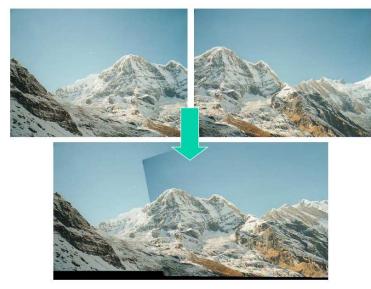
COMPUTER VISION Robust estimation

Computer Science and Multimedia Master - University of Pavia

Back to our simple motivator



Objective of the procedure
COMPUTER VISION Chap II: Robust estimation

Problem

- Corner detection and association
- ▶ Observation (x, y, x', y'): the corner (x, y) in the first image is associated to the corner (x', y') in the second image
- ightharpoonup if pure camera rotation pure between the two images $ilde{\mathbf{x}}' = \mathbf{H} ilde{\mathbf{x}}$ where :

$$\begin{bmatrix} wx' \\ wy' \\ w \end{bmatrix} = \begin{bmatrix} h_{00} & h_{01} & h_{02} \\ h_{10} & h_{11} & h_{12} \\ h_{20} & h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

by developping, we get :

$$\begin{cases} x' = \frac{h_{00}x + h_{01}y + h_{02}}{h_{20}x + h_{21}y + h_{22}} \\ y' = \frac{h_{10}x + h_{11}y + h_{12}}{h_{20}x + h_{21}y + h_{22}} \end{cases}$$

Problem

▶ the unknowns are the different h_{ij}

$$\begin{cases} x'(h_{20}x + h_{21}y + h_{22}) &= h_{00}x + h_{01}y + h_{02} \\ y'(h_{20}x + h_{21}y + h_{22}) &= h_{10}x + h_{11}y + h_{12} \end{cases}$$

$$\begin{bmatrix} x & y & 1 & 0 & 0 & 0 & -x'x & -x'y & -x' \\ 0 & 0 & 0 & x & y & 1 & -y'x & -y'y & -y' \end{bmatrix} \begin{bmatrix} h_{00} \\ h_{01} \\ h_{02} \\ h_{10} \\ h_{11} \\ h_{12} \\ h_{20} \\ h_{21} \\ h_{22} \\ h_{23} \\ h_{24} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} x_1 & y_1 & 1 & 0 & 0 & 0 & -x'_1x_1 & -x'_1y_1 \\ 0 & 0 & 0 & x_1 & y_1 & 1 & -y'_1x_1 & -y'_1y_1 \\ \vdots & \vdots \\ x_n & y_n & 1 & 0 & 0 & 0 & -x'_nx_n & -x'_ny_n \\ 0 & 0 & 0 & x_n & y_n & 1 & -y'_nx_n & -y'_ny_n \end{bmatrix} \begin{bmatrix} h_{00} \\ h_{01} \\ h_{02} \\ h_{10} \\ h_{11} \\ h_{12} \\ h_{20} \\ h_{21} \end{bmatrix} = \begin{bmatrix} x'_1 \\ y'_1 \\ \vdots \\ x'_n \\ y'_n \end{bmatrix}$$

H is determined modulo a multiplicative factor, thus we can set h_{22} to 1. We note that in order to estimate the homography we need n=4 observations. We must solve $\mathbf{Ah} = \mathbf{b}$ - easy!

$$\begin{bmatrix} x_1 & y_1 & 1 & 0 & 0 & 0 & -x'_1x_1 & -x'_1y_1 \\ 0 & 0 & 0 & x_1 & y_1 & 1 & -y'_1x_1 & -y'_1y_1 \\ \vdots & \vdots \\ x_n & y_n & 1 & 0 & 0 & 0 & -x'_nx_n & -x'_ny_n \\ 0 & 0 & 0 & x_n & y_n & 1 & -y'_nx_n & -y'_ny_n \end{bmatrix} \begin{bmatrix} h_{00} \\ h_{01} \\ h_{02} \\ h_{10} \\ h_{11} \\ h_{12} \\ h_{20} \\ h_{21} \end{bmatrix} = \begin{bmatrix} x'_1 \\ y'_1 \\ \vdots \\ x'_n \\ y'_n \end{bmatrix}$$

If n > 4, then the system is overdetermined. In order to find the least square solution for $\mathbf{Ah} = \mathbf{b}$, one has to :

- 1. compute the Singular Value Decomposition (the SVD) of $\mathbf{A} : \mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^T$
- 2. compute $\mathbf{b}' = \mathbf{U}^T \mathbf{b}$
- 3. find **y** defined as $y_i = b'_i/d_i$
- 4. the solution is $\mathbf{h} = \mathbf{V}\mathbf{y}$

What if some of the n observations are wrong?

▶ this will create major problems

What if some of the n observations are wrong?

- this will create major problems
 - obviously for n = 4 we will get a different solution

What if some of the n observations are wrong?

- this will create major problems
 - obviously for n = 4 we will get a different solution
 - but even for an over determined system, the outlier(s) will have a significant impact (even one outlier may be very detrimental)

What if some of the n observations are wrong?

- this will create major problems
 - obviously for n = 4 we will get a different solution
 - but even for an over determined system, the outlier(s) will have a significant impact (even one outlier may be very detrimental)
- ▶ all least-square based optimizations are sensitive to outliers

What if some of the n observations are wrong?

- this will create major problems
 - obviously for n = 4 we will get a different solution
 - but even for an over determined system, the outlier(s) will have a significant impact (even one outlier may be very detrimental)
- ▶ all least-square based optimizations are sensitive to outliers

Objective

solve a Computer Vision problem which requires observations

What if some of the n observations are wrong?

- this will create major problems
 - ightharpoonup obviously for n=4 we will get a different solution
 - but even for an over determined system, the outlier(s) will have a significant impact (even one outlier may be very detrimental)
- ▶ all least-square based optimizations are sensitive to outliers

- solve a Computer Vision problem which requires observations
- ... while at the same time, pruning the bad observations

What if some of the n observations are wrong?

- this will create major problems
 - ightharpoonup obviously for n=4 we will get a different solution
 - but even for an over determined system, the outlier(s) will have a significant impact (even one outlier may be very detrimental)
- ▶ all least-square based optimizations are sensitive to outliers

- solve a Computer Vision problem which requires observations
- ... while at the same time, pruning the bad observations
- underlying idea : outliers participate to "strange" solutions

Problem framework:

- observations provided by images
 - ▶ interest points (but sometimes contours, regions etc.)
 - associations : matches, optical flow fields, etc.

Problem framework:

- observations provided by images
 - ▶ interest points (but sometimes contours, regions etc.)
 - associations : matches, optical flow fields, etc.
- \blacktriangleright a significant part of the observations is generated by a mathematical model characterized by a set of parameters θ

Problem framework:

- observations provided by images
 - interest points (but sometimes contours, regions etc.)
 - associations : matches, optical flow fields, etc.
- \blacktriangleright a significant part of the observations is generated by a mathematical model characterized by a set of parameters θ

Objective

ightharpoonup détermine the parameters heta

Problem framework:

- observations provided by images
 - interest points (but sometimes contours, regions etc.)
 - associations : matches, optical flow fields, etc.
- \blacktriangleright a significant part of the observations is generated by a mathematical model characterized by a set of parameters θ

- ightharpoonup détermine the parameters heta
 - in robotics : often a movement estimation/information

Problem framework:

- observations provided by images
 - interest points (but sometimes contours, regions etc.)
 - associations : matches, optical flow fields, etc.
- \blacktriangleright a significant part of the observations is generated by a mathematical model characterized by a set of parameters θ

- ightharpoonup détermine the parameters heta
 - ▶ in robotics : often a movement estimation/information
 - tracking some targets

Problem framework:

- observations provided by images
 - interest points (but sometimes contours, regions etc.)
 - associations : matches, optical flow fields, etc.
- \blacktriangleright a significant part of the observations is generated by a mathematical model characterized by a set of parameters θ

- ightharpoonup détermine the parameters heta
 - ▶ in robotics : often a movement estimation/information
 - tracking some targets
 - the state of a physical system etc.

Problem framework:

- observations provided by images
 - interest points (but sometimes contours, regions etc.)
 - associations : matches, optical flow fields, etc.
- \blacktriangleright a significant part of the observations is generated by a mathematical model characterized by a set of parameters θ

- ightharpoonup détermine the parameters heta
 - ▶ in robotics : often a movement estimation/information
 - tracking some targets
 - the state of a physical system etc.
- lacktriangle the number of observations is large enough in order to allow us to estimate $oldsymbol{ heta}$ but ...

Problem framework:

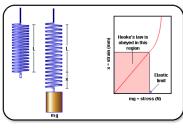
- observations provided by images
 - interest points (but sometimes contours, regions etc.)
 - associations : matches, optical flow fields, etc.
- \blacktriangleright a significant part of the observations is generated by a mathematical model characterized by a set of parameters θ

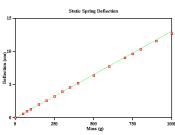
- ightharpoonup détermine the parameters heta
 - in robotics : often a movement estimation/information
 - tracking some targets
 - the state of a physical system etc.
- lacktriangle the number of observations is large enough in order to allow us to estimate heta but ...
- presence of outliers which do not respect the model

Toy example

The elastic constant of a string

- ▶ Hooke's law : F = kx
- ▶ Objective : $\theta = \{k\}$
 - \triangleright we vary N times the applied force, we measure the deformation
 - ightharpoonup N observations $\{(F_i, x_i)\}$
 - minimal set of measures for determining θ : K=2
 - in practice we use the N observations for a least square estimation, as the observations are noisy
- no outliers, all observations are explained by the model



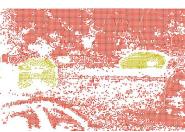


Example in vision

Estimating ego-mouvement

- ▶ *N* observations $\{x_i\}_{1 \le i \le N}$ (one obs. per pixel)
- ▶ minimal set of size K, $N \gg K$
- objective : $\theta = \{R, t\}$
- ▶ an algorithm f which provides $\theta = f(x_1, ..., x_K)$
- problem : static scene hypothesis
- ightharpoonup dynamic elements \Rightarrow observations which do not respect the model heta

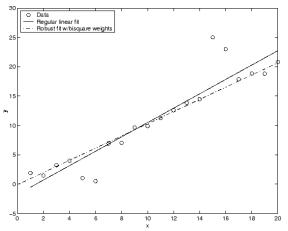
Objective : determine θ and the valid observations



The source of the problem

Influence of outliers

one may not ignore the outliers and determine the parameters of the model



▶ the least square based methods are very sensitive to outliers due to the quadratic error function $\rho(r_i) = r_i^2$

E. Aldea (CS&MM- U Pavia) COMPUTER VISION Chap II : Robust estimation (11/23)

Analysis of the set of residuals

Least Median of Squares (LMedS); we replace the sum by the median of residuals:

 $\min_{\theta} \operatorname{med} \rho(r_i)$

Analysis of the set of residuals

Least Median of Squares (LMedS); we replace the sum by the median of residuals:

$$\min_{\theta} \operatorname{med} \rho(r_i)$$

▶ Least Trimmed Squares (LTS); sorting the residuals and selecting the first N/2 < M < N

$$\min_{\theta} \sum_{i=1}^{M} \rho(r_i)$$

Analysis of the set of residuals

Least Median of Squares (LMedS); we replace the sum by the median of residuals:

$$\min_{\boldsymbol{\theta}} \operatorname{med} \rho(r_i)$$

▶ Least Trimmed Squares (LTS); sorting the residuals and selecting the first N/2 < M < N

$$\min_{\theta} \sum_{i=1}^{M} \rho(r_i)$$

ightharpoonup Exhaustive research necessary for K-tuples; breakdown point $\sim 50\%$

Analysis of the set of residuals

Least Median of Squares (LMedS); we replace the sum by the median of residuals:

$$\min_{\theta} \operatorname{med} \rho(r_i)$$

▶ Least Trimmed Squares (LTS); sorting the residuals and selecting the first N/2 < M < N

$$\min_{\theta} \sum_{i=1}^{M} \rho(r_i)$$

ightharpoonup Exhaustive research necessary for K-tuples; breakdown point $\sim 50\%$

Modifying ρ

Using instead of the quadratic error a different symmetric, positive definite function (see Huber, Tukey etc.) Breakdown point inferior to $1/{\it K}$

Analysis of the set of residuals

Least Median of Squares (LMedS); we replace the sum by the median of residuals:

$$\min_{\theta} \operatorname{med} \rho(r_i)$$

▶ Least Trimmed Squares (LTS); sorting the residuals and selecting the first N/2 < M < N

$$\min_{\theta} \sum_{i=1}^{M} \rho(r_i)$$

ightharpoonup Exhaustive research necessary for K-tuples; breakdown point $\sim 50\%$

Modifying ρ

Using instead of the quadratic error a different symmetric, positive definite function (see Huber, Tukey etc.) Breakdown point inferior to 1/K

In any case, we must separate the inliers, and only then we can apply the classical LMS.

E. Aldea (CS&MM- U Pavia) COMPUTER VISION Chap II : Robust estimation (12/23)

Random Sample Consensus

1. For T iterations / While we still have computing time

- 1. For T iterations / While we still have computing time
 - ▶ random selection of *K* observations

- 1. For \mathcal{T} iterations / While we still have computing time
 - ► random selection of *K* observations
 - ightharpoonup exact determination of heta

- 1. For T iterations / While we still have computing time
 - random selection of K observations
 - ightharpoonup exact determination of heta
 - ▶ compute the cardinal of the support for θ : $\{x_i \ t.q \ \rho(x_i, \theta) < \tau\}$

- 1. For T iterations / While we still have computing time
 - random selection of K observations
 - ightharpoonup exact determination of heta
 - ▶ compute the cardinal of the support for θ : $\{x_i \ t.q \ \rho(x_i, \theta) < \tau\}$
- 2. validate $\hat{\theta}$ having the most consistent support

- 1. For T iterations / While we still have computing time
 - random selection of K observations
 - ightharpoonup exact determination of heta
 - ▶ compute the cardinal of the support for θ : $\{x_i \ t.q \ \rho(x_i, \theta) < \tau\}$
- 2. validate $\hat{\theta}$ having the most consistent support
- 3. compute $\tilde{ heta}$ by LMS across the support of $\hat{ heta}$

Random Sample Consensus

- 1. For T iterations / While we still have computing time
 - random selection of K observations
 - ightharpoonup exact determination of heta
 - ▶ compute the cardinal of the support for θ : $\{x_i \ t.q \ \rho(x_i, \theta) < \tau\}$
- 2. validate $\hat{\theta}$ having the most consistent support
- 3. compute $ilde{ heta}$ by LMS across the support of $\hat{ heta}$

Parameters

ightharpoonup for including an observation in the support set

Random Sample Consensus

- 1. For T iterations / While we still have computing time
 - random selection of K observations
 - ightharpoonup exact determination of heta
 - ▶ compute the cardinal of the support for θ : $\{x_i \ t.q \ \rho(x_i, \theta) < \tau\}$
- 2. validate $\hat{\theta}$ having the most consistent support
- 3. compute $ilde{ heta}$ by LMS across the support of $\hat{ heta}$

Parameters

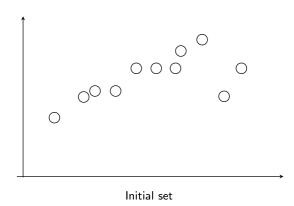
- ightharpoonup for including an observation in the support set
- ▶ the number of draws P

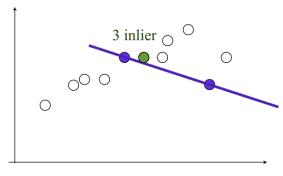
Random Sample Consensus

- 1. For T iterations / While we still have computing time
 - random selection of K observations
 - ightharpoonup exact determination of heta
 - ▶ compute the cardinal of the support for θ : $\{x_i \ t.q \ \rho(x_i, \theta) < \tau\}$
- 2. validate $\hat{\boldsymbol{\theta}}$ having the most consistent support
- 3. compute $ilde{ heta}$ by LMS across the support of $\hat{ heta}$

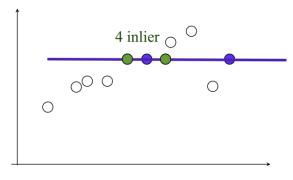
Parameters

- ightharpoonup for including an observation in the support set
- ▶ the number of draws P
- depending on the application and on the inlier proportion

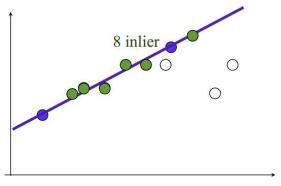




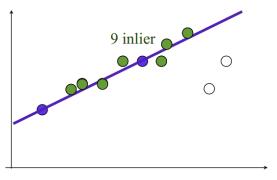
Fit line - 3 inliers



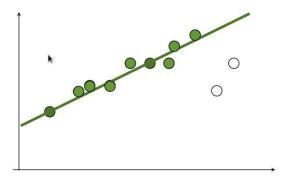
Fit line - 4 inliers



Fit line - 8 inliers



Fit line - 9 inliers



Final estimation by least squares

Question 1

Let us consider a parameter estimation problem with $\theta \in \mathbb{R}^5$. Assuming that the observations exhibit an outlier percentage f=0.4, what is the number of draws T we should perform in order to recover the correct model parameters with a probability p=0.99?

Question 2

Using a LASER device, a small robot has mapped an empty room. The result is a point cloud, in which 40%, 30% et 20% of the points belong to three walls respectively, and 10% of the points represent outliers. What is the number of draws required in order to recover the largest wall with a probability p = 0.99?

Question 3

For the same setting as in Question 2, what is the number of draws required in order to recover any wall with a probability p=0.99?

(22/23)

Question 4

For the same setting as in Question 2, propose an algorithm for extracting all the walls from the point cloud.