

SEA Vision @ UniPV Dec 5th 2024

Michele Antolini Technical Product Manager

mantolini@seavision-group.com

Mattia Boggiani OT Software Development Manager

mboggiani@seavision-group.com

Business areas

Vision inspection systems

Serialization and Aggregation solutions

4.0 Pharma Software Suite

Software points of strength and

30 years of experience 100% Life Science focused

Full in-house software development -Proprietary Algorithms

In-house electronic and mechanical design

Full stack solution for Track&Trace and Brand Protection

Wide Experience and Consultancy for digitalization processes

+ 2000

Lines Managed in the world

+ 7000

Vision systems installed worldwide (+18.000 cameras)

Some of our Best Pharma Customers

University and High School Co-operations

POLITECNICO

MILANO 1863

Politecnico di Torino

Serialization and aggregation hierarchy model

(according to ISA 95)

SEAVISION

Harlequin Applications

Visual inspection on tablets, capsules and blisters SEAVISION

Blister inspection

NN SO

Count

Multi-part inspection

Colored ring inspection

Characters

- Pharmacode
- Dual track
 pharmacode
- 128 code
- Code 39
- 2/5 Code
- 32 Code
- EAN8
- EAN13
- UPCA
- UPCE
- RSS-14
- RSS14 Stacked
- RSS Limited

ABCDEFGHIJKLMNOPQ RSTUVWXYZÀÅÉÎÕØÜa

AO.

012345

Серия: 030

Fassi AO

SEA

NK:

Cepv

Годе CIH

SE

Tracker | Serialization possible configuration on print and labelling machine

on carton flap (operator side)

Click on the videos to play

...Only one?

PINHOLES

Our Artificial Intelligence vision system has detected many more: lots of pinholes and differences in colour, as well as the scratch you saw, visible with the naked eye.

Line Clearance

Harlequin Architecture

Harlequin architecture

Library	Responsibility
libseaargo	Mercury library integration.
libseacomm	Communication with peripherals.
libseacommon	Business-logic shared with layers 3 and 4.
libseatensor	Data structures and operators on tensors.
libseathread	Multi-threading management.
libseatools	General-purpose utility.
libseautil	MFC-based general-purpose utilities.
libseavision	Vision algorithms.
mercury	Integrated vision system to offer neural network evaluation tools.

1. Code reading

Analysis of **performances** and comparison between our linear, QR and datamatrix code reader and state of the art in literature (**timing, grading, robustness**)

- Creation of a hybrid test dataset: **real** (we can provide support) and **synthetic** (with controlled degradation)
- Can be limited to QR codes but best if extendable to DataMatrix and Barcodes

2D Barcode

2D Barcode

PDF417

2D Barcode

Aztec 2D Barcod

Maxicode 2D Barcode

1. Code reading

ISO/IEC 15415 Quality Parameters

Symbol Contrast refers to the difference between the darkest and the lightest modules.

Modulation measures local variations in contrast.

Fixed Pattern Damage includes errors with the L sides or clock pattern or quiet zone.

Axial Non-uniformity refers to the uneven scaling of the code.

Grid Non-uniformity measures the biggest deviation from the grid.

2. Image Processing algorithms

Analysis and comparison between legacy, new and SoA for selected image processing algorithms in our library (i.e. morphology, connected-component labeling, edge detection).

The goals are:

- Compare legacy vs new algorithms in place vs state of the art
- Create a "datasheet" for our image processing algorithms
- Algorithm instrumentation and automate measurements

3. Domain Specific Language (DSL)

Literature review and proposal for a Domain Specific Language to describe image processing sequence for anomaly detection

```
$\langle statement \vee := [Under \langle subprocess \vee \vee \vee i \vee
```


4. Synthetic input data

SEAVISION

System to create synthetic input, using photorealistic rendering techniques (and related tools) to be used as performance testing.

- Geometry (mesh)
 - Bonus: procedural mesh shattering / degradation
- Materials (shaders)
 - Bonus: procedural surface anomalies
- Lighting (raytrace and postprocess)
- Camera lenses: Field of View (FoV), Depth of Field (DoF), distortions,

4. Synthetic input data

Start with the Blender Donut first! https://www.youtube.com/watch?v=B0J27sf9N1Y

Contacts

Michele Antolini

Technical Product Manager

mantolini@seavision-group.com

Mattia Boggiani

OT Software Development Manager

mboggiani@seavision-group.com