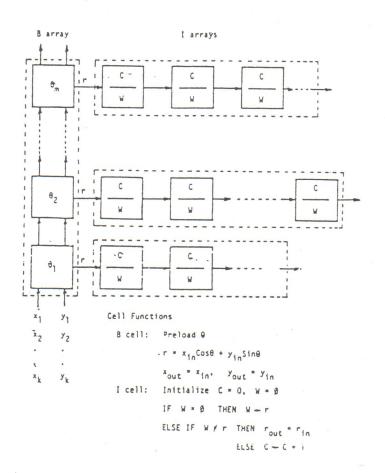


ARCHITETTURE PARALLELE PER LA TRASFORMATA DI HOUGH

27 Novembre 1989 c/o SPERONI Spa, Spessa Po

Maria Grazia Albanesi

Dipartimento di Informatica e Sistemistica, Università degli Studi di Pavia


* Il costo computazionale della trasformata di Hough eseguita con algoritmo sequenziale è dell'ordine di M ^{m-1} ove m è il numero di parametri e M il numero di valori assunti dai parametri (quantizzazione nello spazio dei parametri).

Esempi di utilizzo di architetture parallele per l'implementazione della trasformata di Hough

ARRAY SISTOLICI

H. CHUANG, C. LI Department of Computer Science, Univ. of Pittsburg, PA


ARRAY SISTOLICO PER LA HT CONVENZIONALE.

TREE MACHINE (Ibrahim, ..)

H. Ibrahim, J. Render, D. Shaw Department of Computer Science, Columbia University New York, USA

I PE sono interconnessi in modo da formare un albero binario (SIMD)

Comunicazioni tra processori:

- Globali
- Ad albero
- Lineare

Istruzioni particolari: RESOLVE, REPORT

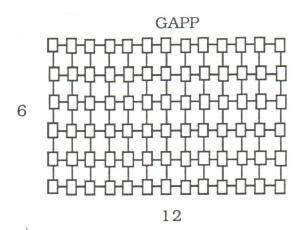
TREE MACHINE (Ibrahim, ..)

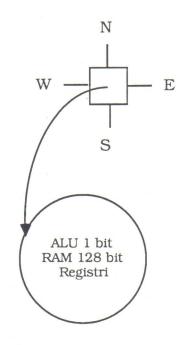
ALGORITMO N. 1

- * Scelta dei parametri m,c (pendenza, intercetta) y = mx + c. Il parametro m assume m_q valori e il parametro c c_q valori.
- * I nodi dell'albero sono numerati con un metodo di numerazione in-order. (c_{i} al nodo j-esimo)
- * A ciascun nodo viene associata una coppia di valori (M,C) in base alle relazioni

$$\begin{aligned} & M = resto \ (c_j \ / \ m_q) \\ & C = quoz. \ (c_j \ / \ m_q) \end{aligned}$$

- * In ogni nodo si memorizzano le coordinate dei feature point (x,y)
- * Con l'istruzione RESOLVE sequenzialmente si invia al CP (radice) le coordinate dei feature point
- * Broadcast delle coordinate (x,y) dal CP a tutti i PE
- * Ogni PE incrementa un contatore interno se le coordinate ricevute soddisfano la relazione base


$$y = Mx + C$$


- * Estrazione dei massimi: ogni PE in cui il contatore supera una soglia viene marcato e inviato con istruzione REPORT al CP che ricerca il massimo
- * Complessità dell'algoritmo è dell'ordine O(b), b numero di feature point.

MESH (Silberberg)

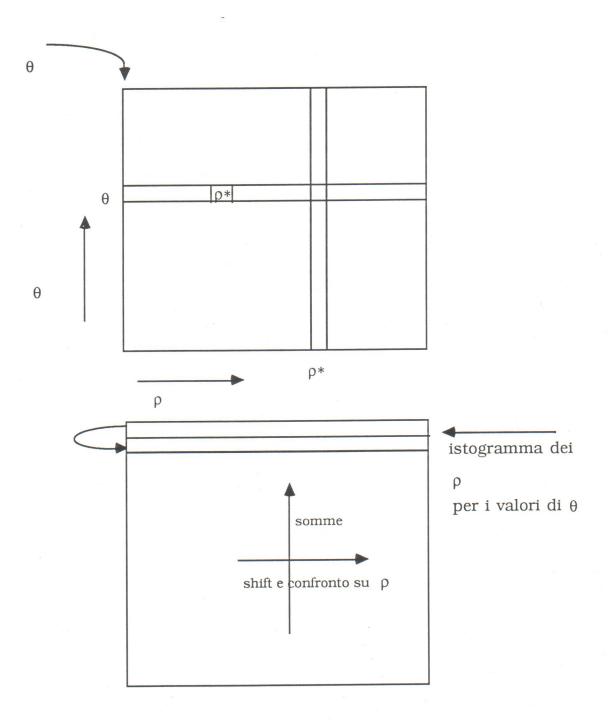
Teresa M. Silberberg (Hughes Artificial Intelligence Center, Calabasas, CA, USA)

Algoritmo proposto per il GAPP (Geometric Arithmetic Parallel Processor)

Fasi dell'algoritmo:

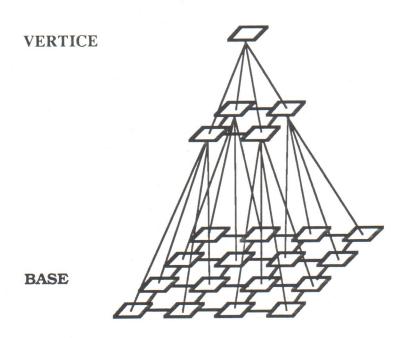
- 1) Calcolo dei voti
- 2) Ricerca del massimo

Ogni PE ha associati i seguenti dati:


(x,y) coordinata di un non-zero pixel

 $\rho(\theta)$ valore di ρ per un determinato θ

ρ corrispondente alla colonna in cui si trova il processore.


Accumulatore cont, in cui si memorizza il numero di voti per la coppia (ρ,θ)

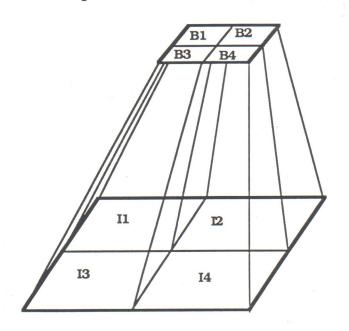
MESH (Silberberg)

MACCHINE PIRAMIDALI

* Processori elementari connessi in modo da formare una piramide.

Architettura piramidale Schema di interconnessioni

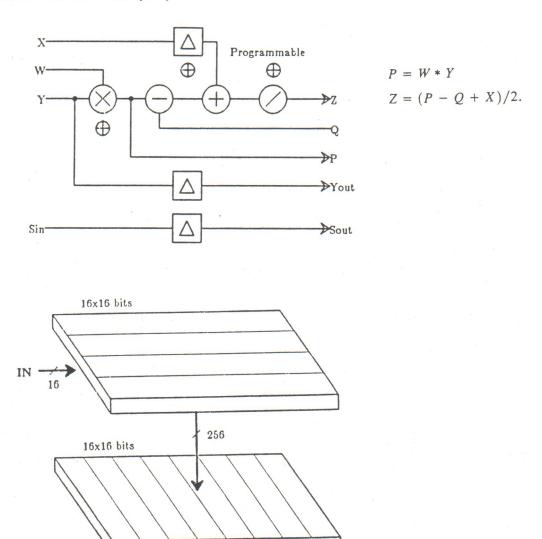
PIRAMIDE


(Bongiovanni, ..)

Algoritmo proposto

- * Si considera una piramide con base di dimensioni n X n (n dimensione immagine)
- * Si sceglie come sistema di riferimento i parametri (ρ,θ)
- * Si associa a ciasun pixel una cella fisica: ogni linea alla quale appartiene il pixel interseca la cella in due punti sui bordi adiacenti o opposti, oppure agli angoli della cella
- * Viene scelta la rappresentazione digitale standard di una linea, costituita da una sequenza di celle della griglia che la linea attraversa nel piano dell'immagine.
- * Si fa l'ipotesi che $|\rho_i \rho_{i-1}| > \sqrt{2}$ dove la dimensione di una cella della griglia è assunta unitaria
- * L'algoritmo è cosituito da due fasi:
 - ** la fase di calcolo all'interno dei blocchi (array)
 - ** e una fase di combinazione di blocchi (piramide).
- * Il numero di iterazioni sulla piramide è pari a log $_2$ n 2

PIRAMIDE (Bongiovanni, ..)


- * Al passo 1 1a base è suddivisa in blochi 8 X 8 e all'interno di ogni blocco si determina il numero di edge pixel che giacciono sul segmento di linea (ρ,θ) che interseca la sottoimmagine memorizzata nel blocco.
- * Per ciascuna linea viene generato un record (ρ, θ, s) che conta il numero di edge pixel.
- * Alla fine i record con il valore aggiornato di s vengono trasmessi a tutti i PE.
- * In generale al passo i si determinano il numero di edge pixel che giacciono sui segmenti di linea in direzione θ su una sottoimmagine di dimensione 2 $^{2+i}$ X 2 $^{2+i}$ combinando i valori parziali del passo precedente.
- * Il calcolo del passo i avviene al livello i/2 della piramide
- * Nella fase di combinazione dei blocchi si raccolgono il numero di voti dei PE adiacenti a contributo della stessa retta
- * La complessità del passo di calcolo dei blocchi è dell'ordine di O(2 $^{2+\lceil i/2 \rceil}$) mentre della fase di combinazione è dell'ordine di 2 $^{i/2}$
- *Globalmente la complessità è dell'ordine di $O(k\sqrt{m} + \sqrt{n})$

STRUTTURA A BLOCCHI

- * Chip realizzato con tecnologia di wafer-scale integration (Restructurable VLSI)
- * Il wafer è costituito da un insieme di celle ove le interconnessioni sono ristrutturabili mediante laser.
- * La ristrutturazione è non volatile e irreversibile.
- * Le celle sono realizzate con tecnologia CMOS, 5 μ (due livelli di metal)

- * Esistono due tipi di celle:
- 1) Multiply-add cell (MAC)
- 2) Parallel -serial cell (PS)

* Il wafer è costituito da un array centrale di 352 celle MAC e due colonne (lato destro e sinistro) di celle PS

OUT

Implementazione della trasformata di hough utilizzando le celle MAC del wafer

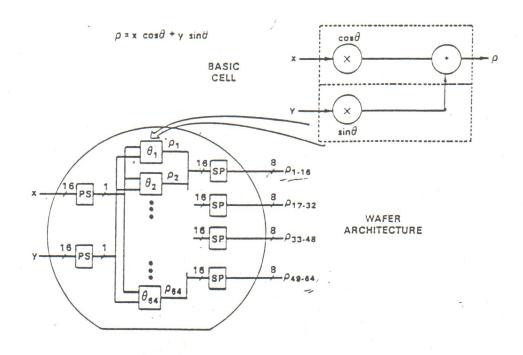
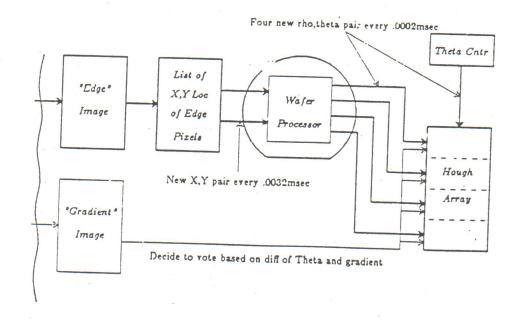



Diagramma a blocchi per il sistema di estrazione di linee

