°) Median (°)

training | Imagenet| U2Eyes| Imagenet| U2Eyes
1 13.615 3.891 13.401 3.243
2 14.812 2.967 14.880 2.522
3 14.069 2.861 14.255 2.404
4 2.867 2.488 2.567 2.149
5 2.004 2.149 1.631 1.867
6 2.028 1.965 1.675 1.667
7 1.987 2.039 1.617 1.746
8 1.877 1.968 1.639 1.724
9 1.758 1.860 1.471 1.611
10 1.681 1.818 1.412 1.588
11 1.615 1.777 1.334 1.485
12 1.559 1.714 1.344 1.486
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Research results: discusion

From the obtained results, we highlight two cases to study:
e Correlation number of training images — accuracy
 Comparison of the results obtained for each of the pretraining methods
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Research results: discusion rscod i g o

From the obtained results, we highlight two cases to study:

e Correlation number of training images — accuracy

Users in Mean (°) Median (°)

training | Imagenet| U2Eyes| Imagenet| U2Eyes
1 13.615 | 3.891 | 13.401 | 3.243 As the number of users
2 14.812 2.967 14.880 2.522 decreases’ the accuracy
3 14.069 2.861 14.255 2.404 tend t
1 2867 | 2488 | 2567 | 2.149 €nd 1o worse
5 2.004 2.149 1.631 1.867
6 2.028 1.965 1.675 1.667
7 1.987 2.039 1.617 1.746 For 12 use.rs, accur?cy
8 1.877 1.968 1.639 1.724 close to high-resolution
10 1.681 1.818 1.412 1.588
11 1.615 1.777 1.334 1.485
12 1.559 1.714 1.344 1.486
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Angular error (deg)

From the obtained results, we highlight two cases to study:
 Comparison of the results obtained for each of the pretraining methods
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Research results: discusion rscod i g o

error (deg)

Angular

From the obtained results, we highlight two cases to study:

Comparison of the results obtained for each of the pretraining methods
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Hypothesis:

f training dataset is long enough for the Imagenet model to learn, it
oenefits from real-world variability

f not, the U2Eyes model is more robust because, as it was trained in a
similar domain, is more capable of continuing learning
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From the obtained results, we conclude that:

* Results close to high-resolution systems can be obtained (1.52) by
using calibration in low-resolution systems based on Deep Learning

 The importance of providing domain images during the training
process has been confirmed, and also the benefits of pre-training the
network in a closer domain instead of in a more general dataset, to
compensate the lack of useful gaze data images that characterize gaze

estimation problems
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Thank you!

gonzalogarde3@gmail.com | gonzalo.garde@unavarra.es
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