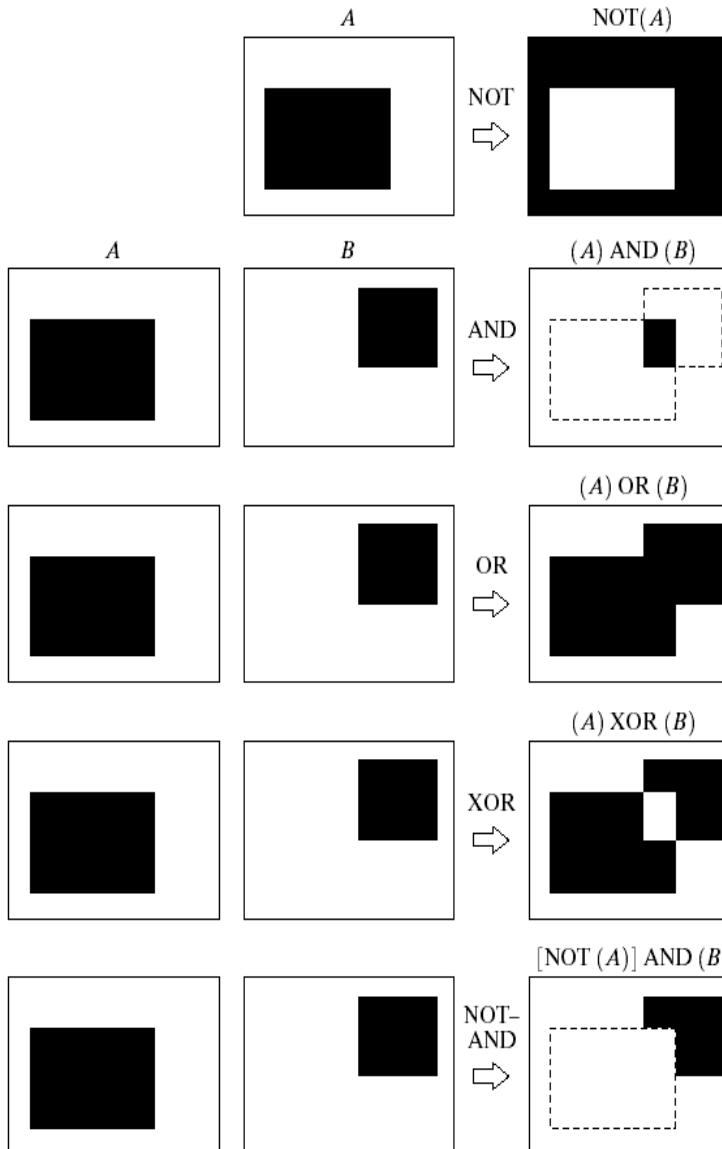


Mathematical Morphology

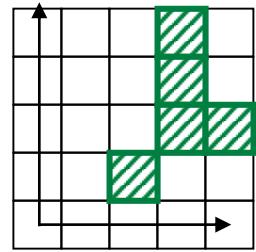
Mathematical Morphology

❖ **Mathematical Morphology** was developed in France (G. Matheron e J. Serra, Ecole des Mines) and in different form with the name **Image Algebra** in USA (S. R. Sternberg, Michigan University).

Logic operators between binary images

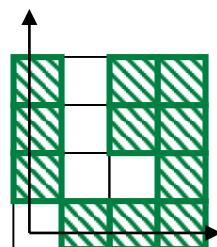


Preliminary Statements



$A_{(2,1)}$

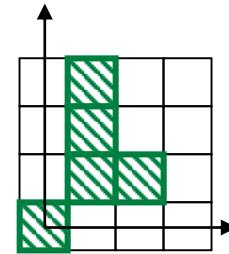
• $A \subseteq E^n, t \in E^n$



A^c

• Translation of A by a vector t

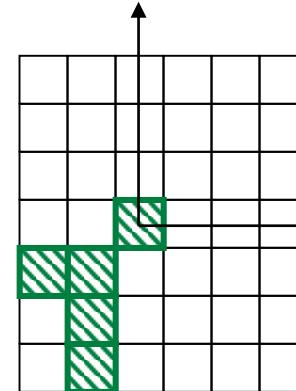
$$A_t = \{ c \in E^n \mid c = a + t, a \in A \}$$



A

• Reflection of A

$$A_r = \{ c \mid c = -a, a \in A \}$$



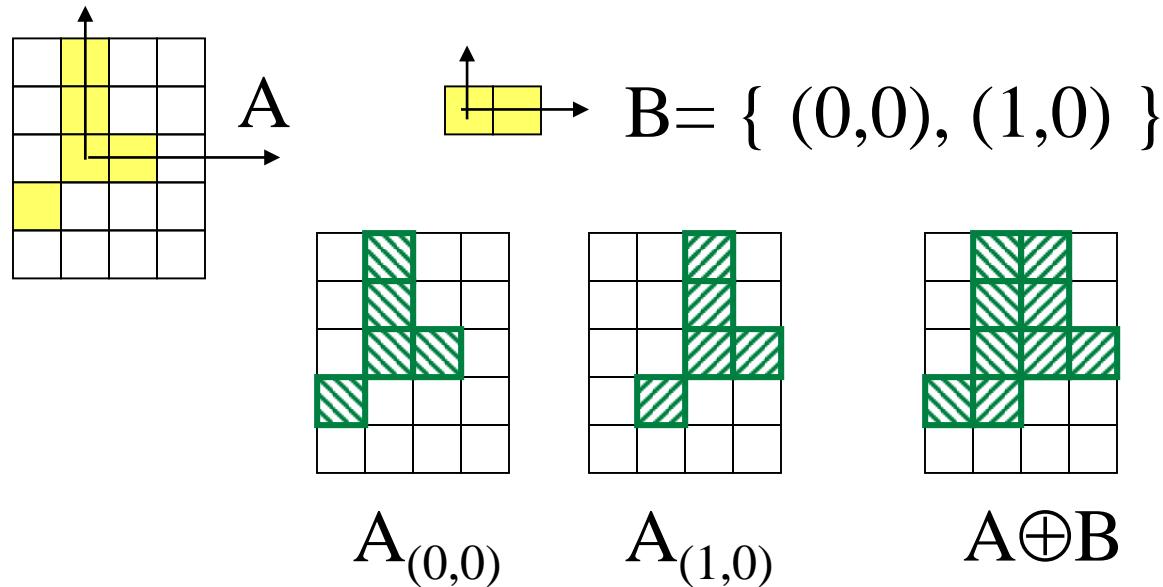
$A^r \wedge A$

• Complement of A

$$A_c = E^n - A$$

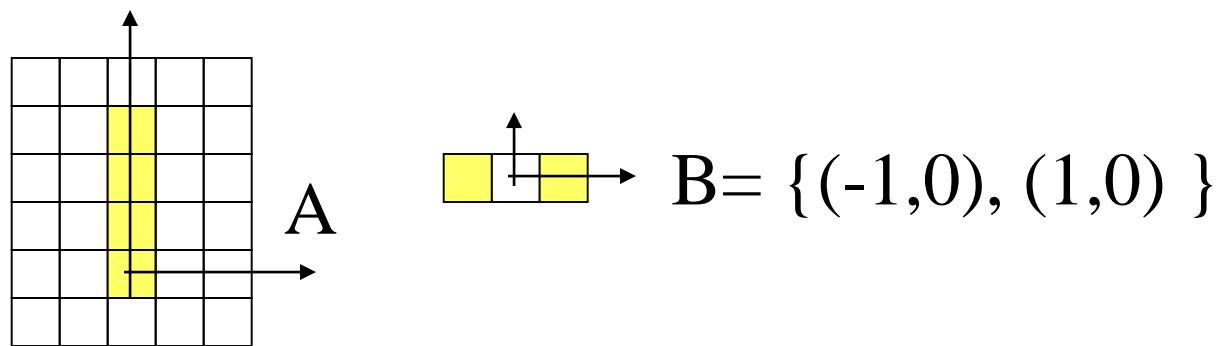
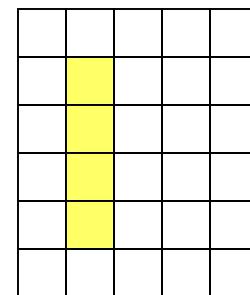
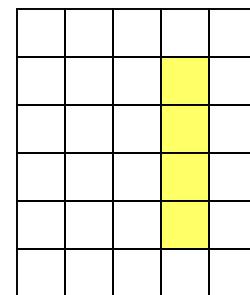
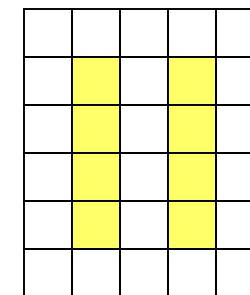
Minkowski sum (Dilation)

- ◆ $A \oplus B = \{ c \in E^n \mid c = a + b, a \in A, b \in B \}$
- ◆ $A \oplus B = \cup A_b, b \in B$
- ◆ It can be easily shown that: $A \oplus B = B \oplus A$

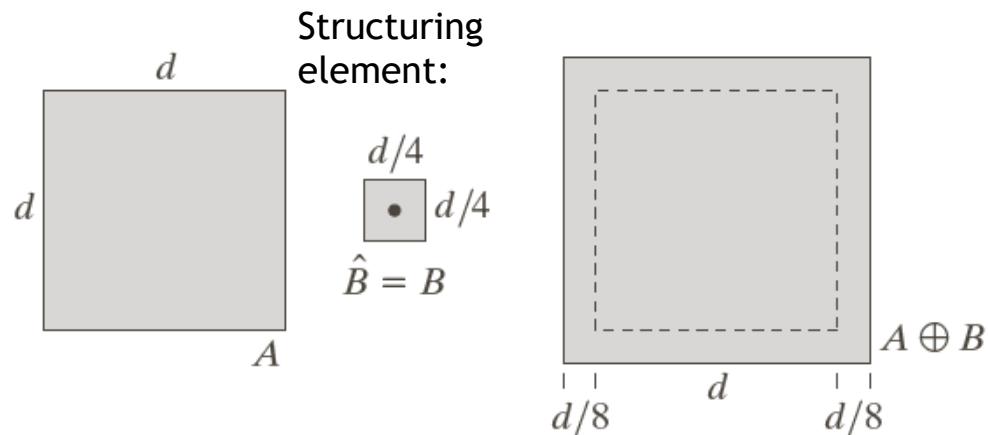
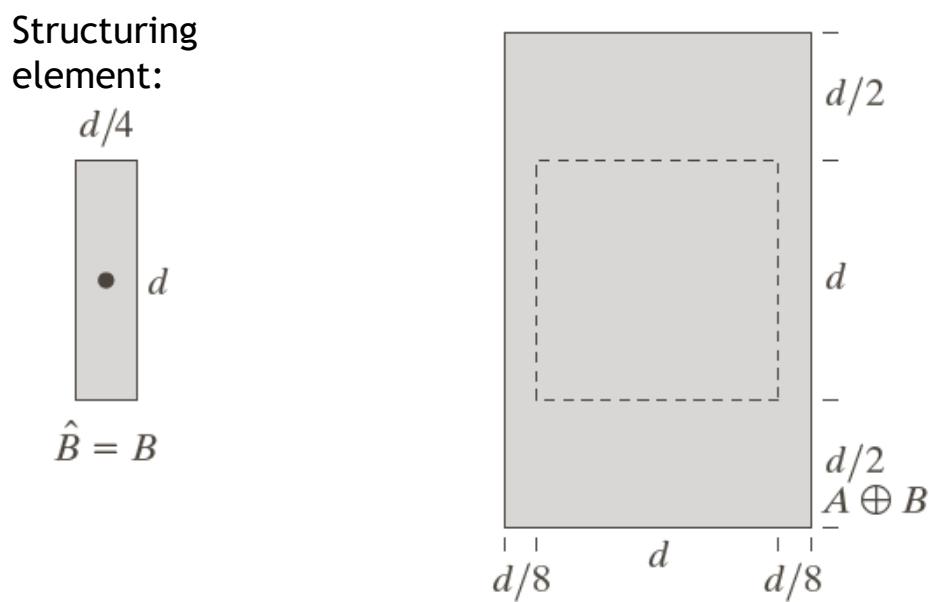


Dilation

- B is usually called *structuring element*

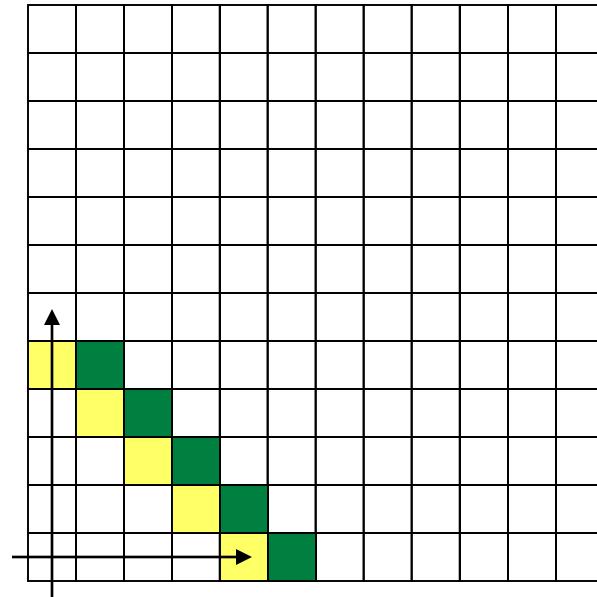

$$A_{(-1,0)}$$

$$A_{(1,0)}$$

$$A \oplus B$$

Dilation

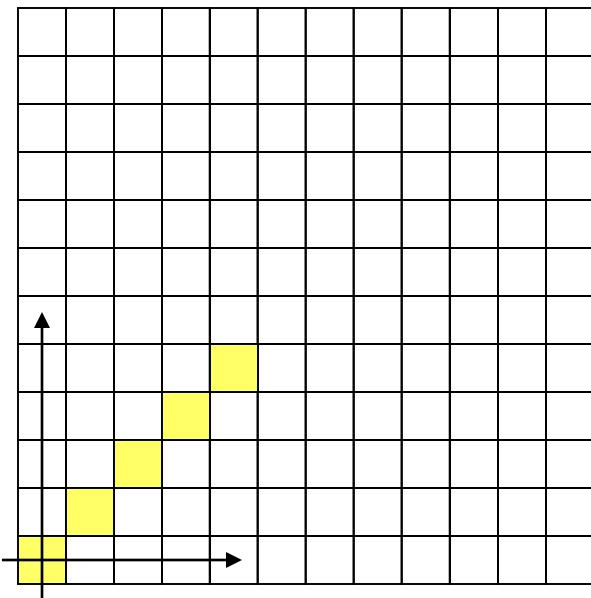


Dilation

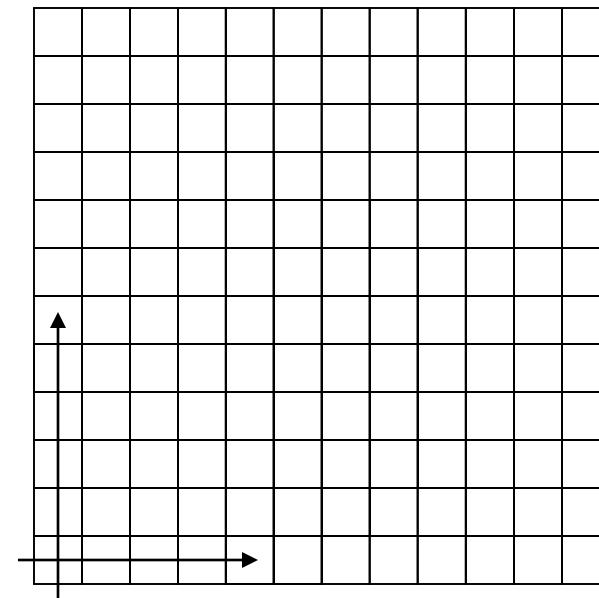
Structuring
element:



B



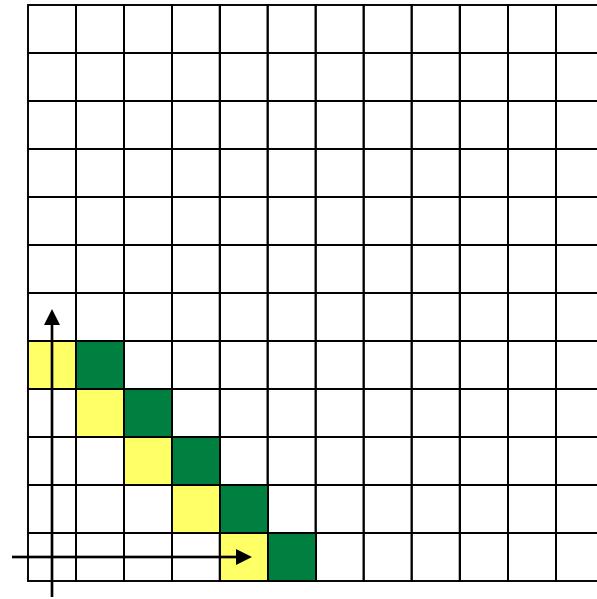
A



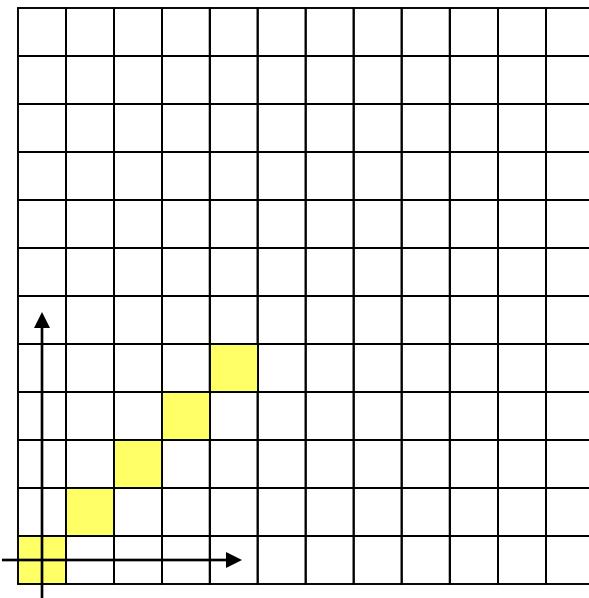
$A \oplus B$

Dilation

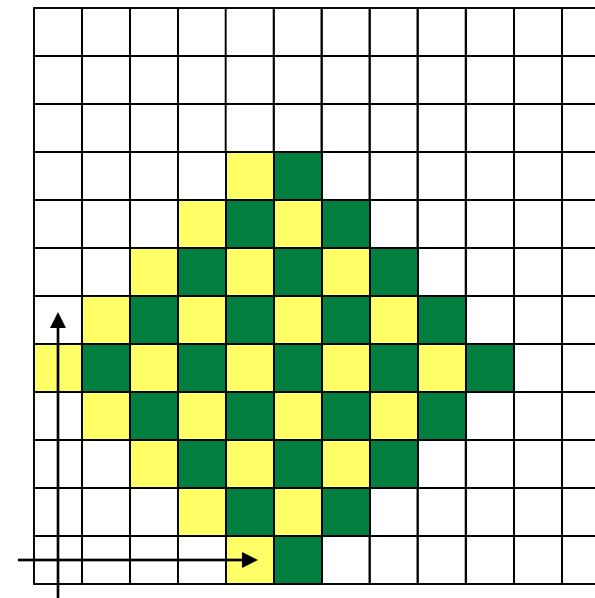
Structuring
element:



B

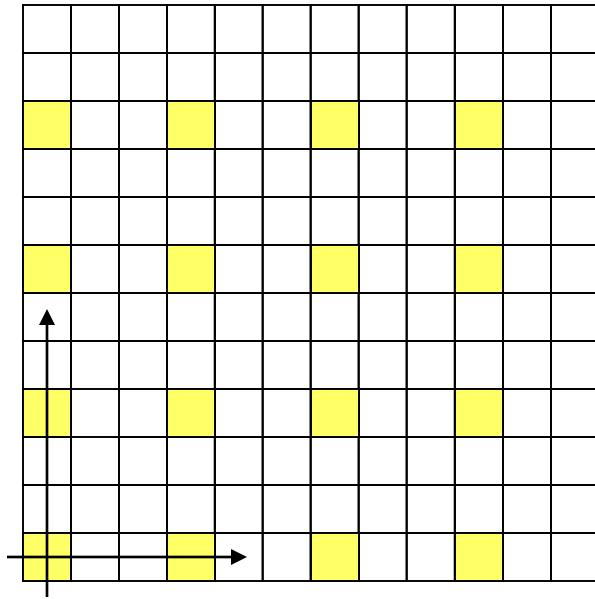


A

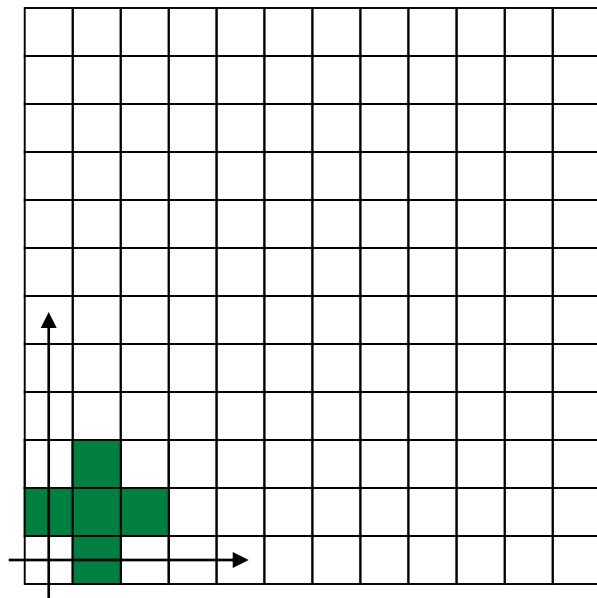


$A \oplus B$

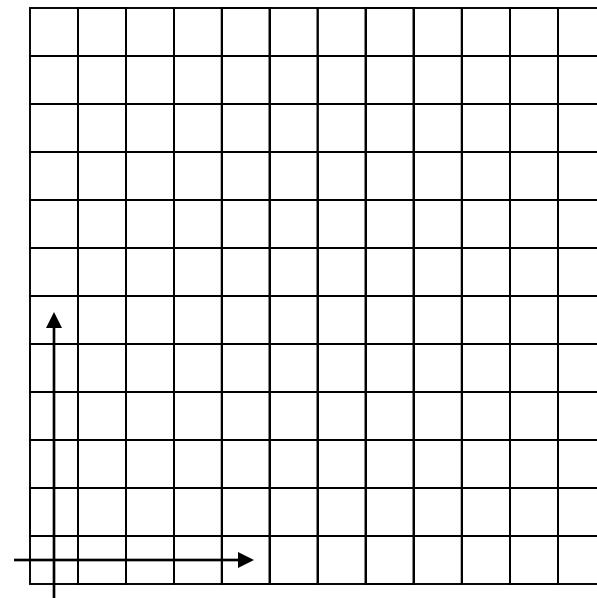
Dilation



A



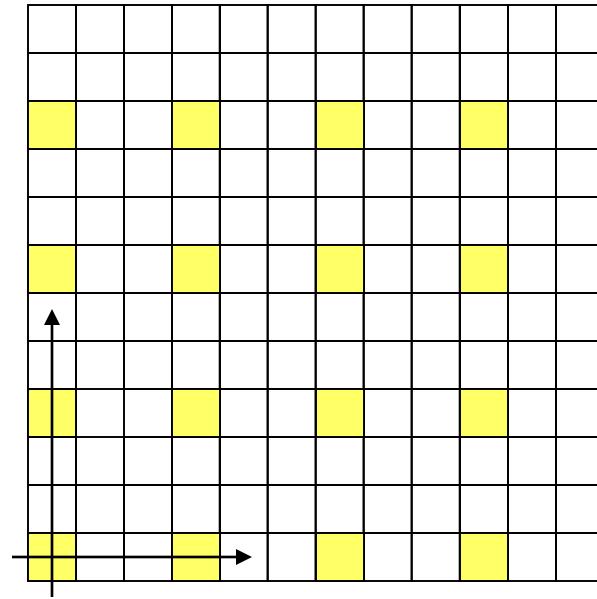
B



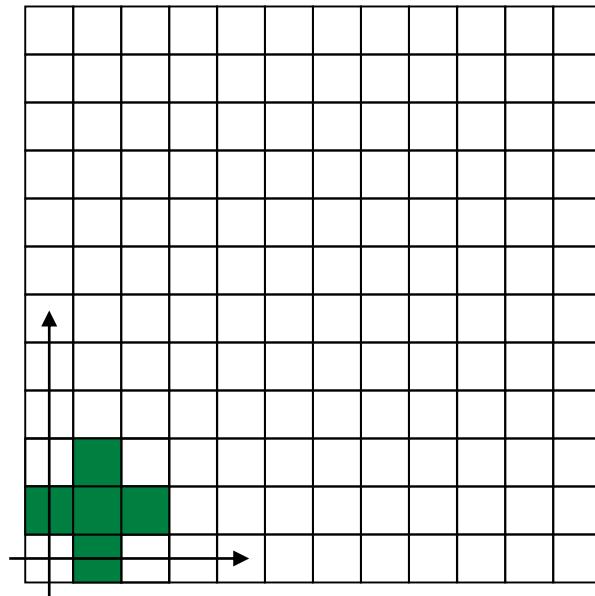
$A \oplus B$

Structuring
element:

Dilation

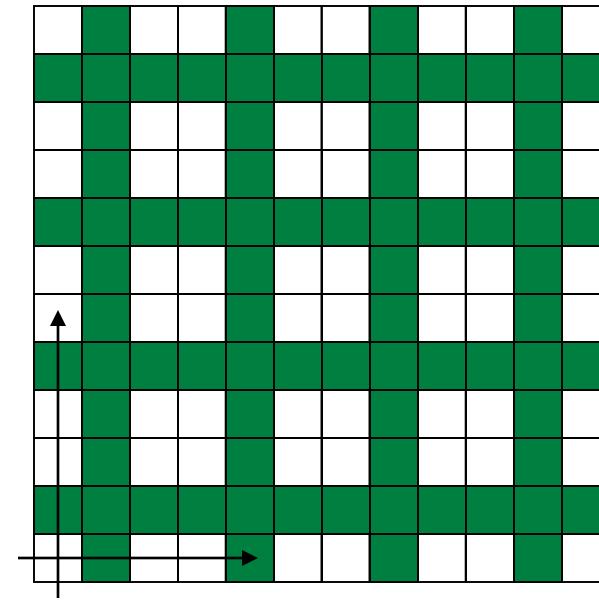


A



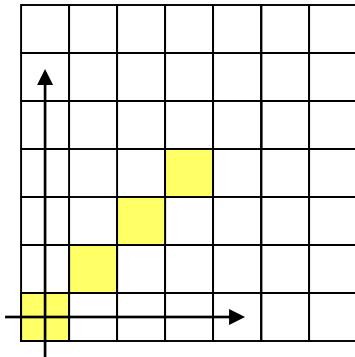
Structuring
element:

B



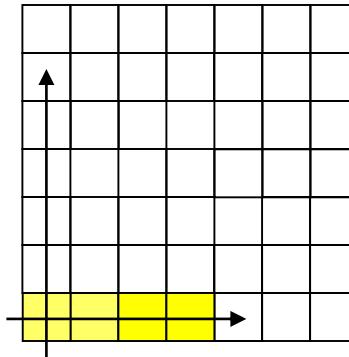
$A \oplus B$

Dilation

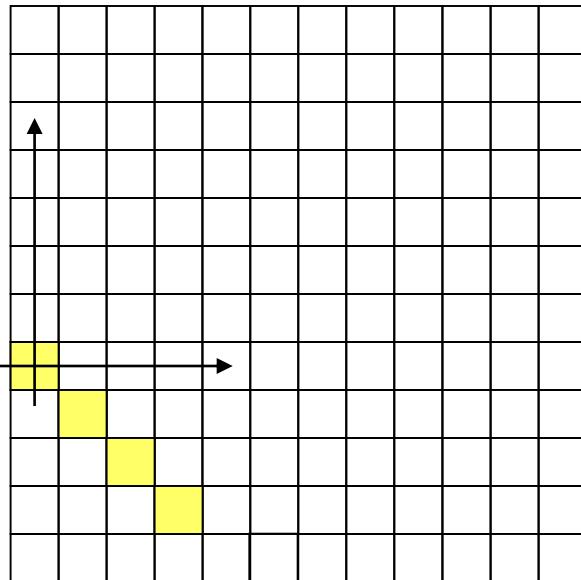


A

Structuring
element 1:

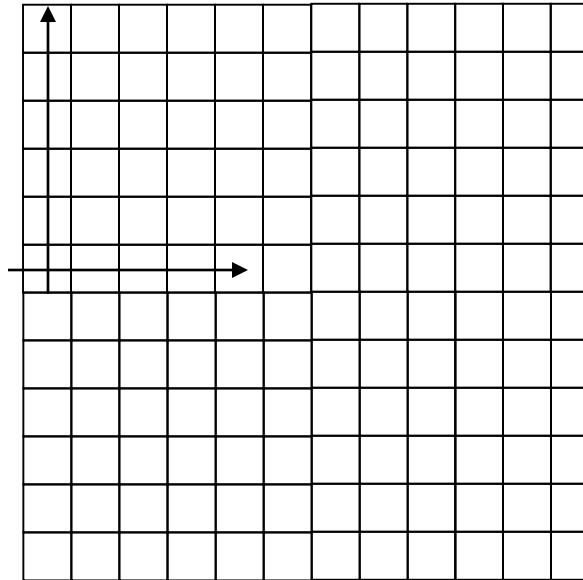


B



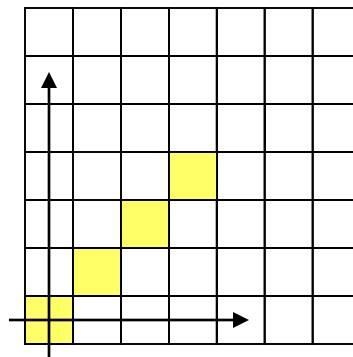
Structuring
element 2:

C

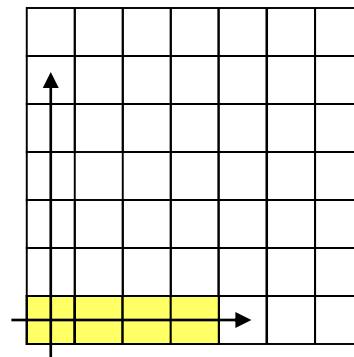


$A \oplus B \oplus C$

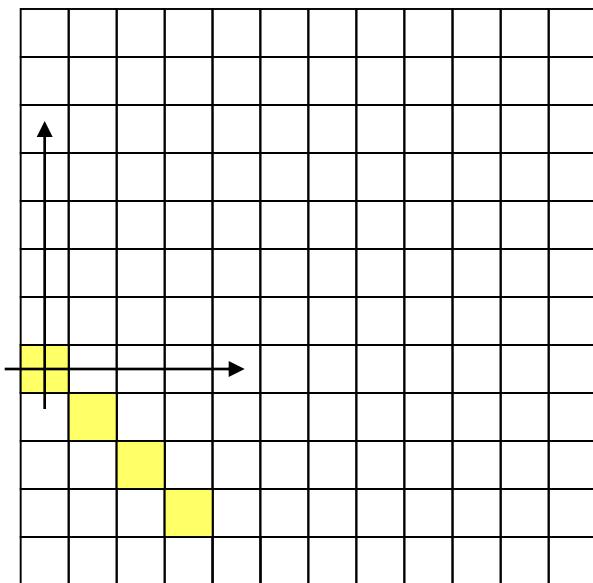
Dilation



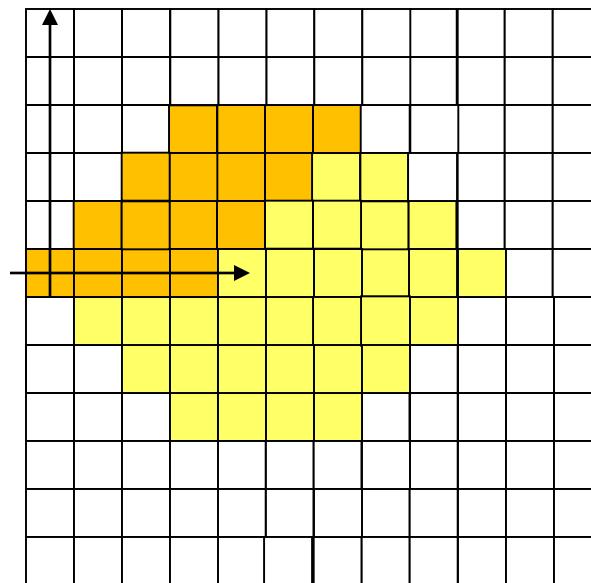
A



B



C



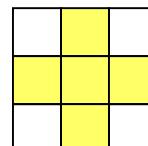
$A \oplus B \oplus C$

Dilation

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.

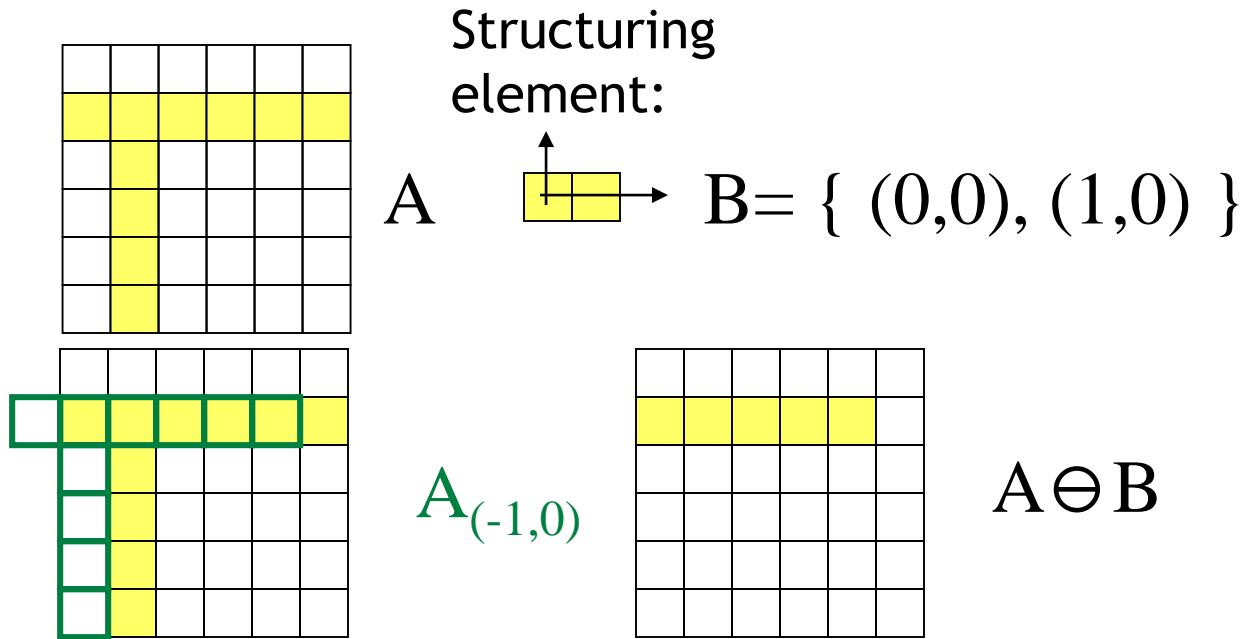
Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.

Structuring element:

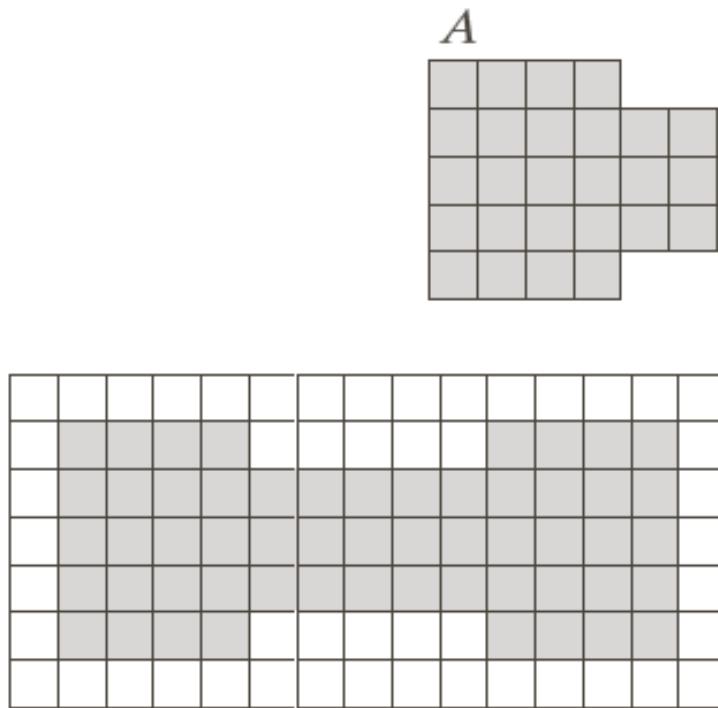
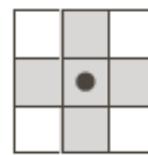


Minkowski difference (Erosion)

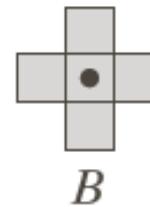
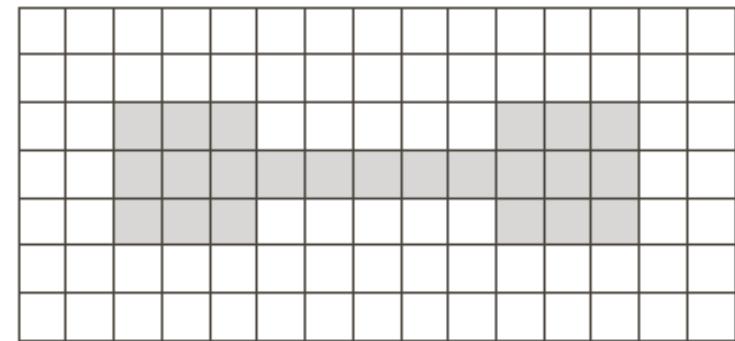
- ◆ $A \ominus B = \{ c \in E^n \mid c + b \in A, \text{ for each } b \in B \}$
- ◆ $A \ominus B = \bigcap_{b \in B} A_{-b}$
- ◆ $A \ominus B = \{ c \in E^n \mid B_c \subset A \}$



Erosion

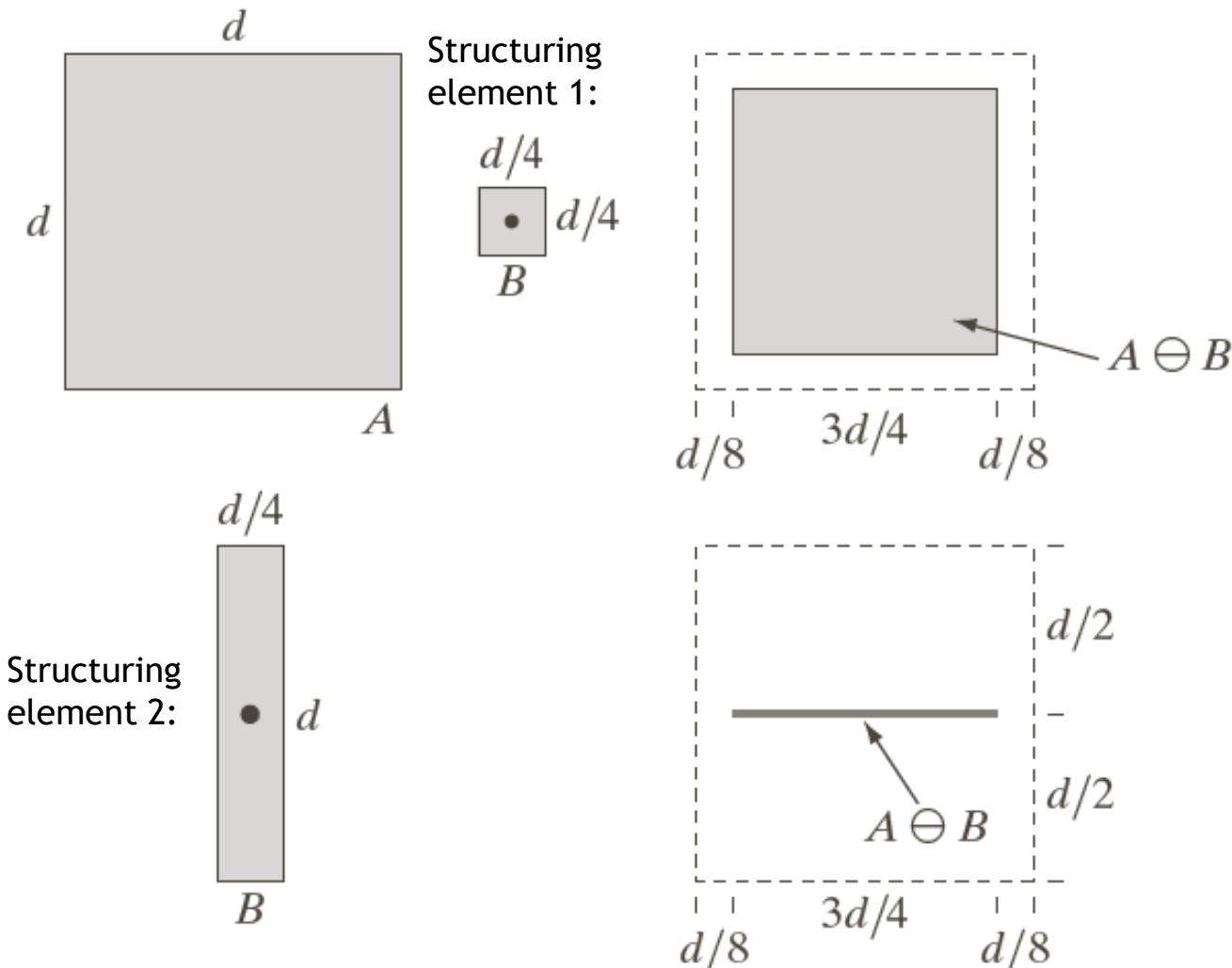


Structuring
element:

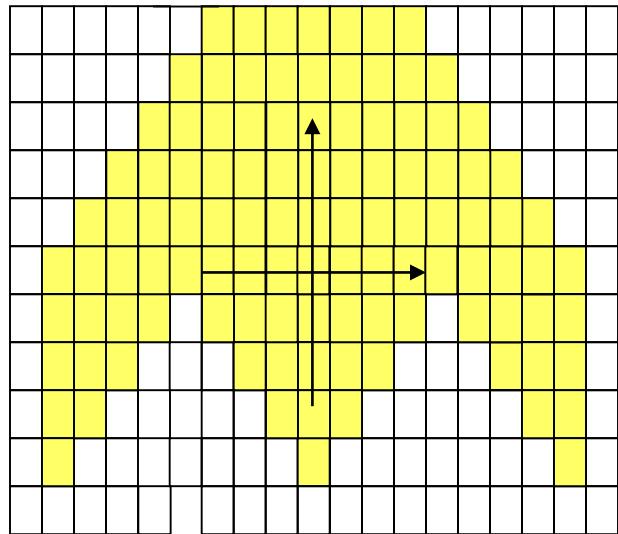


$$A \ominus B$$

Erosion

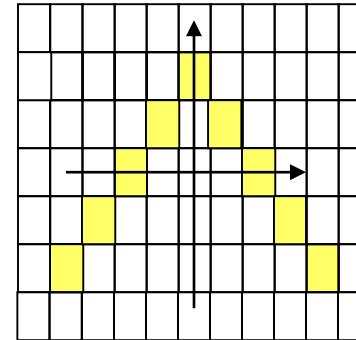


Erosion

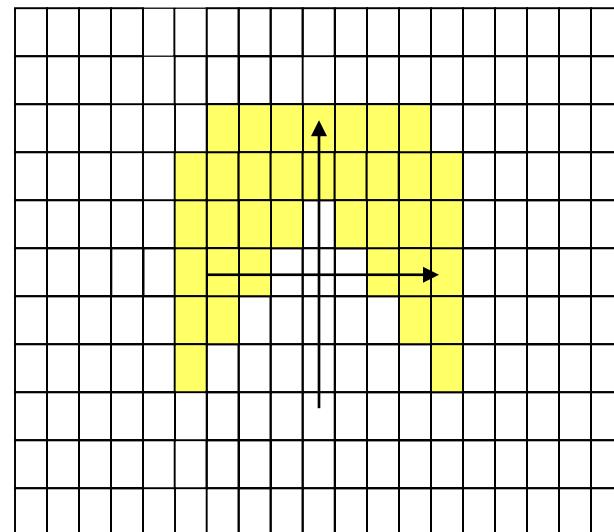


A

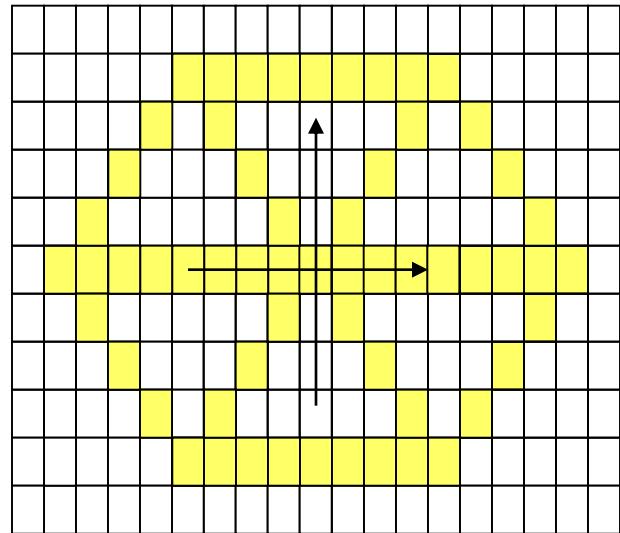
Structuring element:



B

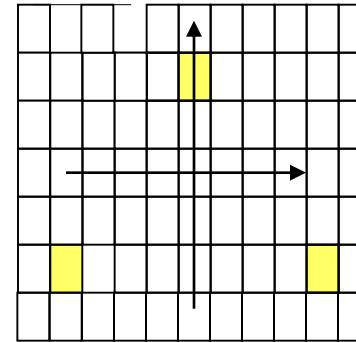


Erosion

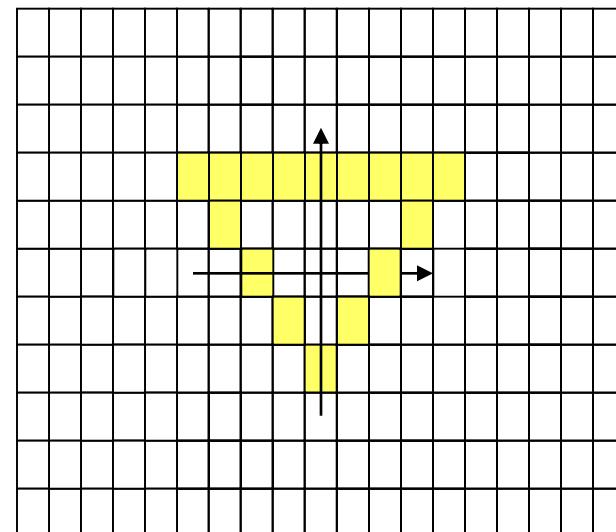


A

Structuring element:

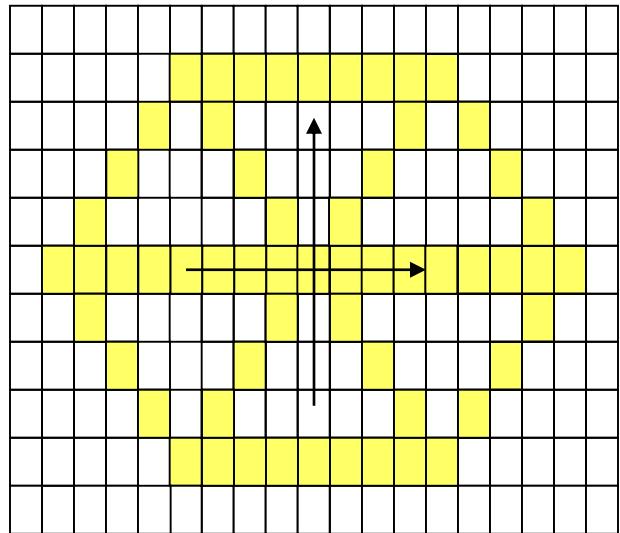


B

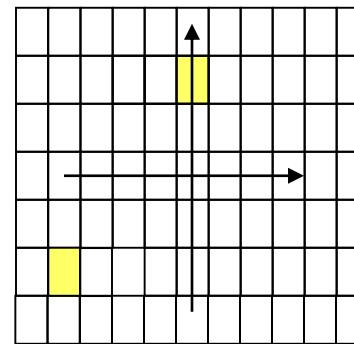
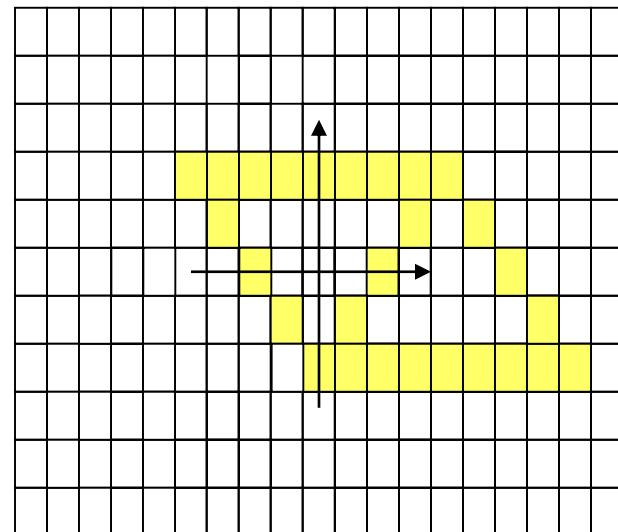


$A \ominus B$

Erosion



Structuring element:



Erosion

Original image

Structuring
element: .

Eroded once

Eroded twice

Dilation (+) and Erosion (-) properties

$$A + \{\emptyset\} = A - \{\emptyset\} = A$$

$$A + B = (A^c - B^r)^c$$

$$A - B = (A^c + B^r)^c$$

$$(A+B)^c = A^c - B^r$$

$$A + B_t = (A + B)_t$$

$$A - B_t = (A - B)_{-t}$$

$$A + \{a\} = A - \{a\}^r = A_a, \text{ Translation}$$

Erosion and Dilation Duality Theorem: Dilation and Erosion transformation bear a similarity, what one does to image foreground and the other does for the image background.

Similar but not identical to De Morgan rule in Boolean Algebra

Decomposition:

$$B = B_1 + B_2 + B_3 + \dots + B_n$$

$$A + B = (\dots(((A + B_1) + B_2) + B_3) + \dots) + B_n$$

$$A - B = (\dots(((A - B_1) - B_2) - B_3) - \dots) - B_n$$

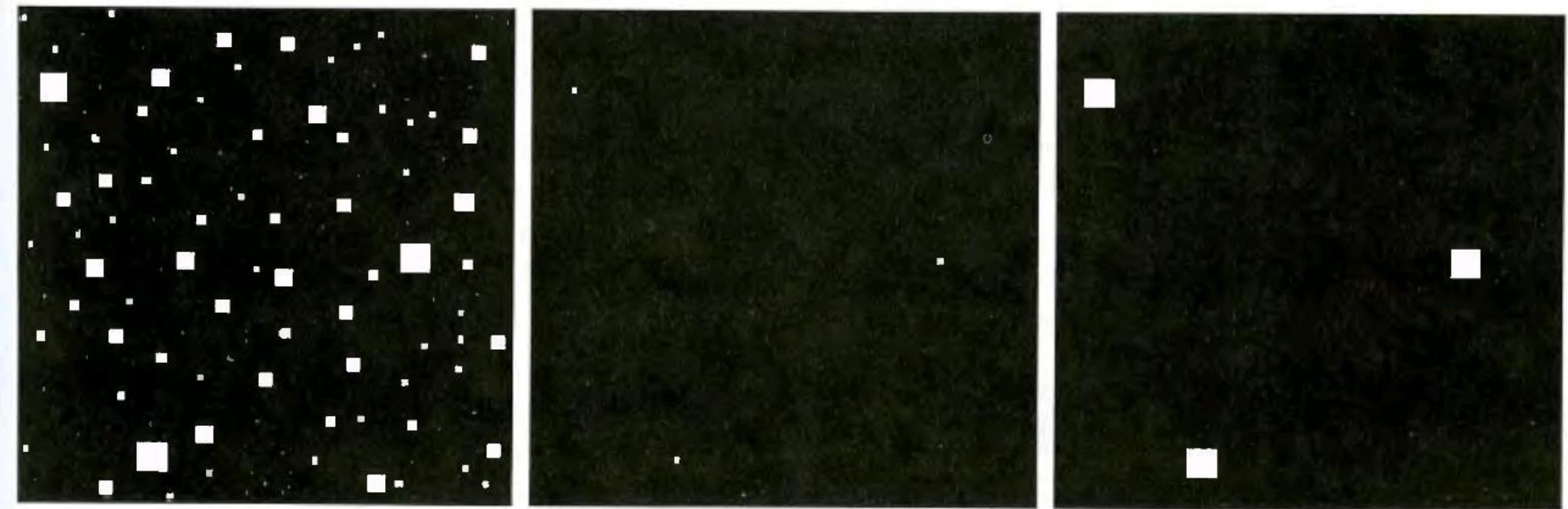
Dilation (+) and Erosion (-) properties

$$\begin{array}{ll} (A+B)+C=A+(B+C) & (A-B)-C=A-(B+C) \\ (A \cup B)+C=(A+C) \cup (B+C) & (A \cap B)-C=(A-C) \cap (B-C) \\ A+(B \cup C)=(A+B) \cup (A+C) & A-(B \cup C)=(A-C) \cap (B-C) \end{array}$$

$$\begin{array}{ll} A \subseteq B \Rightarrow (A+C) \subseteq (B+C) & A \subseteq B \Rightarrow (A-C) \subseteq (B-C) \\ B \subseteq C \Rightarrow (A-B) \supseteq (A-C) & \end{array}$$

$$\begin{array}{ll} (A \cap B)+C \subseteq (A+C) \cap (B+C) & (A \cup B)-C \supseteq (A-C) \cup (B-C) \\ A-(B \cap C) \supseteq (A-C) \cup (B-C) & \end{array}$$

Erosion and Dilation summary



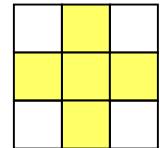
a b c

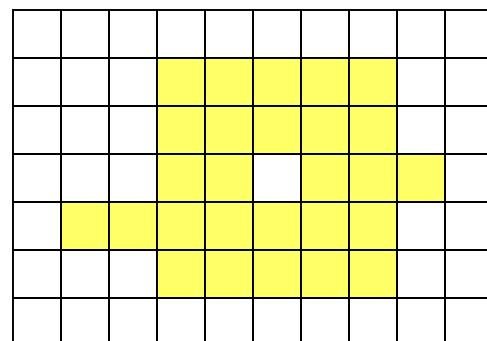
FIGURE 9.7 (a) Image of squares of size 1, 3, 5, 7, 9, and 15 pixels on the side. (b) Erosion of (a) with a square structuring element of 1's, 13 pixels on the side. (c) Dilation of (b) with the same structuring element.

Structuring
element: ■

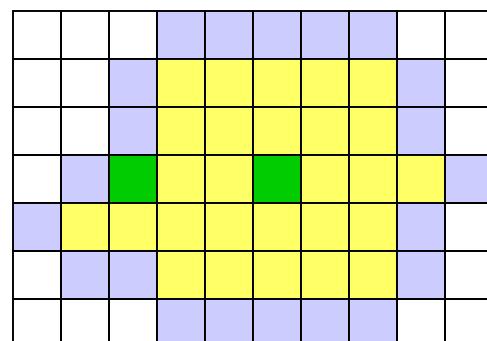
Closing operator

- ◆ $C(A, K) = (A \oplus K) \ominus K$
- ◆ Operator idempotent (the reapplication has not further effects): $A \subseteq C(A, K) = C(C(A, K), K)$

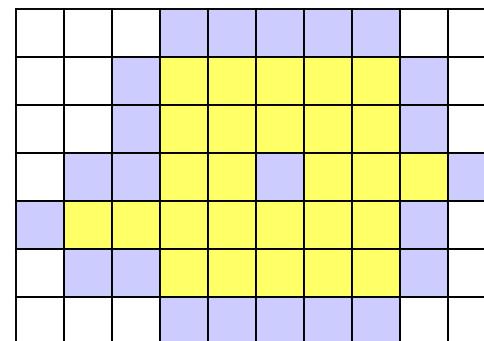
Structuring element:
 K



A



$(A \oplus K) \ominus K$

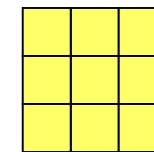


$A \oplus K$

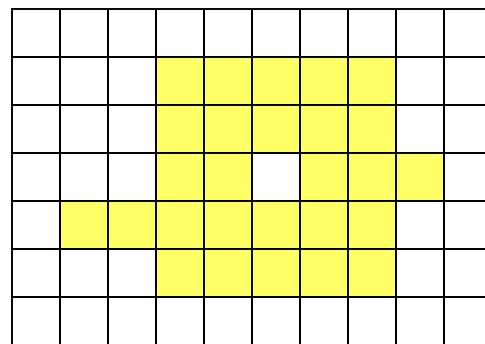
Closing operator

◆ $C(A, K) = (A \oplus K) \ominus K$

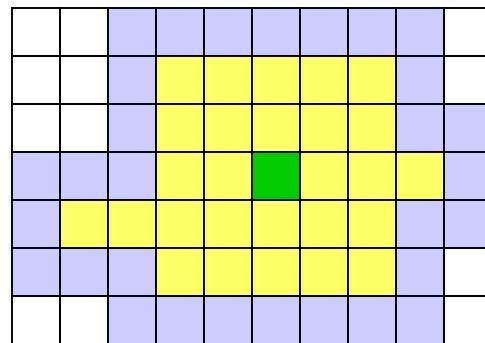
Structuring
element:



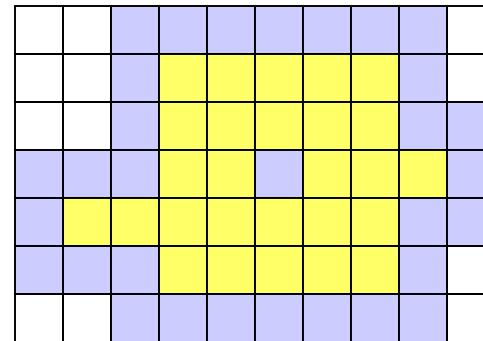
K



A

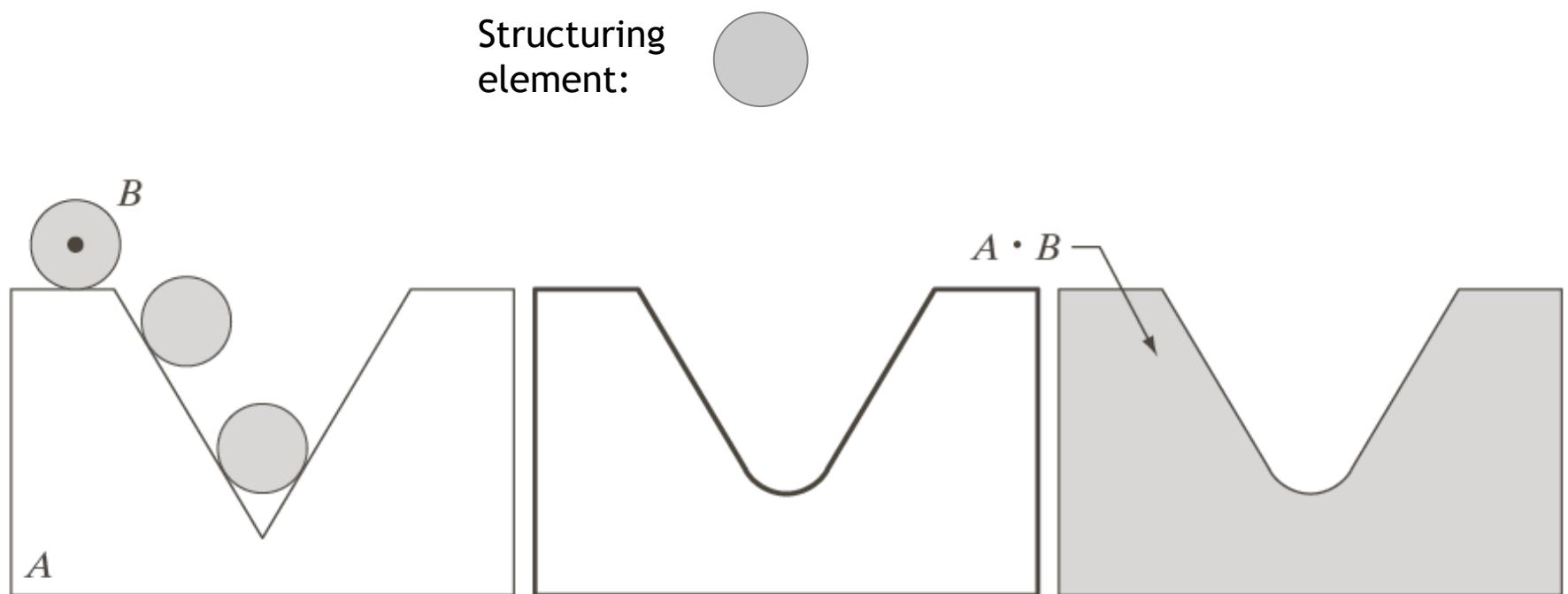


$(A \oplus K) \ominus K$



$A \oplus K$

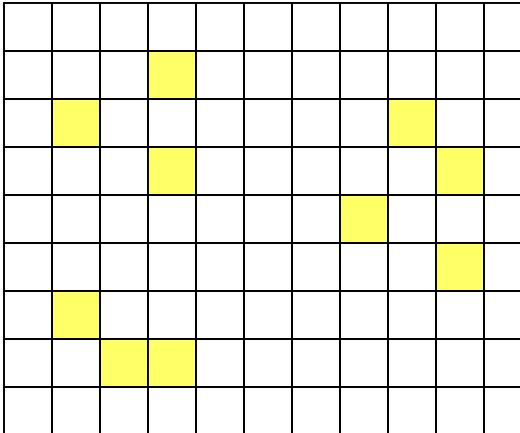
Closing



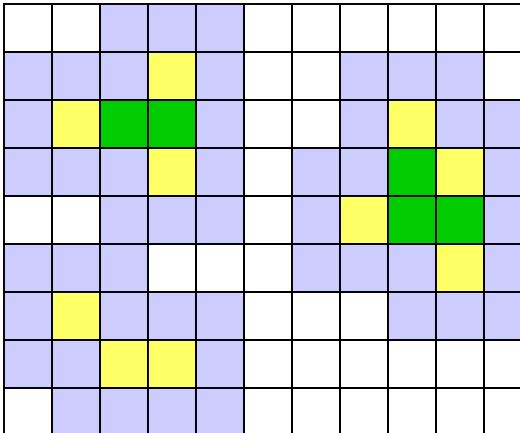
Closing operator

◆ $C(A, K) = (A \oplus K) \ominus K$

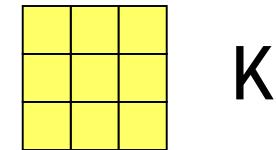
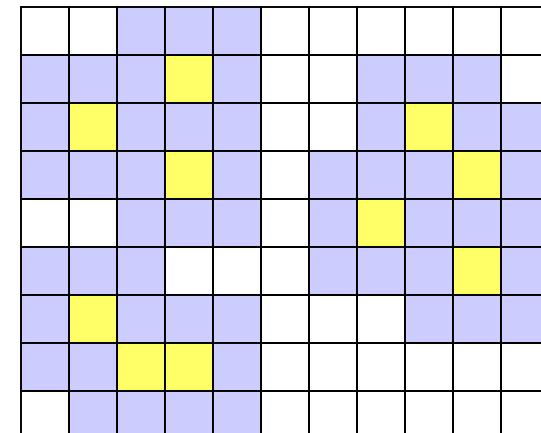
A



$(A \oplus K) \ominus K$



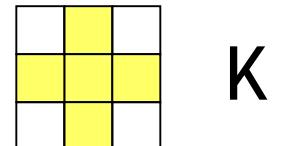
Structuring
element:



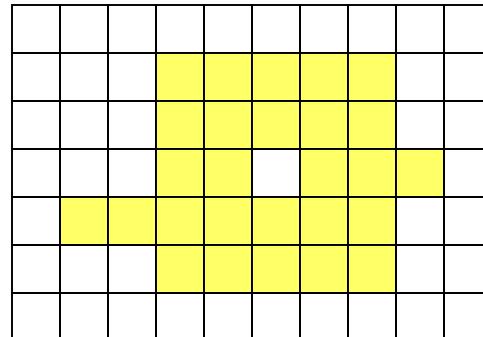
Opening operator

- ◆ $O(A, K) = (A \ominus K) \oplus K$
- ◆ Operator idempotent (the reapplication has not further effects): $O(O(A, K), K) = O(A, K) \subseteq A$

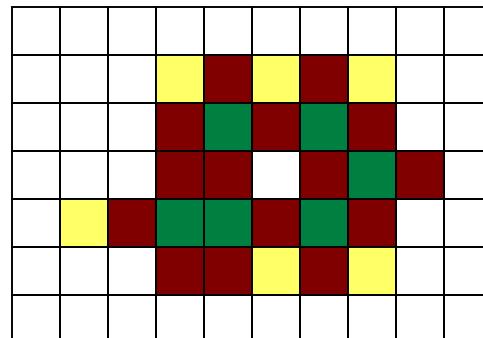
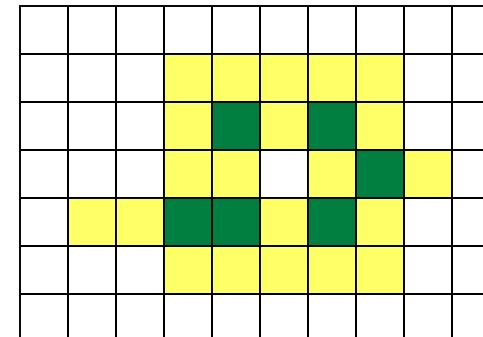
Structuring
element:



A



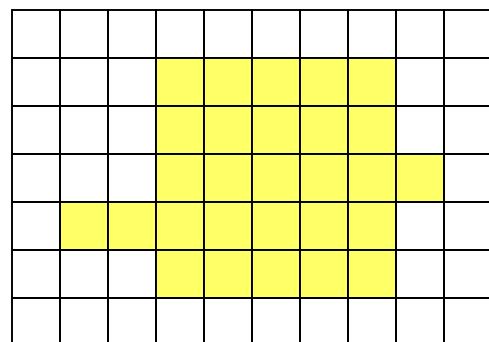
$(A \ominus K) \oplus K$



$A \ominus K$

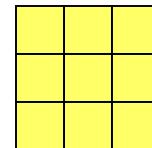
Opening operator

$$\star O(A, K) = (A \ominus K) \oplus K$$

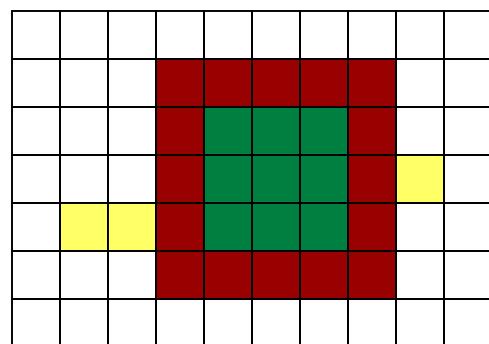


A

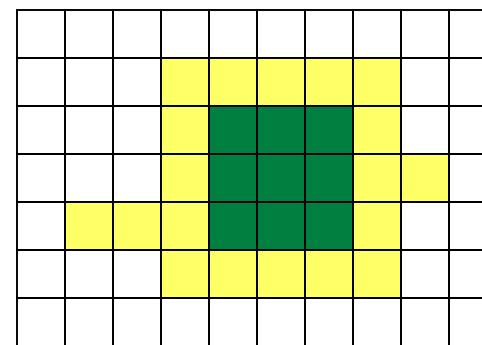
Structuring
element:



K

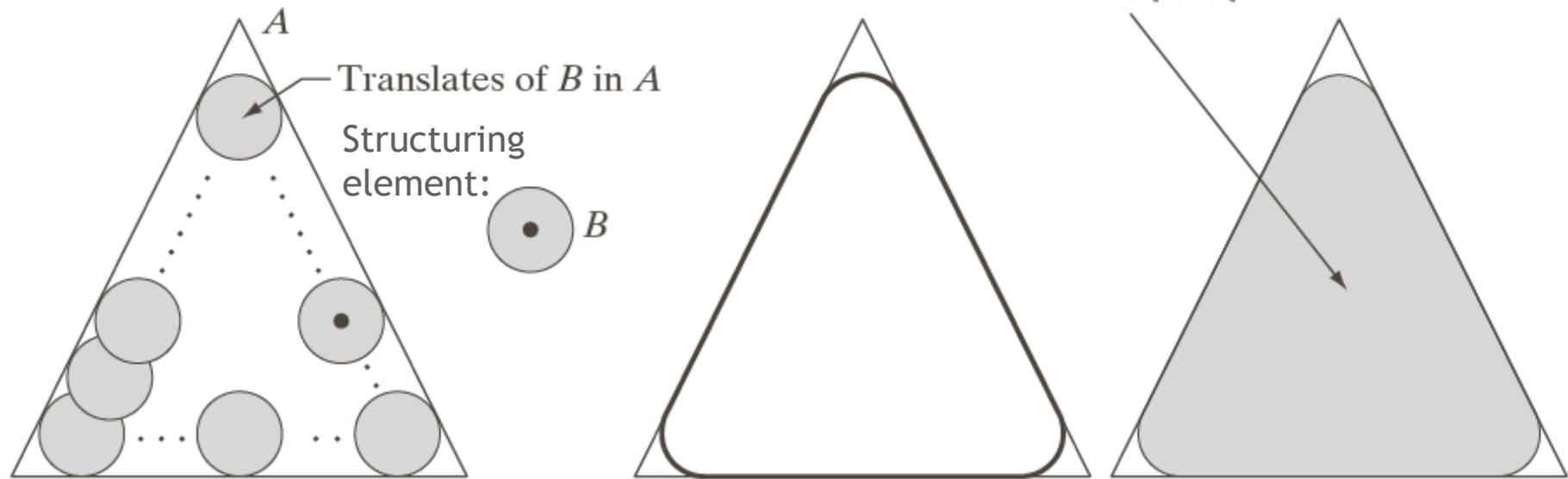


$(A \ominus K) \oplus K$

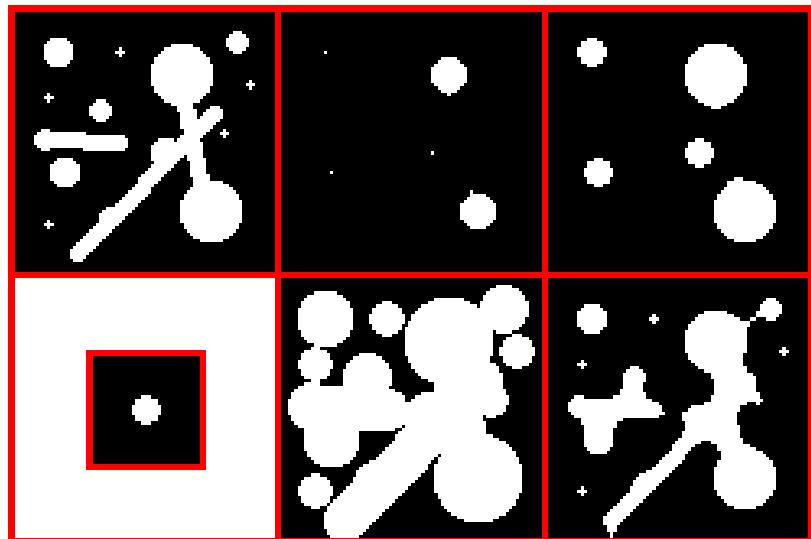
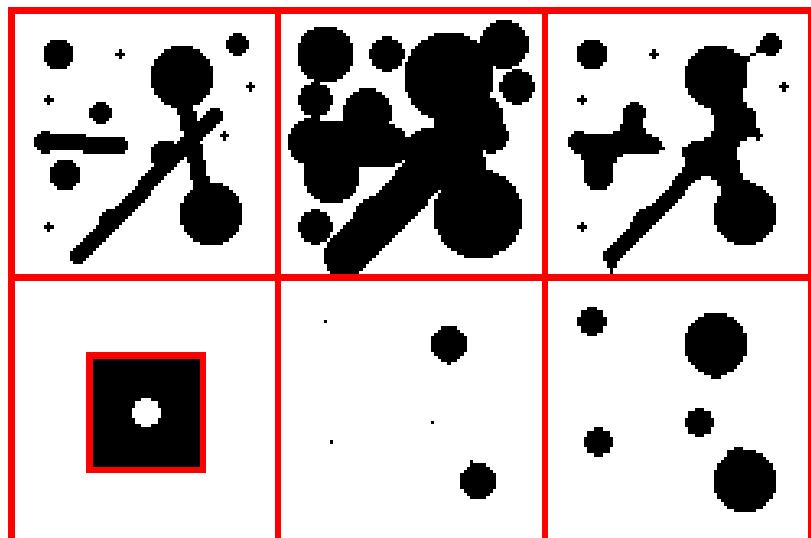
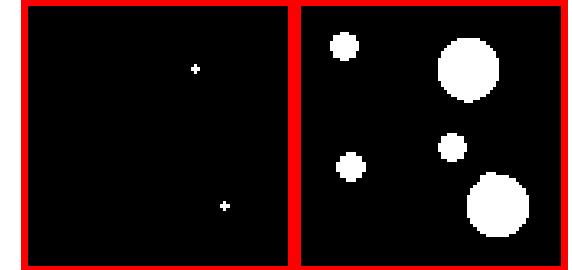
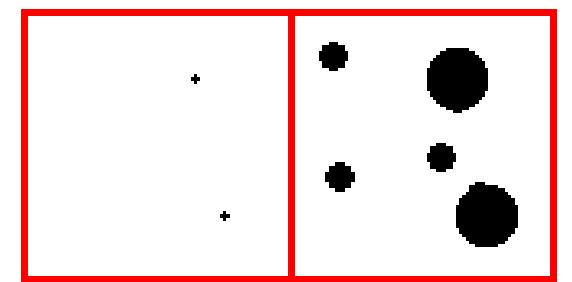


$A \ominus K$

Opening



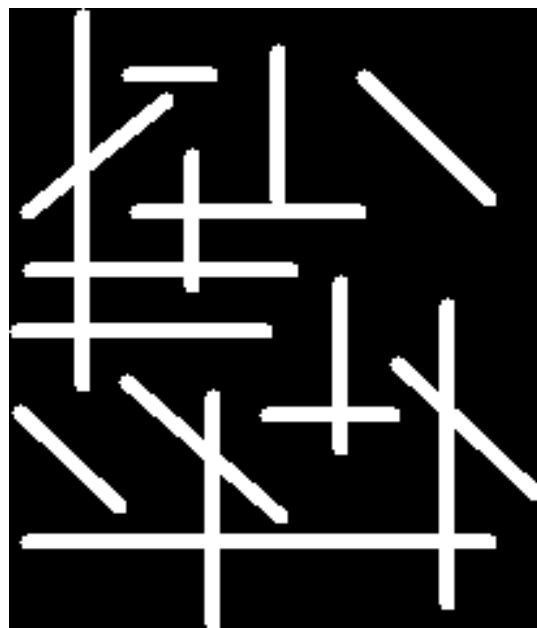
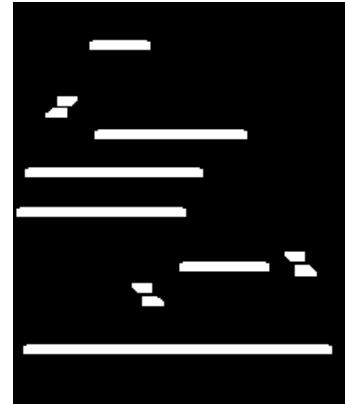
Opening and closing



Original Image	Erosion	Opening
Structural element	Dilation	Closing

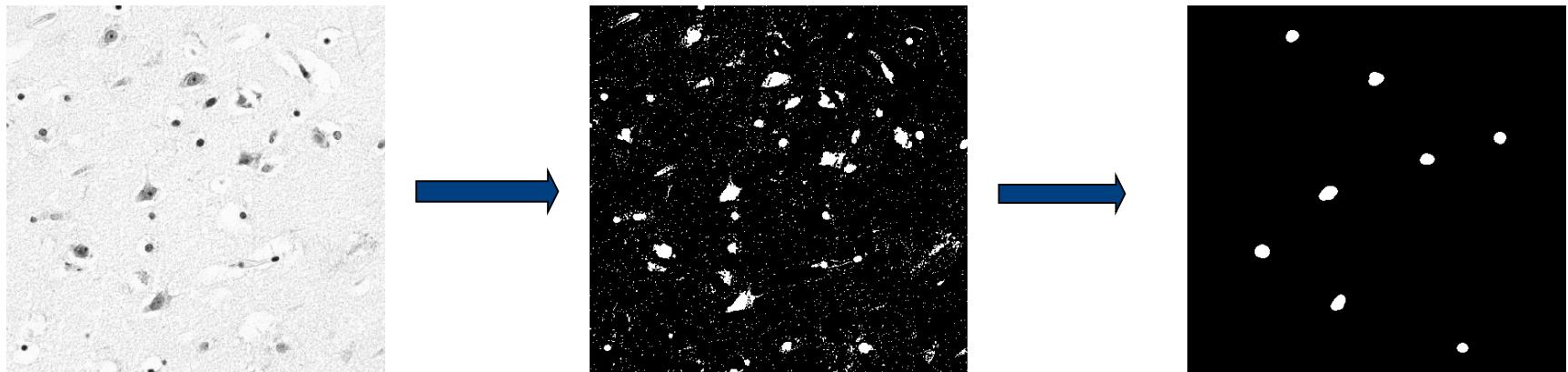
Opening Example

- +
-
- 3x9 and 9x3 Structuring Element



Use Opening for Separating Blobs

- ❖ Use large structuring element that fits into the big blobs
- ❖ Structuring Element: •

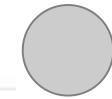
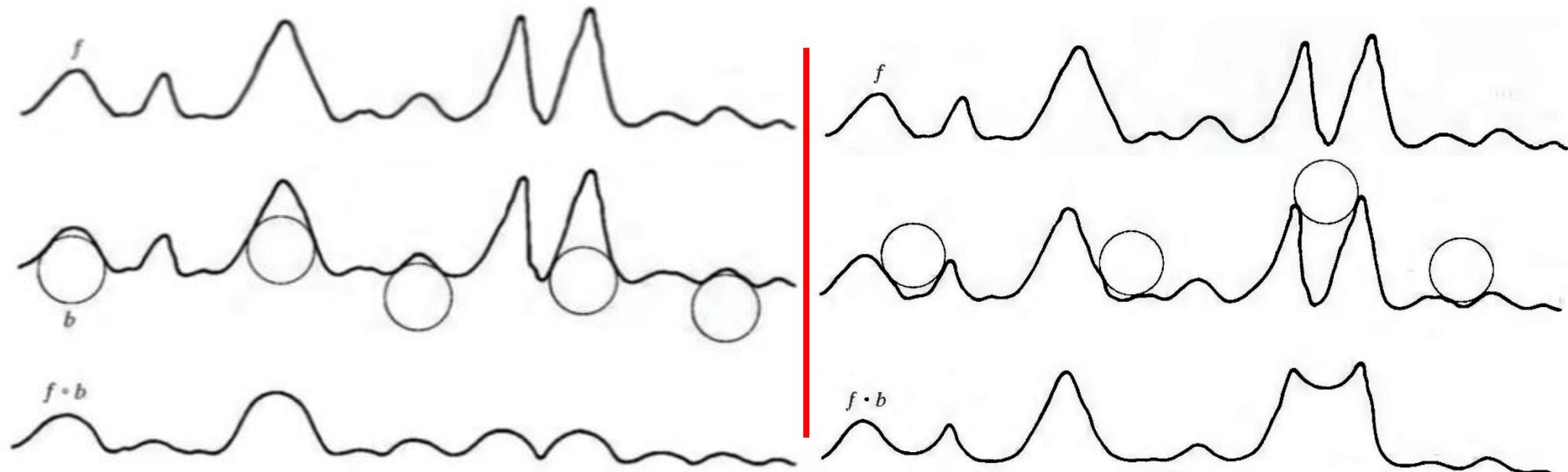


Opening and Closing: contour curvature

- ◆ **Opening** a picture is describable as pushing object B under the scan-line graph, while traversing the graph according the curvature of B
- ◆ The valleys usually remains in their original form

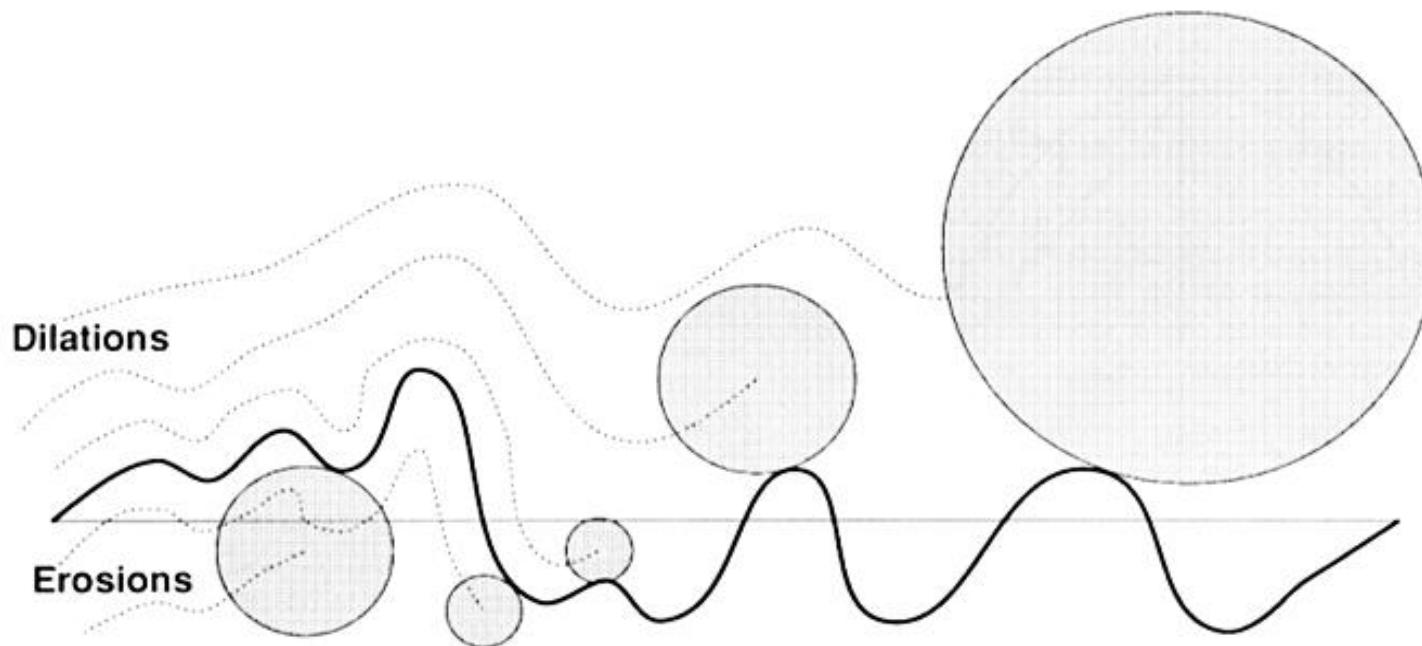
- ◆ **Closing** a picture is describable as pushing object B on top of the scan-line graph, while traversing the graph according the curvature of B
- ◆ The peaks usually remains in their original form

Structuring
element:

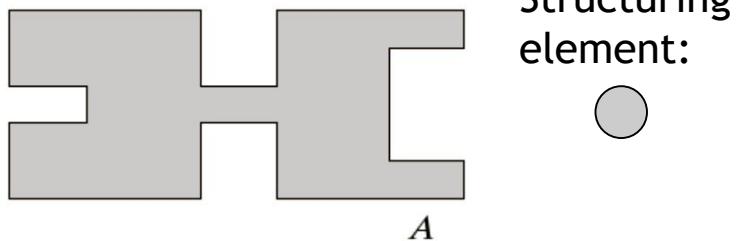
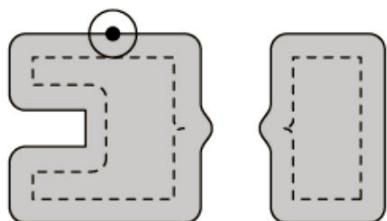


The ‘good’ contour

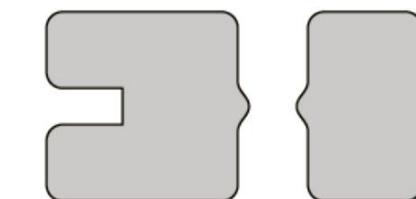
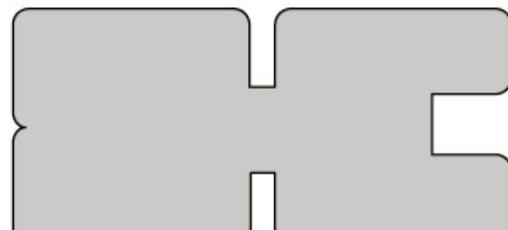
- ❖ Opening and Closing operator with a circle as structural elements change the boundaries as shown in figure: closing extends the boundary as if a ball rolls over the outer border; opening restricts it rolling the inner border
- ❖ The larger the circle the smoothed the result. The maximum resulting curvature is that of the structural element



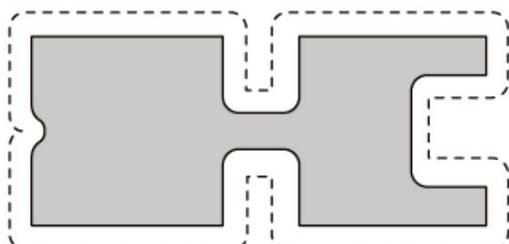
Opening vs Closing



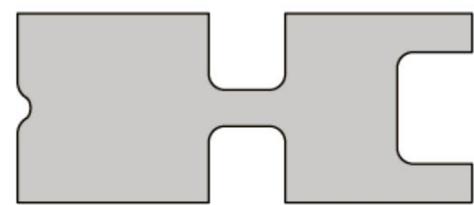
$$A \circ B = (A \ominus B) \oplus B$$



$$A \oplus B$$



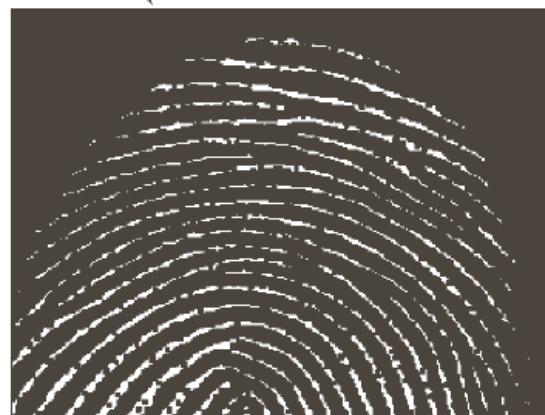
$$A \cdot B = (A \oplus B) \ominus B$$



Opening Closing

$$A \xrightarrow{A \ominus B}$$

$$\begin{array}{|c|c|c|} \hline 1 & 1 & 1 \\ \hline 1 & 1 & 1 \\ \hline 1 & 1 & 1 \\ \hline \end{array} B$$



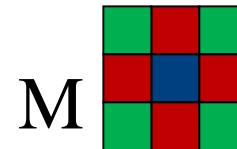
$$\begin{array}{c} (A \ominus B) \oplus B = A \circ B \\ (A \circ B) \oplus B \quad [(A \circ B) \oplus B] \ominus B = (A \circ B) \bullet B \end{array}$$

Hit or Miss operator

- ❖ $A \otimes (J, K) = (A \ominus J) \cap (A^c \ominus K)$ Two structuring elements J and K
- ❖ with the constrain $J \cap K = \emptyset$
- ❖ Suitable for ‘template’ matching

Hit or Miss

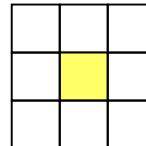
- ❖ J and K can be seen as a single template with three values:
 - ❖ Foreground points ■
 - ❖ Background points ■
 - ❖ Do not care points ■



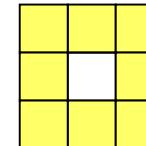
Hit or Miss

- ♦ Search of isolated points(8-connection)

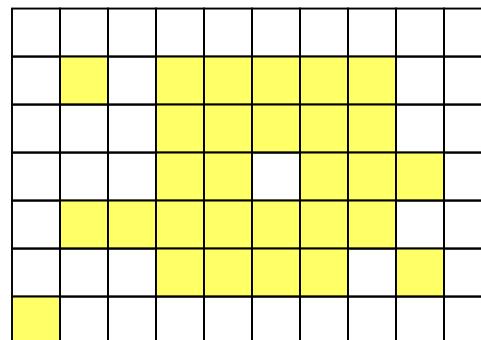
- ♦ $A \ominus J = A$



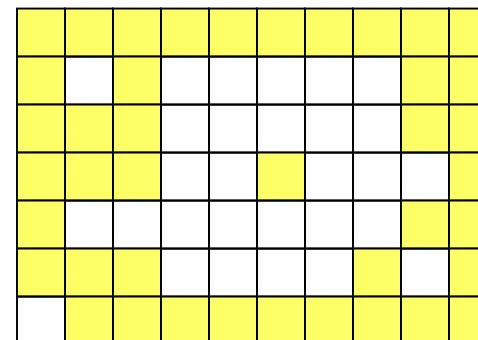
J



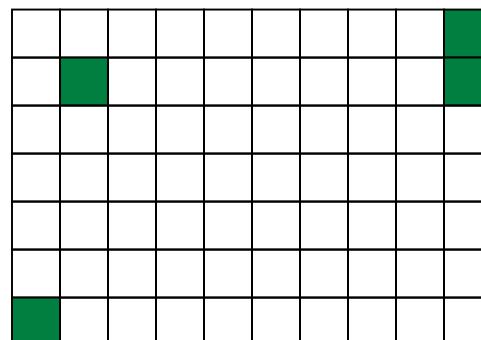
K



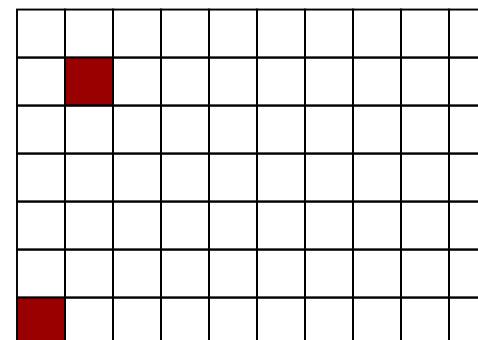
A



A^c



$A^c \ominus K$

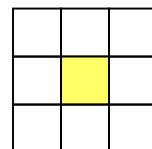


Final
Result

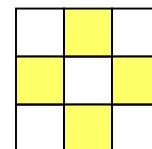
Hit or Miss

- ★ Search of isolated points(4-connection)

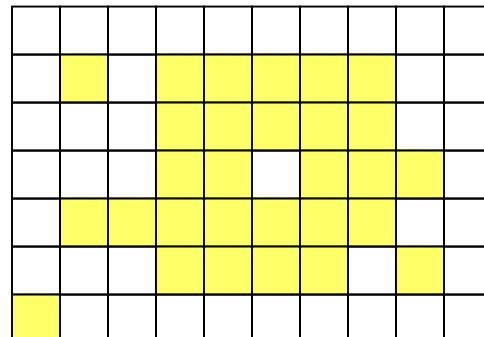
- ★ $A \ominus J = A$



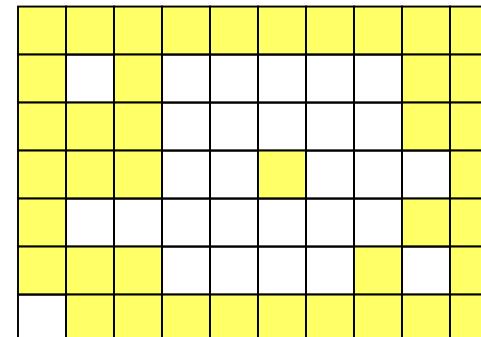
J



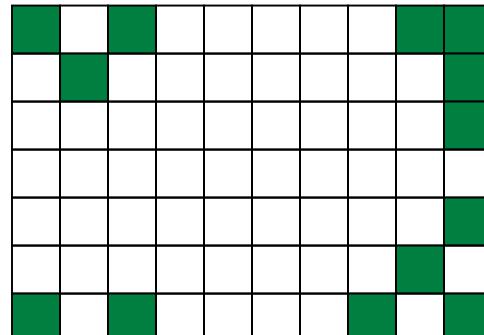
K



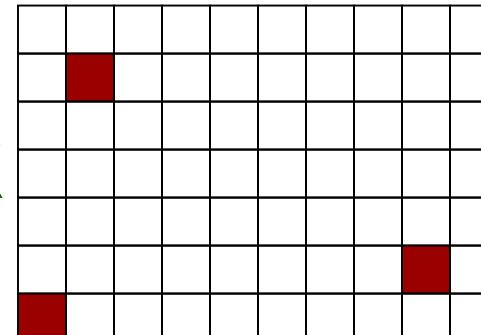
A



A^c

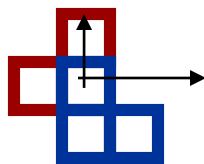
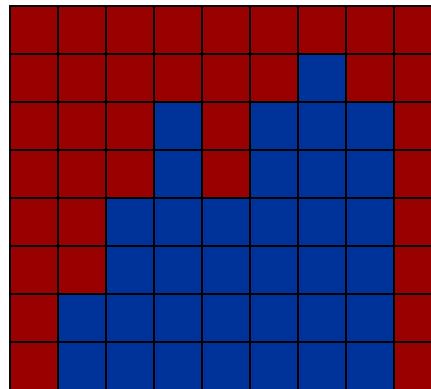
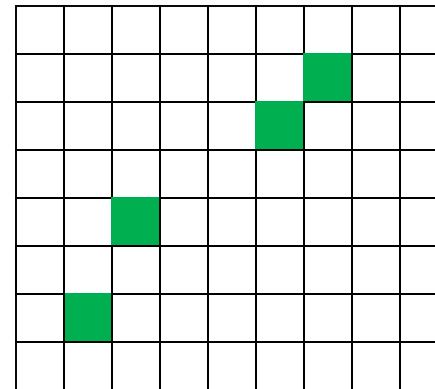
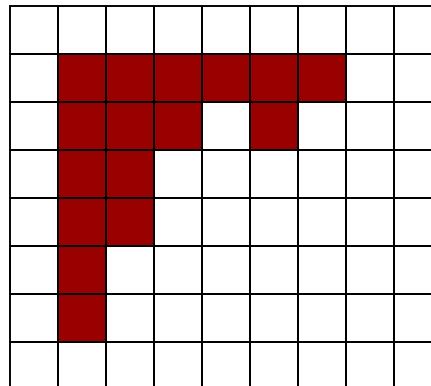


$A^c \ominus K$

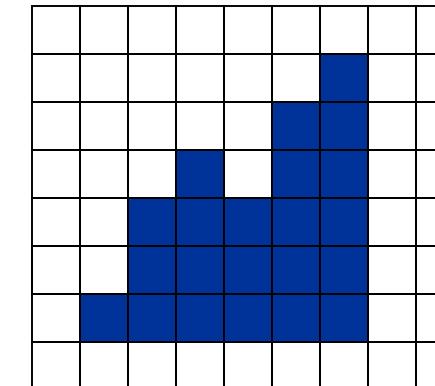


Final
Result

Hit or Miss



Pixels satisfying the background constraints

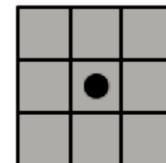


Pixels satisfying the foreground constraints

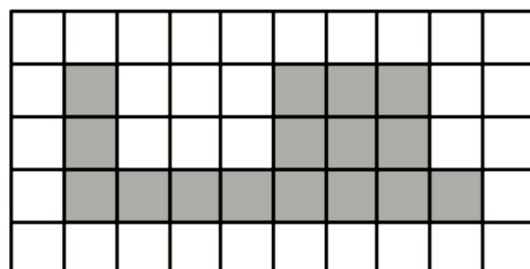
Contour example



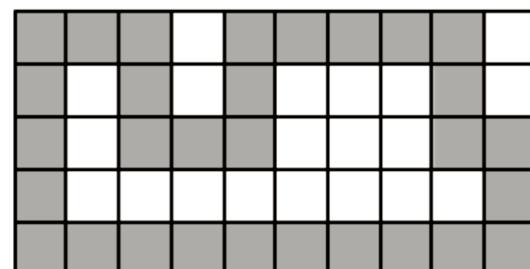
A



B



$A \ominus B$

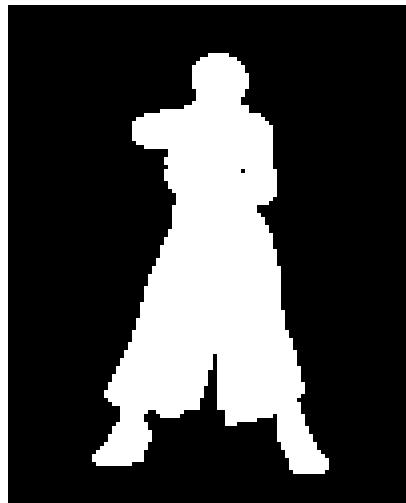
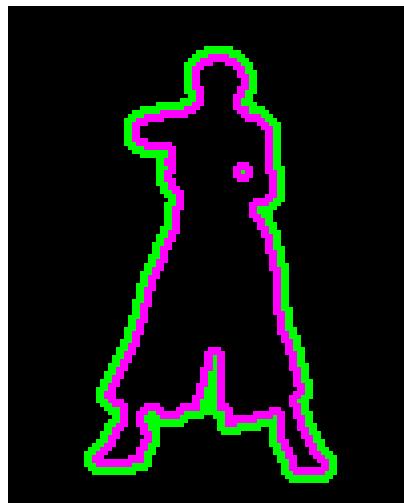


$A - (A \ominus B)$

Examples: Boundary Extraction

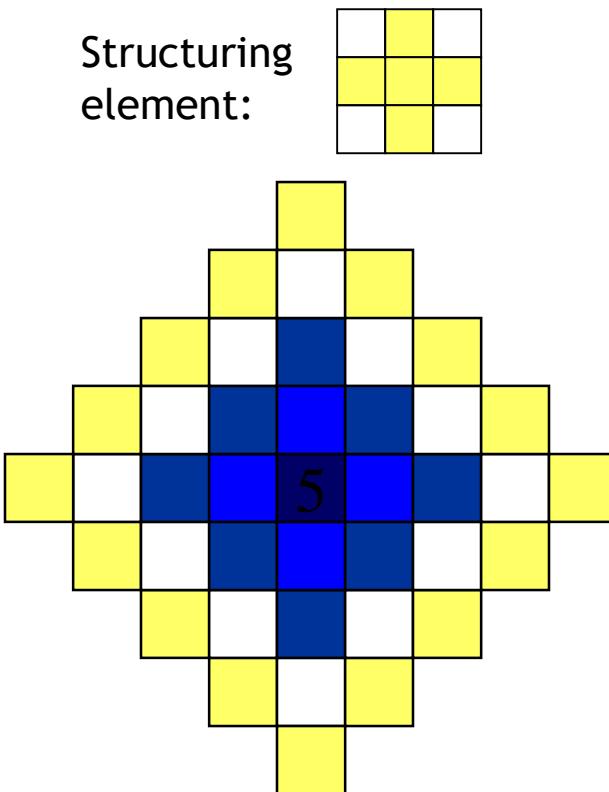
♦ Contour

- ♦ Internal: $A - (A \ominus K)$
- ♦ External: $(A \oplus K) \cap \bar{A}$ or $(A \oplus K) - A$
- ♦ Double: $(A \oplus K) \cap (\bar{A} \ominus K) = (A \oplus K) - (A \ominus K)$

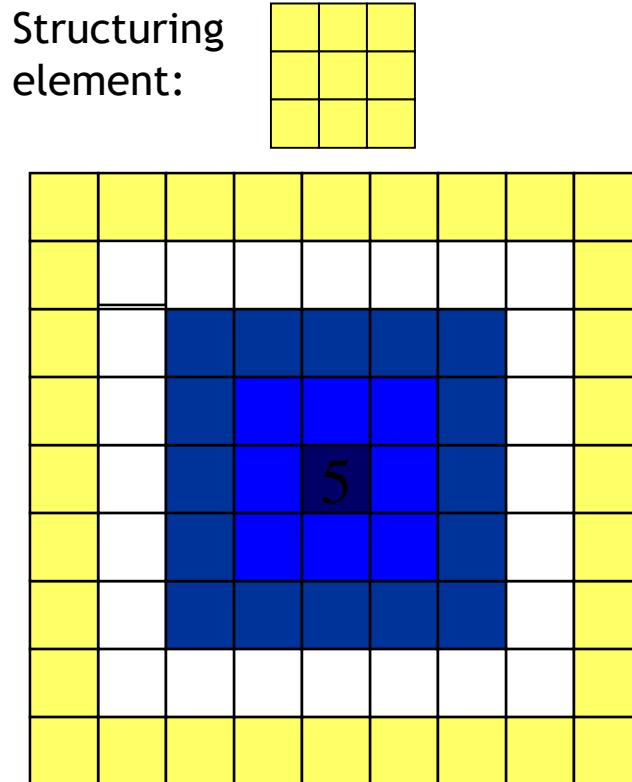


Edgein
Edgeout

Iteration: disks in 4 and 8 connectivity



$X = \{ C \}; l=1$
for $i=1, R$ do $X = (X \oplus K)$



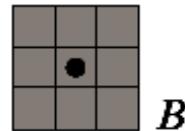
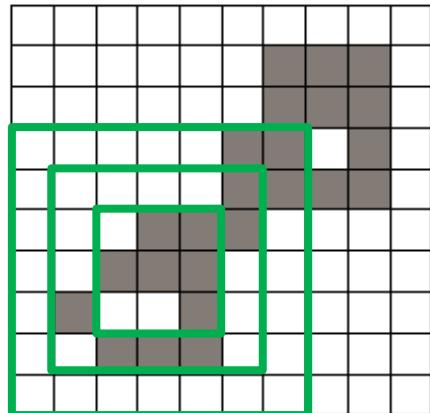
$C = \text{center pixel}$
 $X = \text{evolving image}$
 $R = \text{radius (4 in ex.)}$ 50

Recursion: Propagation

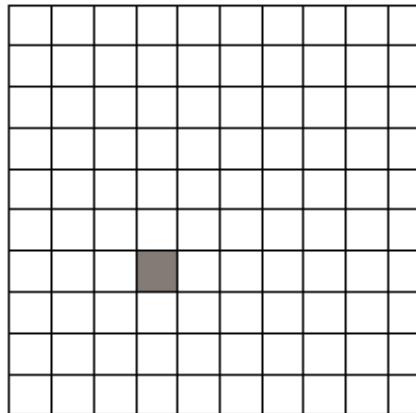
- ❖ Propagation in a connected component
 - ❖ Let A be a set containing one or more connected components (mask), and consider an array X_0 (of the same size of the array A) whose elements are 0s, except to a point of A foreground (**marker**).
 - ❖ $X = \{ X_0 \}$; X = evolving image
 - ❖ do $D = X$ A = original image
 - ❖ $\star X = (X \oplus K) \cap A$ K is the unitary circle
 - ❖ \star while($D \neq X$) in the adopted metric

Recursion example: Connected Components

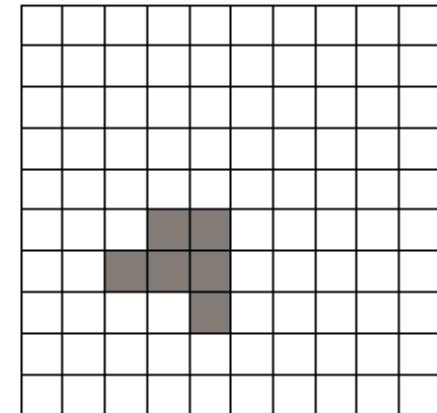
Structuring
element:



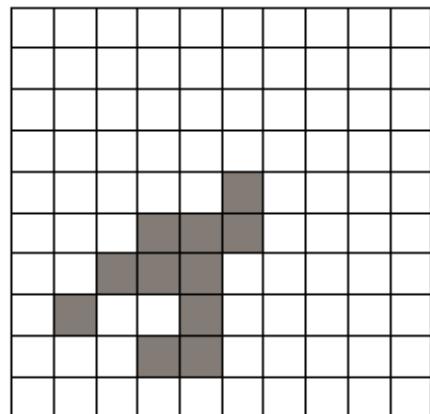
A



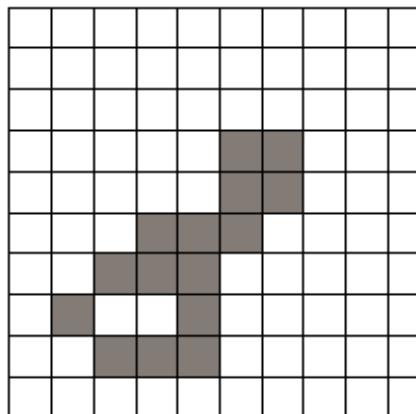
X_0



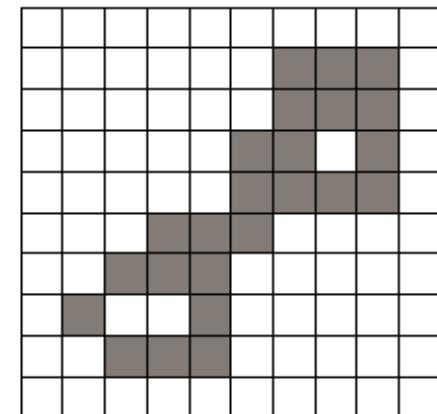
X_1



X_2

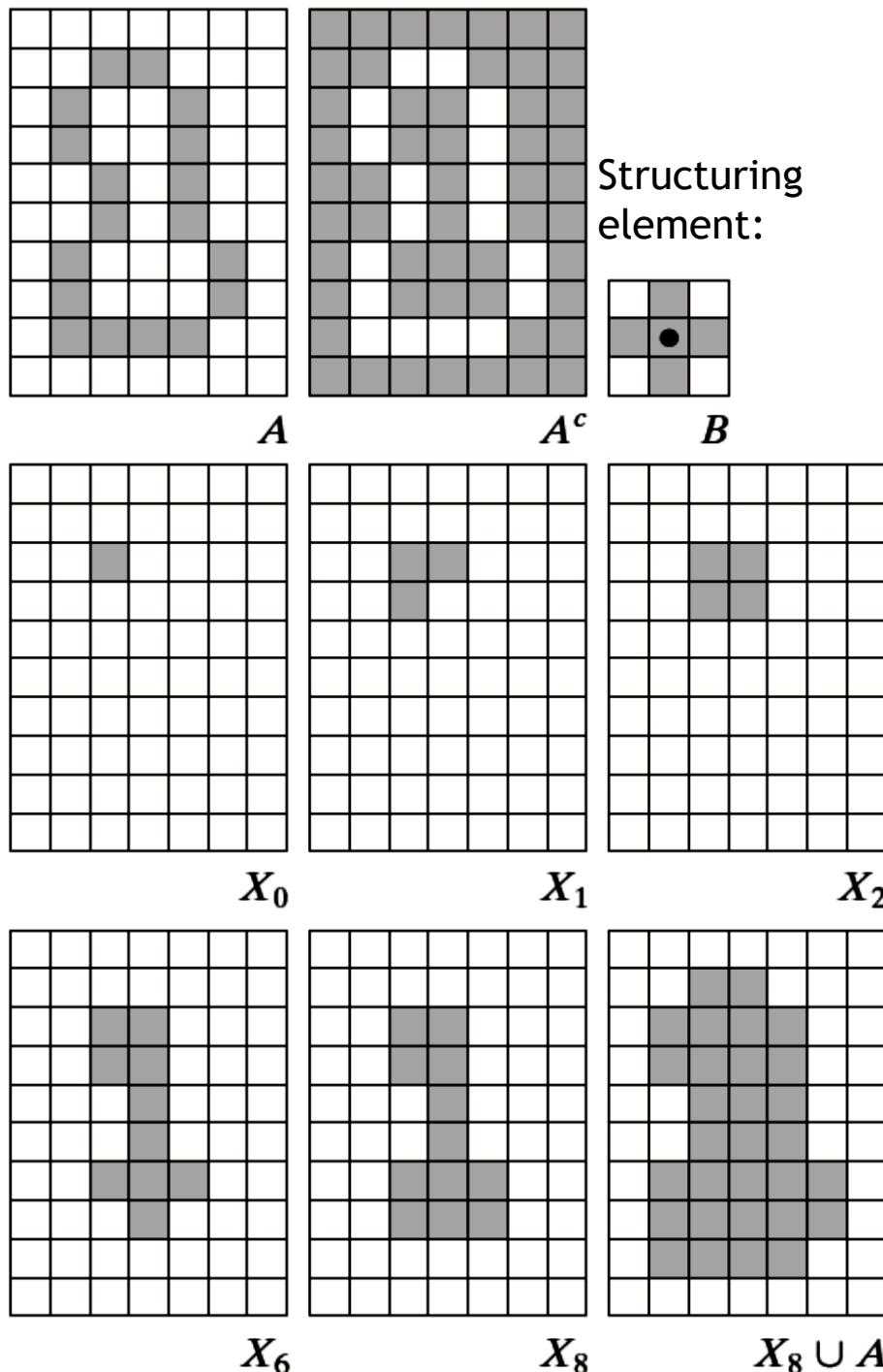


X_3



X_6

Hole Filling



Distance transform

- ❖ DT implementation using dilation and addition operators:

❖ $R = \emptyset$

R = evolving image

❖ while($A \neq \emptyset$) do

at the end DT

 ❖ $R = R + A$

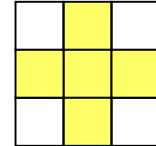
 ❖ $A = A \ominus K$

❖ done

Distance Transform - algorithm

			1	1	1	1	1	1		
	1	1	1	1	1	1	1	1		
	1	1	1	1	1	1	1	1		
	1	1	1	1	1	1	1	1		
1	1	1	1	1	1	1	1	1		
	1	1	1	1	1	1	1	1		
		1	1	1	1	1	1	1		

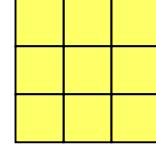
Structuring
element:



			1	1	1	1	1	1		
	1	2	2	2	2	2	2	1		
	1	2	3	3	3	3	2	1		
1	2	3	4	4	4	4	3	2	1	
1	2	3	3	3	3	3	2	1		
	1	1	2	2	2	2	2	1		
		1	1	1	1	1	1			

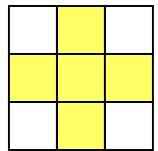
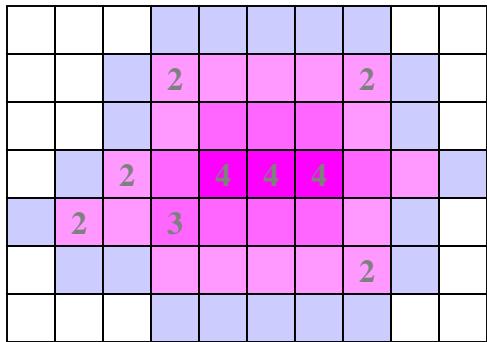
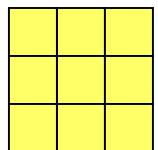
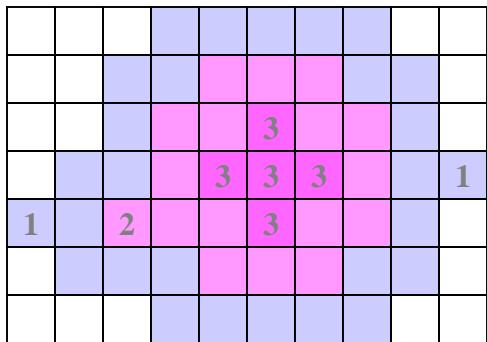
			1	1	1	1	1	1		
	1	1	1	1	1	1	1	1		
	1	1	1	1	1	1	1	1		
1	1	1	1	1	1	1	1	1		
1	1	1	1	1	1	1	1	1		
	1	1	1	1	1	1	1	1		
		1	1	1	1	1	1	1		

Structuring
element:



			1	1	1	1	1	1		
	1	1	2	2	2	2	1	1		
	1	2	2	3	3	2	2	1		
1	1	2	3	3	3	2	1	1		
1	1	2	2	3	3	2	2	1		
	1	1	1	2	2	2	1	1		
		1	1	1	1	1	1	1		

DT - local maxima

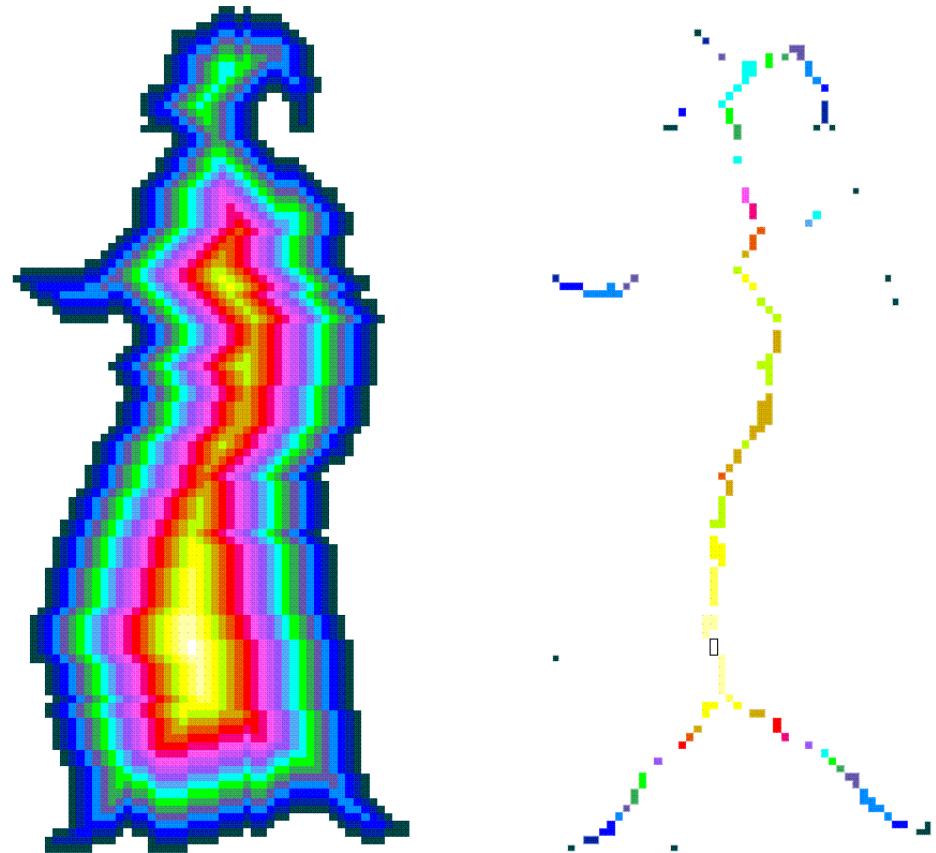


- ◆ The local maxima set is a compact object representation

- ◆ The object can be rebuilt as union of the maximal digital disks

Distance transform and MAT

- ⊕ The **Distance Transform (DT)** is obtained by labeling all the pixels inside a binary object with their **distance to the background**
- ⊕ In figure applying twenty iterations of the erosion operator (structural element: unit disk) twenty successive colored layers showing equi-distant contours from the background for a Manhattan distance metric are obtained
- ⊕ Every pixel has a color corresponding to its **distance label** which increases going inwards. In practice, this value represents the side of **the greatest digital disk** having its centre on this pixel, which is completely contained in the binary object.
- ⊕ Any pattern can be interpreted as the union of all its maximal digital disks (local maximum in DT). A maximal disk is a disk contained in the object that is **not** completely overlapped by any other disk.
- ⊕ The set of the centers of the maximal disks with their labels, constitutes the **MAT**



Reverting progressively MAT

- ◆ A procedure to derive the MAT from the DT is based on the comparison of neighboring labels to establish whether a local maximum exists
- ◆ **This transform is complete** in the sense that **it is possible to revert it**, so obtaining the original object back
- ◆ This recovery process can be implemented by expanding every pixel belonging to the MAT, using the corresponding maximal disk whose size is given by the pixel label. The logical union of all such disks reconstructs the original object
- ◆ This figure shows the progressive reconstruction, starting from the set of disks corresponding to the highest level (two white disks) until the sixth and last monk's profile, where disks, reduced to just one pixel, have been included
- ◆ **This transform is compact** since the full object may be described only by its labeled disk centers

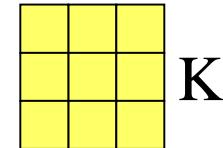
$$U = \{\emptyset\}$$

$$\forall i, j : MAT_{i,j} > 0 \rightarrow U = U \cup D_{MAT_{i,j}}$$

Distance between two points

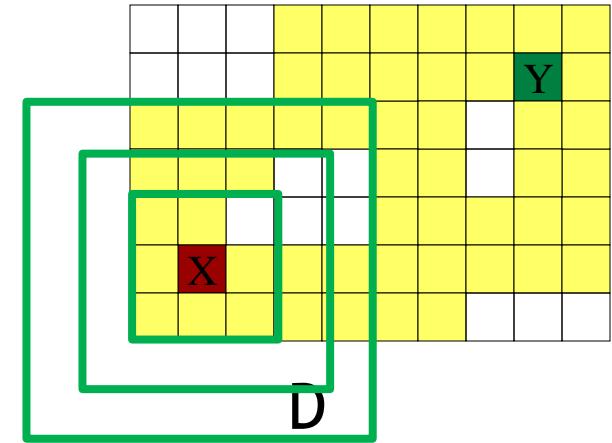
- Distance between $X, Y \in Z$:
 - $A = \{ X \}$; $D = A$ $Z = \{\emptyset\}$ A = evolving binary image
 - while($Y \notin A$) do
 - $Z = A$
 - $A = (A \oplus K) \cap F$
 - $D = D + A$
 - done
 - If $A \equiv (A \oplus K) \cap F$ and $Y \notin A$: Z is not connected and Y is not reachable from X
- Following back the path of max gradient we can always find one of **the minimum paths between X, Y**

Structuring element:



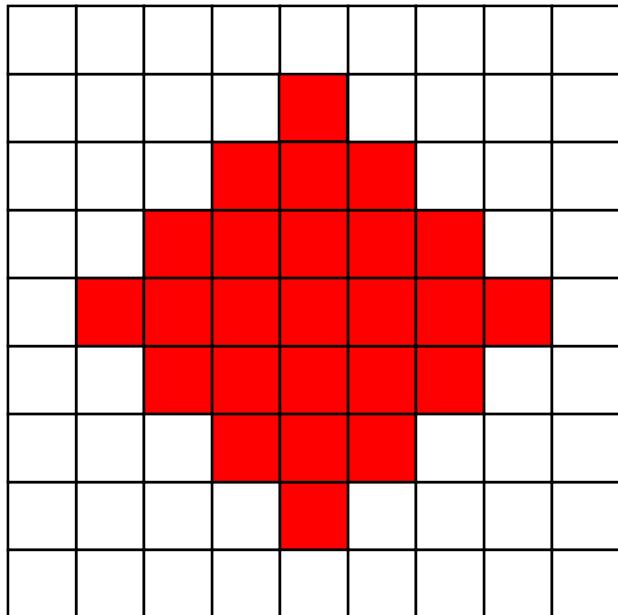
K

F = original image (mask)
 Z = connected component



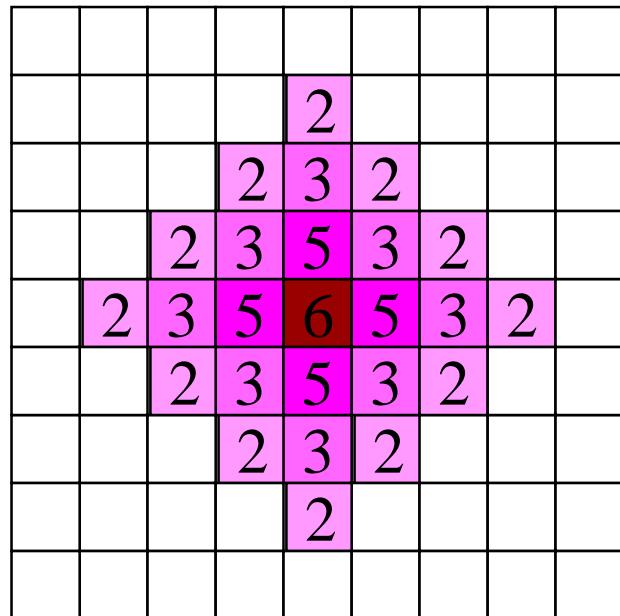
Weighted DT

- In this case all neighbors are not considered at the same distance (e.g. 8-connectivity)
- Example: a good approximation to the Euclidean distance in 8-connectivity (the result is about doubled) is given by:

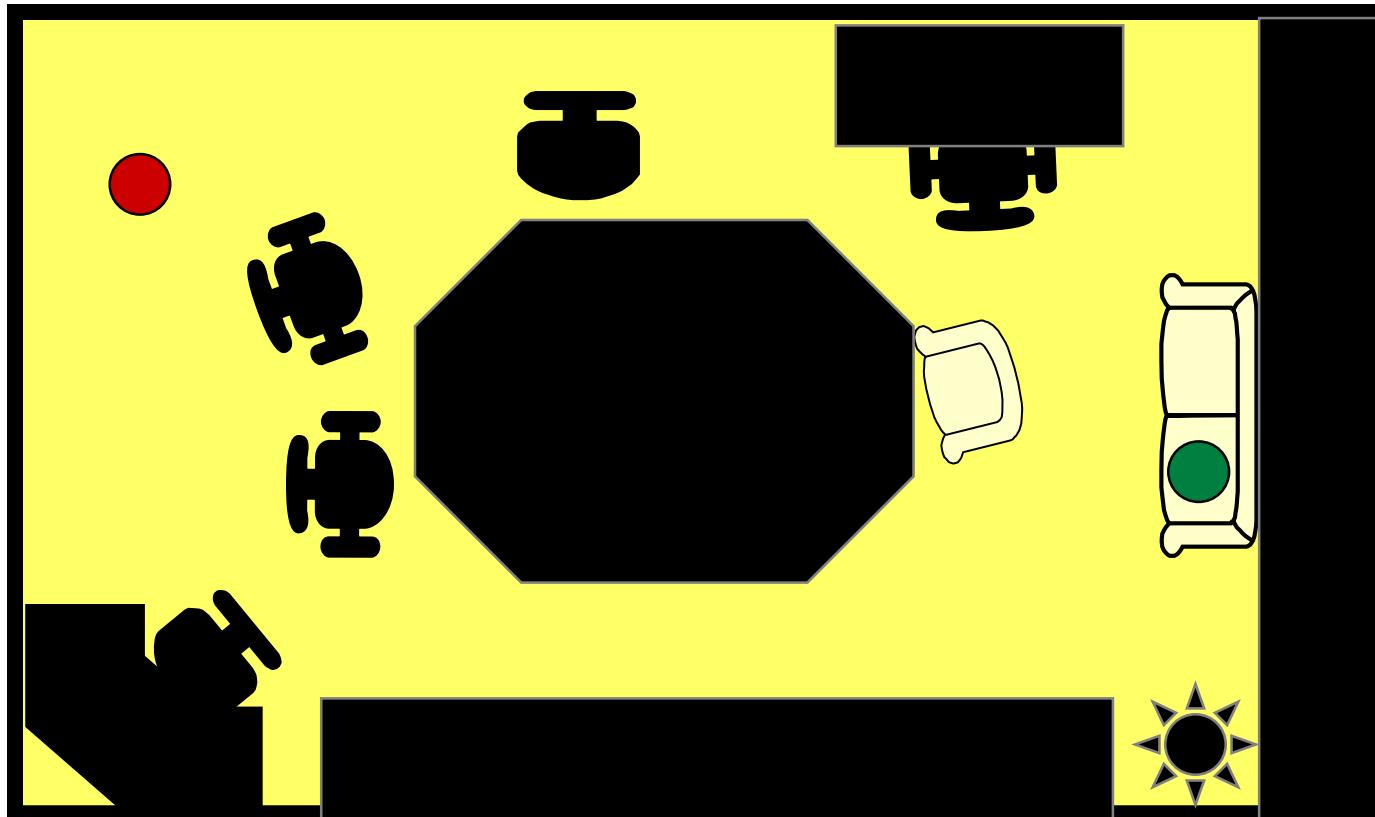


$W =$

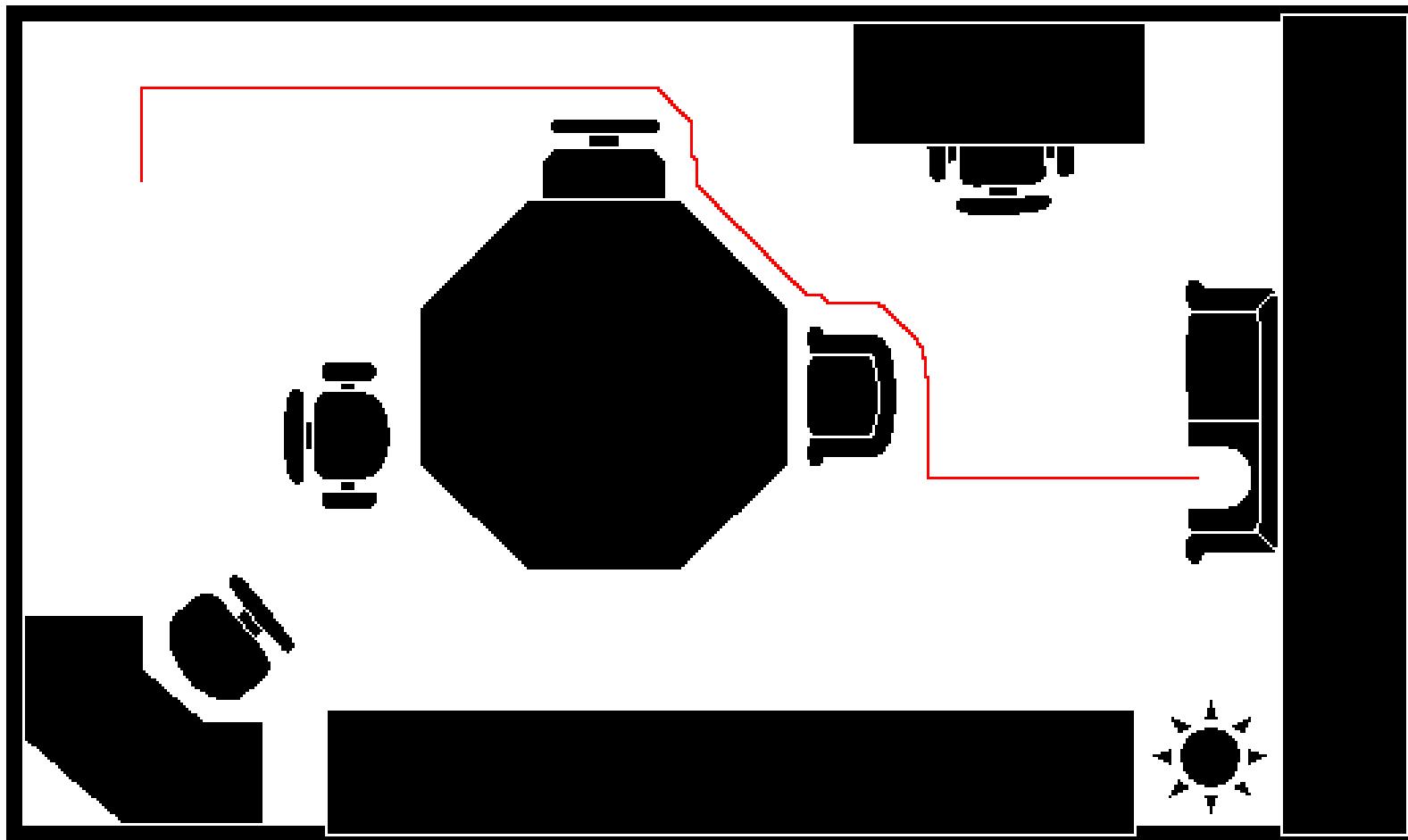
3	2	3
2		2
3	2	3



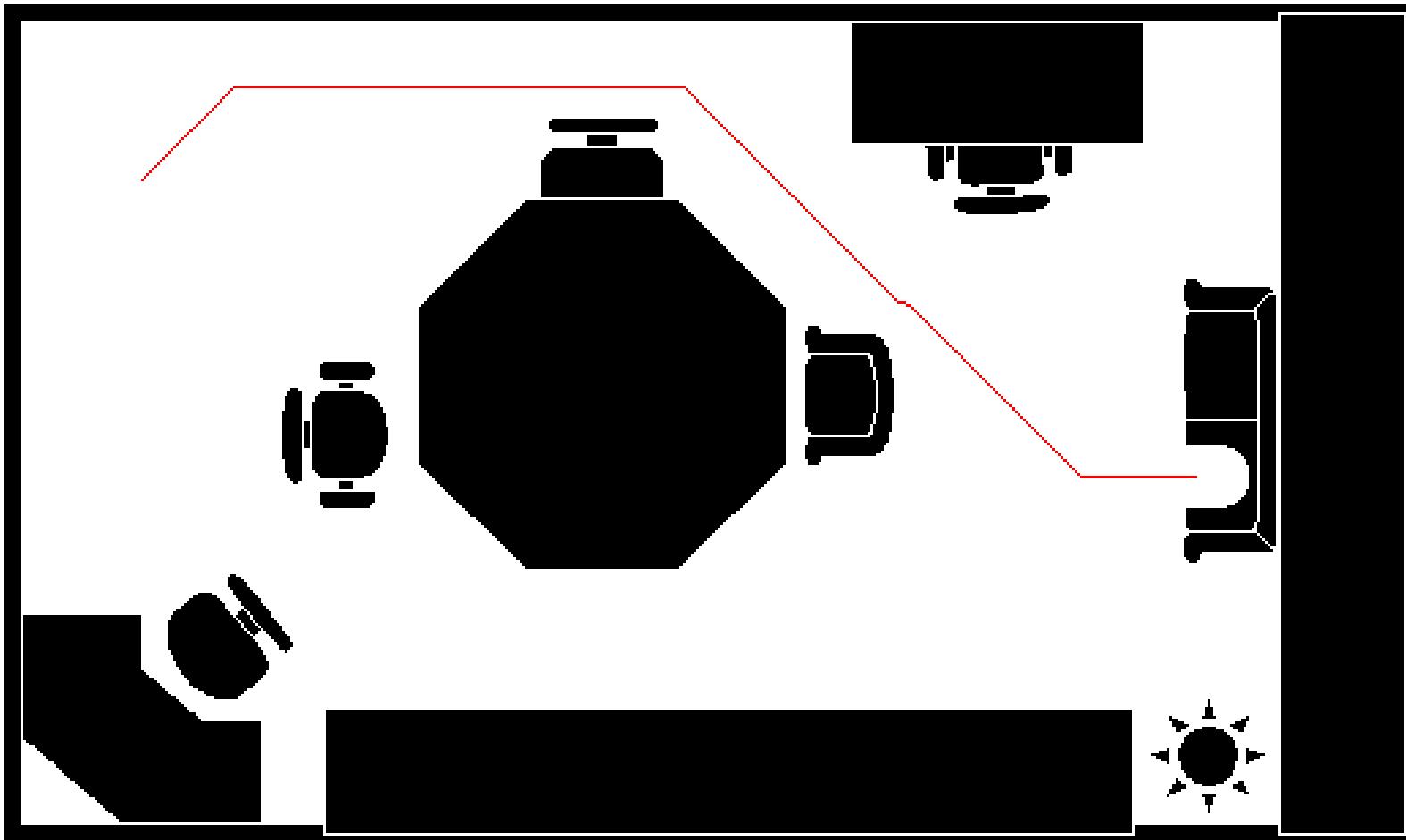
Example

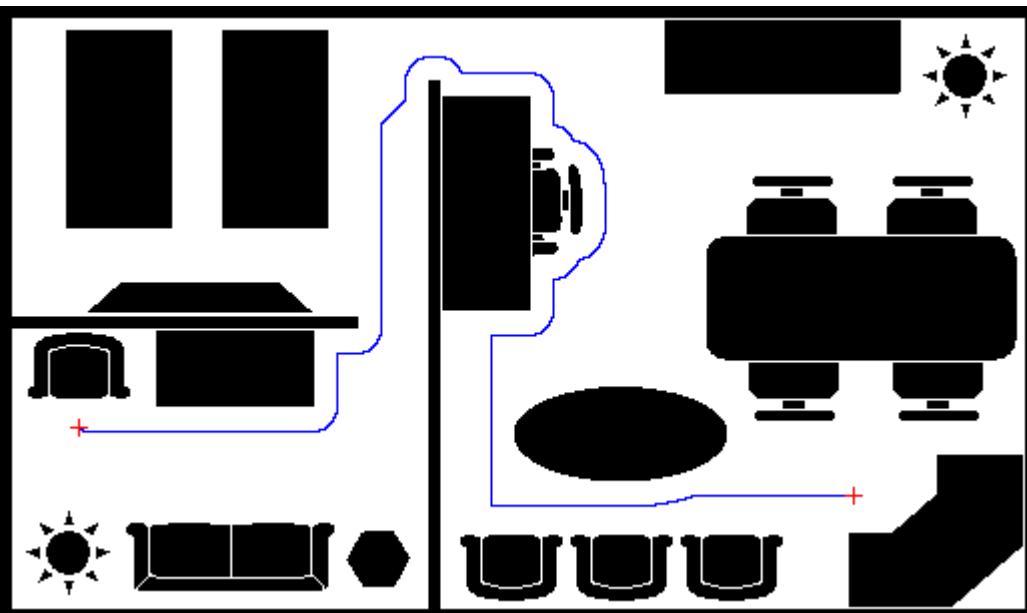


*Minimum path
4-conn*

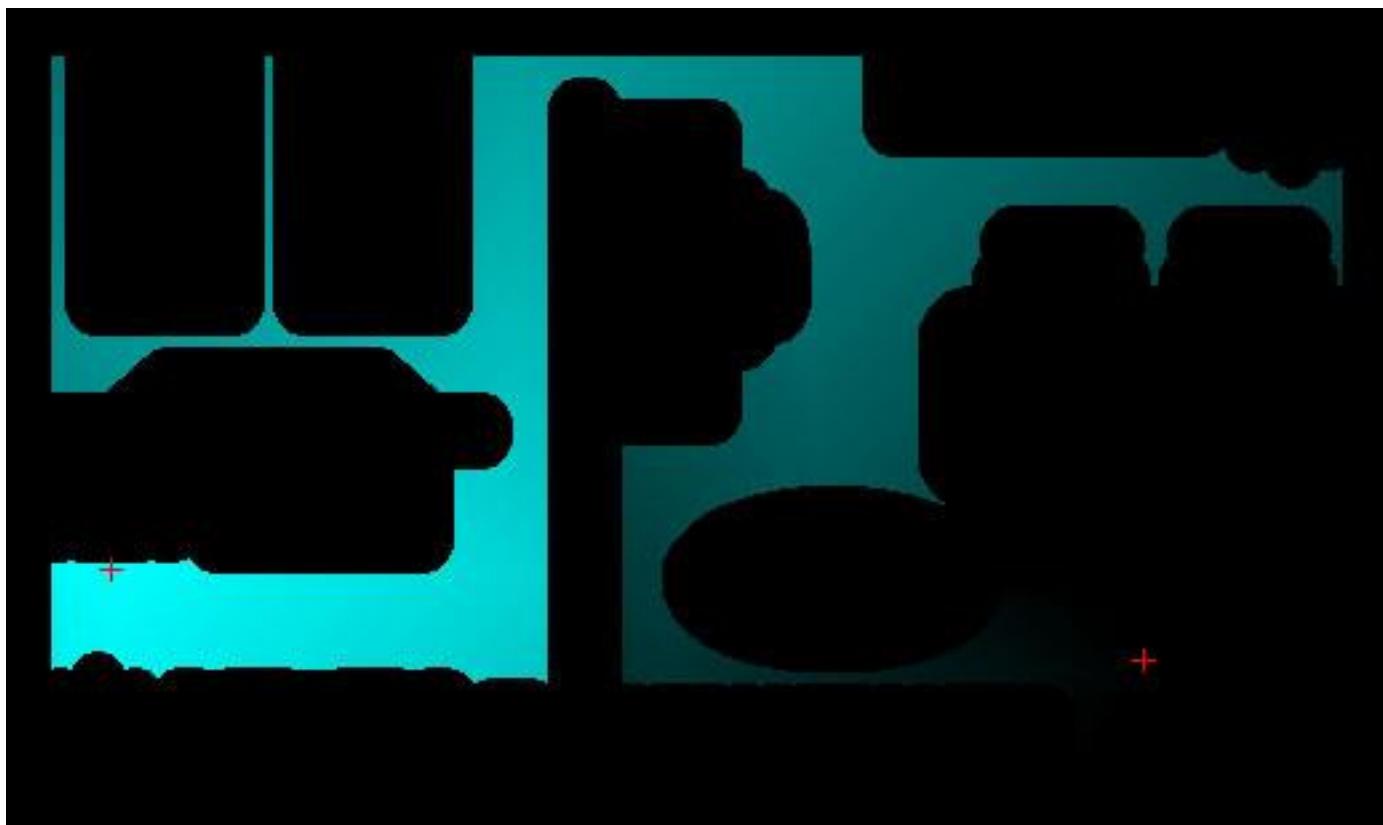


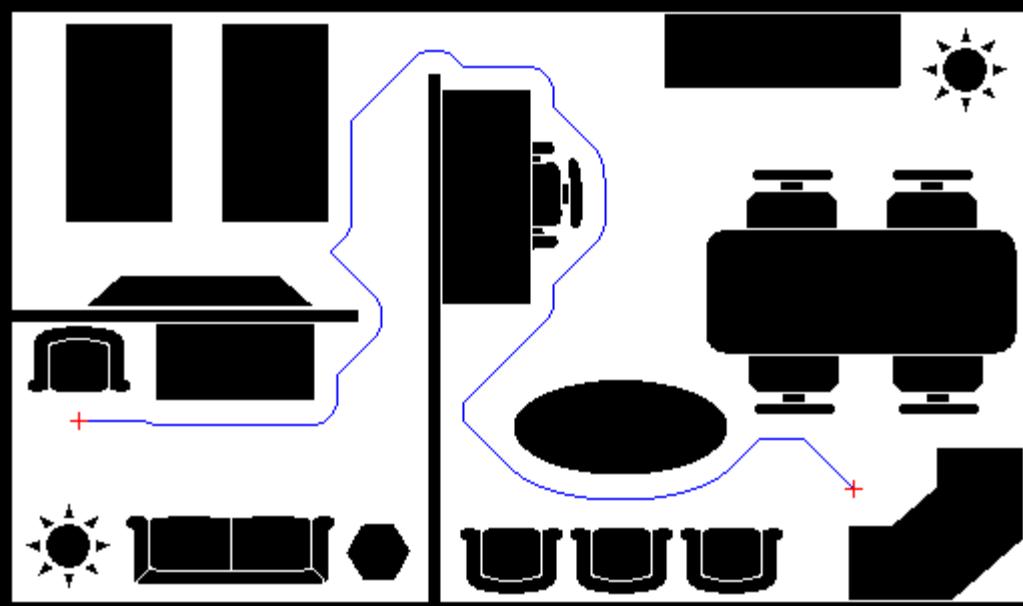
*Minimum path
8-conn*



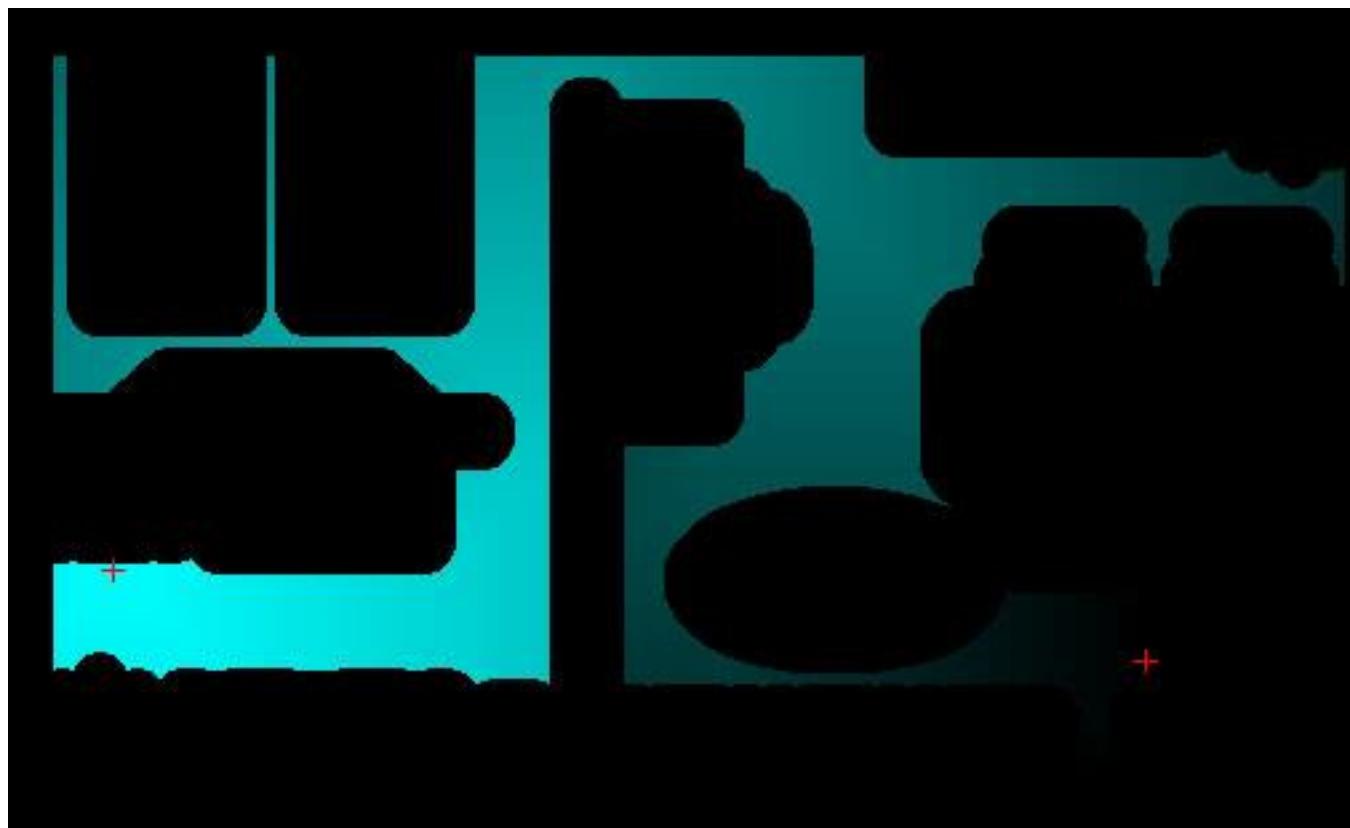


Minimum path
4-conn

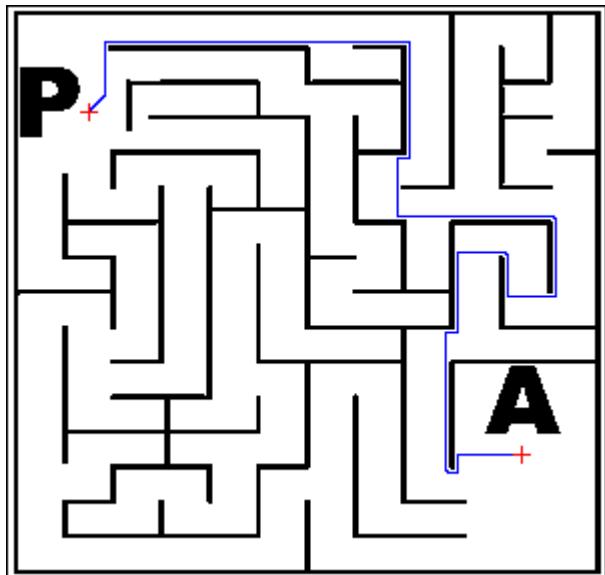




*Minimum path
8-conn*

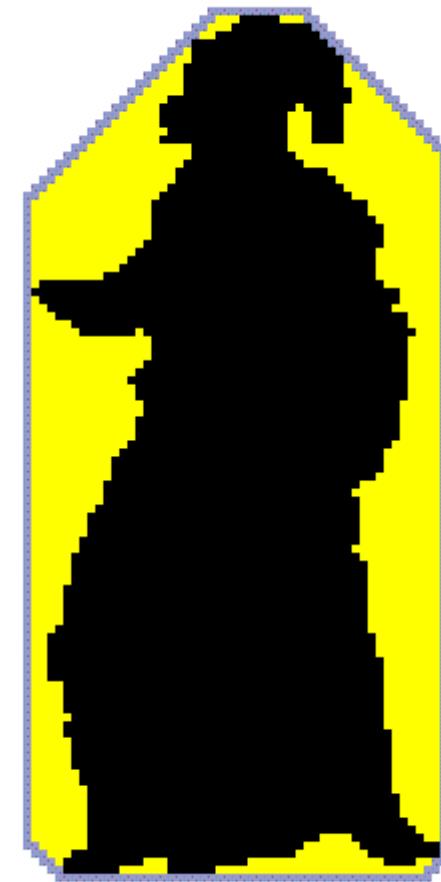


Minimum path 4-conn

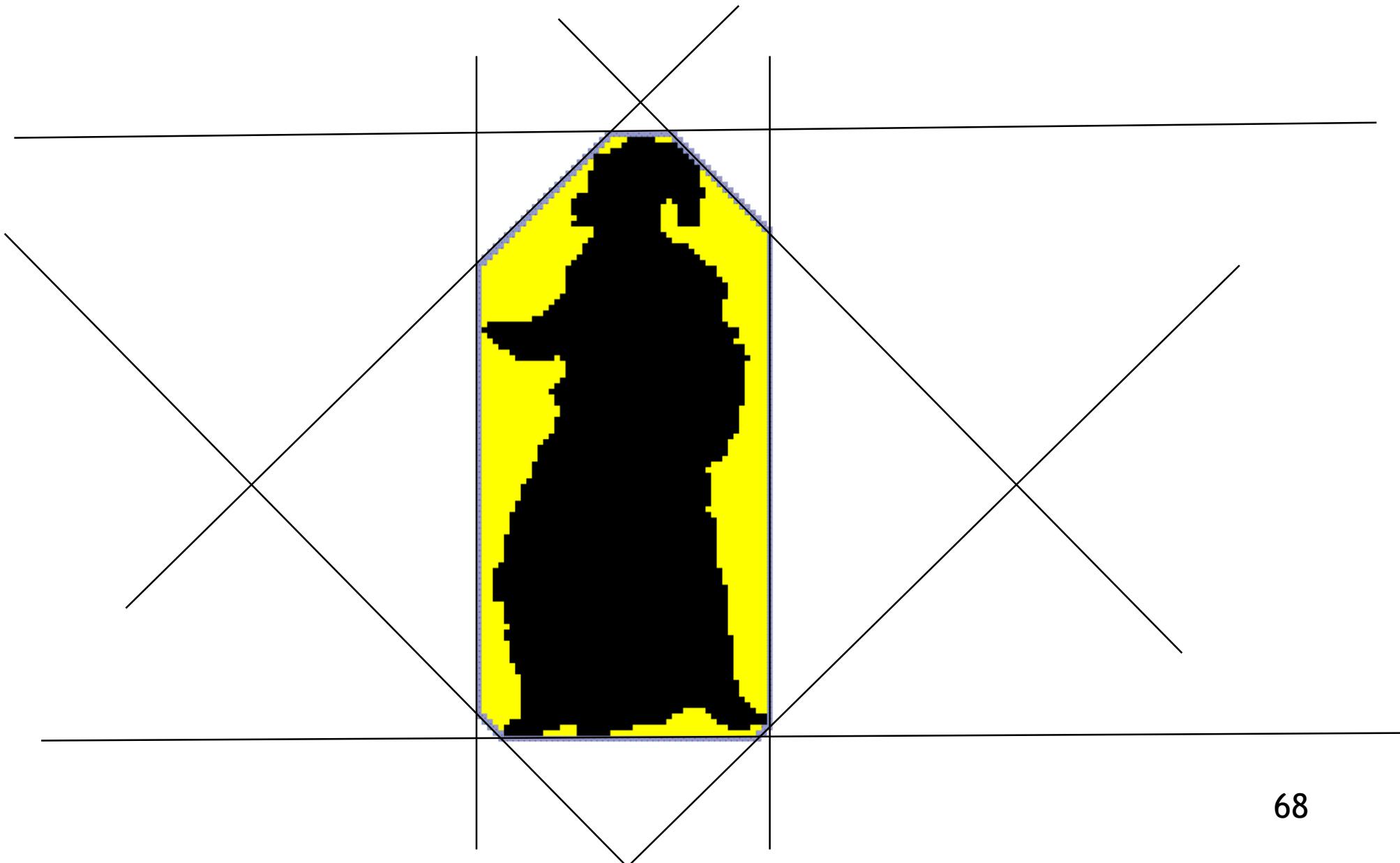


8-Convex Hull

- ⊕ A set A is said to be convex iff the straight line segment joining any two points in A lies entirely within A .
- ⊕ The convex hull is the minimum n -sided convex polygon that completely circumscribes an object, gives another possible description of a binary object. An example is given in figure where a constrained 8-sided polygon has been chosen to coarsely describe the monk silhouette.
- ⊕ To obtain the convex hull a simple algorithm propagates the object along the eight (more generally $2n$) orientations and then: i) logically OR the opposite propagated segments; and ii) logically AND the four (more generally n) resulting segments. The contour of the obtained polygon is the convex hull.

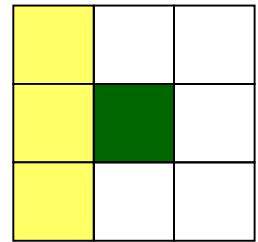
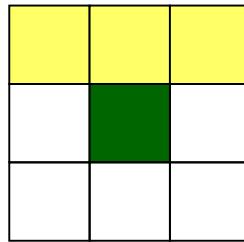
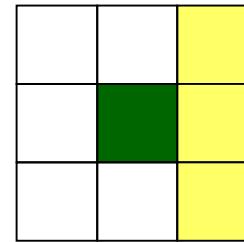
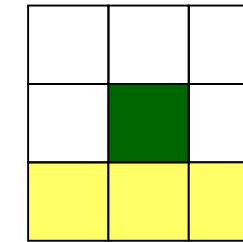
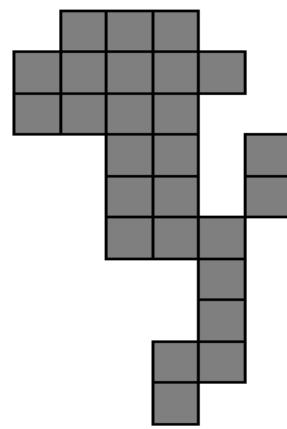


8-Convex Hull

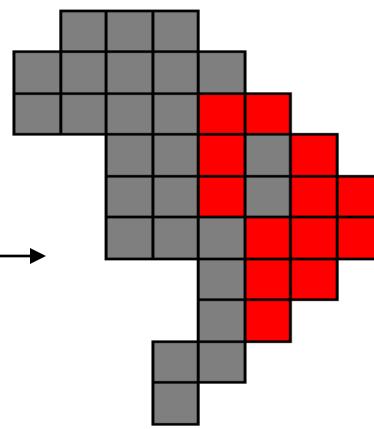


Use of thickening: Convex hull

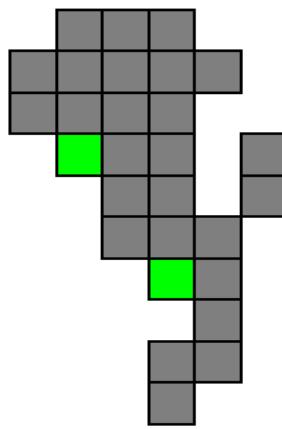
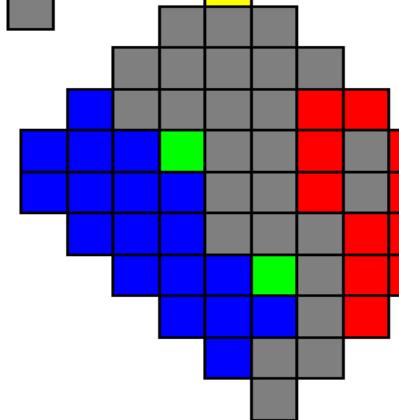
- Convex hull: union of thickenings, each up to idempotence

 B^1  B^2  B^3  B^4 

Original shape



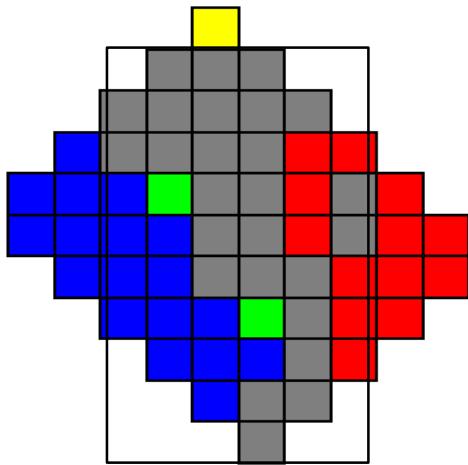
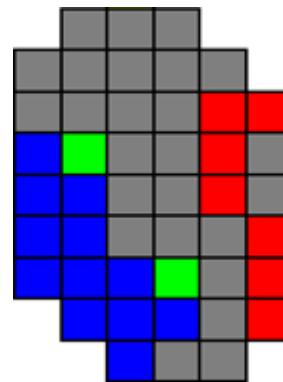
Thickening
with first mask



Union of four
thickenings

Use of thickening: Convex hull

- ❖ Limiting to the original bounding box

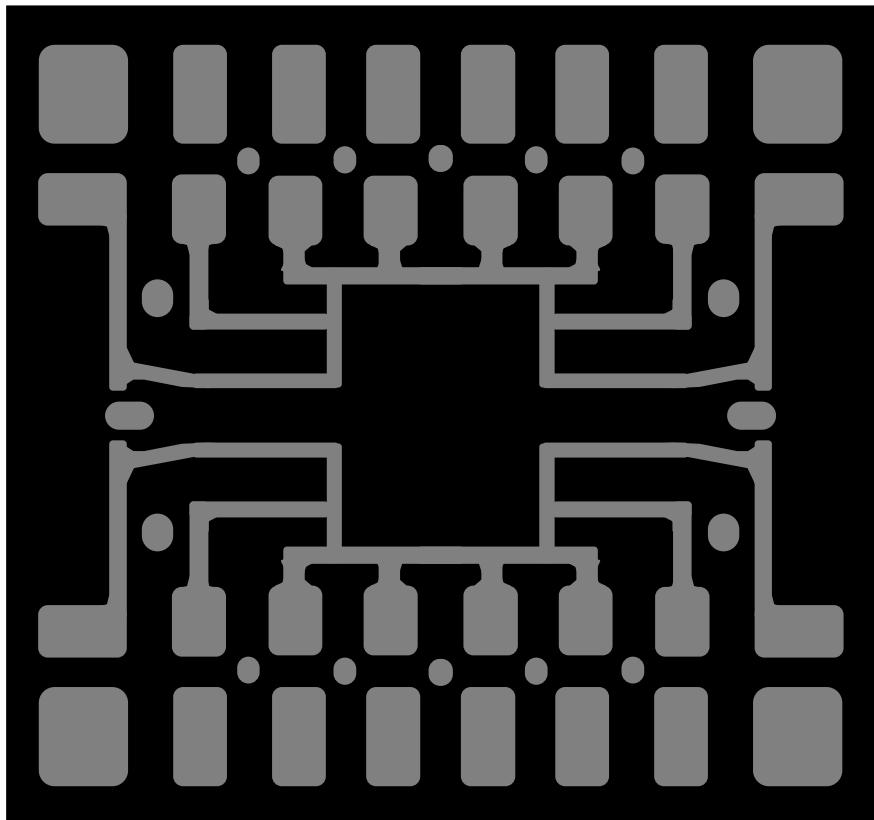
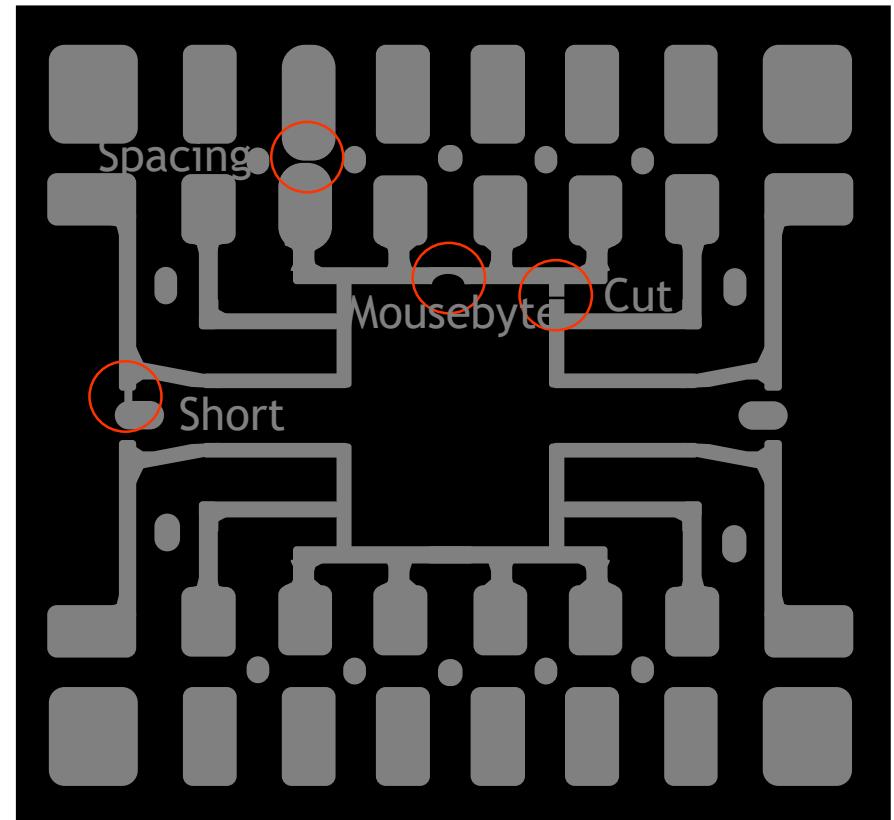


Example of using convex hull

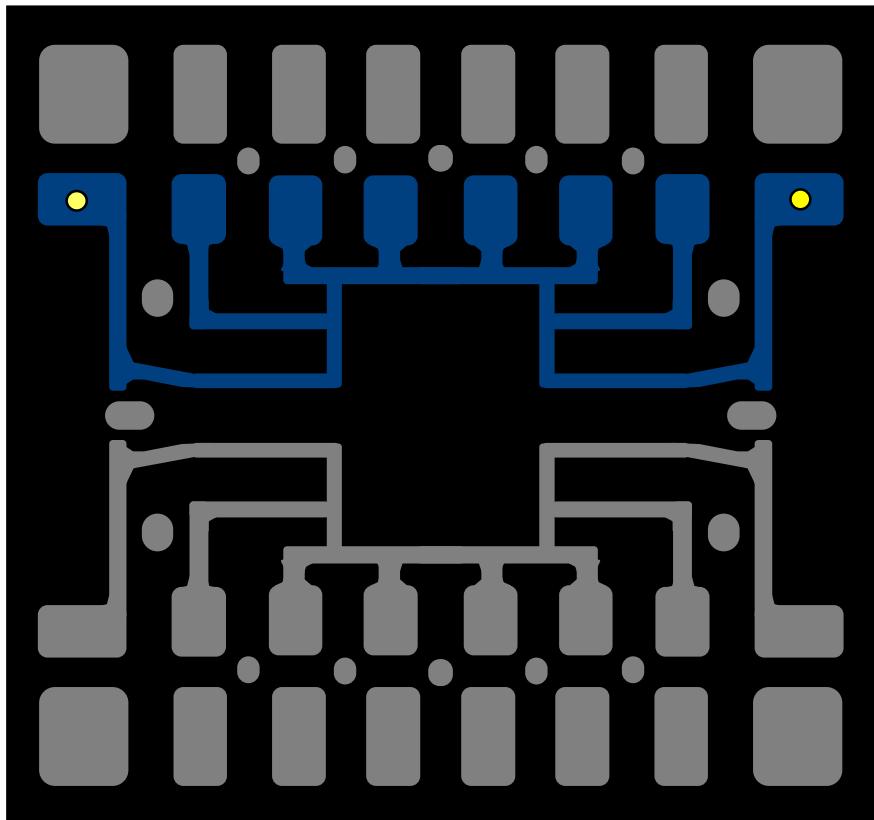
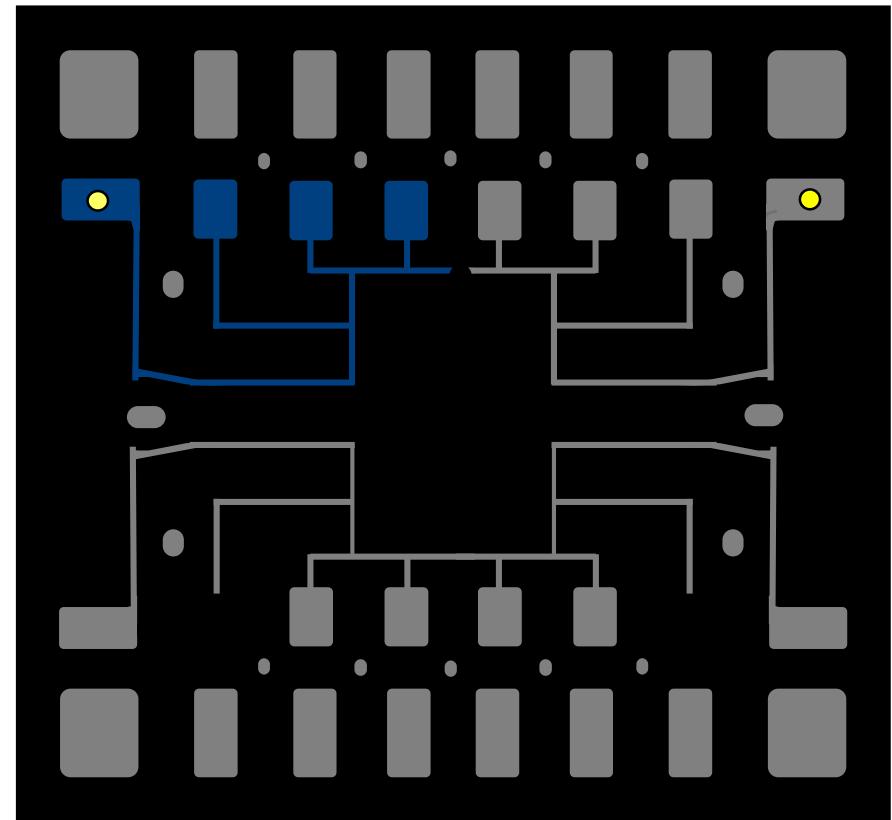
Morfologia binària

Morfologia binària

Propagation: examples



Mousebyte



Minimum distance

