Mathematical Morphology



Mathematical Morphology

+Mathematical Morphology was
developed in France (G. Motheron e J.
Serra, Ecole des Mines) and in different
form with the name Image Algebra in
USA (S. R. Sternberg, Michigan
University).



Logic operators between binary images
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Preliminary Statements

+AcEr, tekln

N

N

A,y + Translation of A by a vector t
A, ={ce E" | c=a+t, acA }

+ Reflection of A

A={c | c=-a, acA}

+ Complement of A
A =E"-A




Minkowski sum (Dilation)

+A®B = { ceE" | c=a+b, acA, beB}

+A®B = U A, , beB

+It can be easily shown that: A©B = BOA

- B=1(0,0), (1,0) }




Dilation

+ B is usually called structuring element

A - B={(-10), (1L0)}

Ay  Awy  ASB
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Dilation

Structuring
element:

A ADB




Dilation

Structuring
element:

ADB




Structuring
element:

Dilation

ADB

10



Structuring
element:

Dilation

ADB
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Dilation

Structuring
element 2:

A

Structuring

element 1:

ADBDC
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Dilation

C ADBDC
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Dilation

Historically, certain computer
programs were written using
only two digits rather than
four to define the applicable
year. Accordingly, the

Historically, certain computer

programs were written using

only two digits rather than
four to define the applicable
year. Accordingly, the
company's software may company's software may
recognize a date using "00°

as 1900 rather than the year

e

recognize a date using "00"

as 1900 rather than the ygar
i

20G0.

&

Structuring
element:
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Minkowski difference (Erosion)

+AeB ={cek" | c + beA, for each beB }
+ASB = A, beB
+AeB={cek" | B.c A}

Structuring
element:

A - B={(0,0), (1,0) }

A1 ASB
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Erosion

Structuring
element:

B

AoB
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Erosion

Structuring
element 1:

d/4

d /4

d

Structuring
element 2:
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Erosion

Structuring element:

Ao B
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Erosion

Structuring element:

Ao B
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Erosion

Structuring element:

Ao B
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Erosion

\TEST‘ TEST TEST
'1|\/IAGE IMAGE JIMAGE

Original image Eroded once Eroded twice

element: .



Dilation (+) and Erosion (-)
properties

A+{d}= A-{JF}=A

A+B-= (AC - Br)c Erosion and Dilation Duality Theorem: Dilation and Erosion
transformation bear a similarity, what one does to image
A - B = (A®+ B")¢ foreground and the other does for the image background.

(A+B)C=AC -Br Similar but not identical to De Morgan rule in Boolean Algebra
A+B=(A+B),

A-B.=(A-B).,

A + {a} = A - {a}r = Aa’ Translation

Decomposition: B=B1+Bz +B3 +"'°+Bn
A+B = (...(((A+ B;)+B, )+B;) +....)+B,
A-B = (...(((A- B,)-B, )-B;) -....)-B,
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Dilation (+) and Erosion (-)
properties

(A+B)+C=A+(B+C) (A-B)-C=A-(B+C)
(AUB)+C=(A+C)u(B+C) (A n B)-C=(A-C) n (B-C)
A+(BuC)=(A+B)U(A+C) A-(BuC)=(A-C)n(B-C)

Ac B=>(A+C)c (B+C)  AcB=(A-C)c (B-C)
B—C=(A-B) S (A-C)

(ANB)+Cc (A+C)N(B+C) (AU B)-Co (A-C) U(B-C)
A-(BAC)>(A-C)U(B-C
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Erosion and Dilation summary

a b e

FIGURE 9.7 (a) Image of squares of size 1,3,5,7,9, and 15 pixels on the side. (b) Erosion of (a) with a square
structuring element of 1's, 13 pixels on the side. (¢) Dilation of (b) with the same structuring element.

Structuring
element: N
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Closing operator

+ C(A, K) = (A®K)SK

+ Operator idempotent (the reapplication has
not further effects): AcC(A,K)=C(C(A,K),K)

Structuring

element:

“EE (A@K)eK
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Closing operator

Structuring
element:

+ C(A, K) = (A®K)OK

K

(A®K)OK
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Closing

Structuring
element:

A‘B—\

L
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Closing operator

+ C(A, K) = (A®K)SK Structuring

element:

(A®K)©K

29



Opening operator

Structuring

+ O(A) K) = (AGK)@K element:

+ Operator idempotent (the reapplication has
not further effects): O(O(A,K),K)=0(A,K)cA

A

IR e

(ASK) @ K
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Opening operator

*O(A,K) - (Ae K)@K Structuring

element:

B o

(ASK) @K
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Opening

A° B = U{(B),(B), C A}

Translates of Bin A

Structuring

'\ element:
ANOL
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Opening and closing

Second erosion  Second opening
Second dilation  Second closing

Original Image Erosion Opening

Structural Dilation Closing
element




Opening Example

+3x9 and 9x3 Structuring Element

3*9

>

9*3

>

-

\Volker Kruger & Rune Andersen
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Use Opening for Separating Blobs

+ Use large structuring element that fits
into the big blobs

+ Structuring Element: »

A SR ,(__y’:,: T TN * IR A
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Opening and Closing: contour curvature

+ Opening a picture is describable as + Closing a picture is describable as
pushing object B under the scan-line pushing object B on top of the scan-
graph, while traversing the graph line graph, while traversing the graph
according the curvature of B according the curvature of B

+ The valleys usually remains in their + The peaks usually remains in their
original form original form

Structuring
element:




The ‘good’ contour

+ Opening and Closing operator with a circle as structural elements change
the boundaries as shown in figure: closing extends the boundary as if a ball
rolles over the outer border; opening restricts it rolling the inner border

+ The larger the circle the smoothed the result. The maximum resulting
curvature is that of the structural element

Dilations ( R\ \

Arjan Kuijper
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Structuring
element:

O

=g

A°B=(A©B)®B

Opening vs
Closing
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Hit or Miss operator

+A®(J,K) = (ASJ)N(AcOK) elements J ang K
+ with the constrain JNK=C
+Suitable for ‘template’ matching
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Hit or Miss

+J and K can be seen as a single
template with three values:

+Foreground
+Background
+Do not care

Doints
Doints
Doints

v
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Hit or Miss

+ Search of isolated points(8-connection)

+ AeJ=A

J

AcoK

K

Final

Risult
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Hit or Miss

+ Search of isolated points(4-connection)

+

ASJ=A ]
A
AceK
N

K

AC

Final

Risult
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Hit or Miss

Pixels satisfying the
background constraints

Pixels satisfying the
foreground constraints

46



Contour example

AOB A-(ASB)
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Examples: Boundary Extraction

+ Contour
+Internal: A-(A©K)
+External: (A ®@ K)nA or (A @ K)-A
+Double: (A @ K)©n(AS K) = (A @ K)-(ASK)

Edgein
Edgeout
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Iteration: disks in 4 and 8 connectivity

Structuring Structuring
element: element:
X={C} I=1 C = center pixel

for i=1,R do X=(X @ K) X = evolving image
R = radius (4 in eX.) sg



Recursion: Propagation

+ Propagation in a connected component

+ Let A be a set containing one or more connected
components (mask), and consider an array X, (of the
same size of the array A) whose elements are Os,
except to a point of A foreground (marker).

+X={X } X = evolving image
+doD=X A = original image
+X = (X® K)nA K is the unitary circle

+while(D=X) in the adopted metric
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Recursion example:
Connected Components

Structuring
element:

.B

I n q

S 8

Xg X 3 Xﬁ 52
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Structuring

Hole
Filling

element:
°
A A€ B
X X1 X,
X6 Xs Xg UA
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Distance transform

+ DT implementation using dilation and
addition operators:

+R=O R = evolving image
+while(A-+0) do at the end DT
+R = R+A
+A = ASK

+done
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Distance Tranform - algorithm

A A A

M A A

2121212121
1128331 2|1

11y 2(2121212]1

112123133321

Structuring
element:

A A A

A A O A

11y 2(21211(1
12121212121

1121122111

11y 1rfz2121211]1

11y 2(21212(212]1

Structuring
element:

111]1(1|1

11111(1|1

11111111

11111111

111(1(1|1|1(1
111(1(1|1|1(1

111111111111
111111111111

1111 (1|1|1(1|1(1

111]1(1j1|1(1]1

1111111111111 |1]|1

1111111111111

1111111 (1|1(1

1111111111111 |1]|1
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DT - local maxima

+ The local maxima set
is a compact object

representation

+ The object can be

rebuilt as union of the

maximal digital disks
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Distance transform and MAT

The Distance Transform (DT) is obtained by
labeling all the pixels inside a binary object
with their distance to the background

In figure applying twenty iterations of the
erosion operator (structural element: unit
disk) twenty successive colored layers
showing equi-distant contours from the
background for a Manhattan distance metric
are obtained

Every pixel has a color corresponding to its
distance label which increases going inwards.
In practice, this value represents the side of
the greatest digital disk having its centre on
this pixel, which is completely contained in
the binary object.

Any pattern can be interpreted as the union
of all its maximal digital disks (local
maximum in DT). A maximal disk is a disk
contained in the object that is not
completely overlapped by any other disk.

The set of the centers of the maximal disks
with their labels, constitutes the MAT




Reverting progressively MAT

A procedure to derive the MAT from the DT is
based on the comparison of neighboring labels to
establish whether a local maximum exists

This transform is complete in the sense that it is
possible to revert it, so obtaining the original
object back

This recovery process can be implemented by
expanding every pixel belonging to the MAT, using
the corresponding maximal disk whose size is
given by the pixel label. The logical union of all
such disks reconstructs the original object

This figure shows the progressive reconstruction,
starting from the set of disks corresponding to the
highest level (two white disks) until the sixth and
last monk’s profile, where disks, reduced to just
one pixel, have been included

This transform is compact since the full object
may be described only by its labeled disk centers

U={0}
Vl,] : MAT i,j > 0 - U - UUDMAT,:J‘




Distance between two points

Structuring

+ Distance between X,YeZ: element: K
+ A={X}; D=A Z={(J} A= evolving binary -
image
+ while(YgA) do F= original image (mask)
+7Z=A Z= connected component
+A=(A®KNF
+D=D+A :H

+ done D

+ If A=(A® K)nF and YZA : Z is not
connected and Y is not reachable from X
+ Following back the path of max gradient

we can always find one of the minimum
paths between X, Y
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Weighted DT

+ In this case all neighbors are not considered at the same
distance (e.g. 8-connectivity)

+ Example: a good approximation to the Euclidean
distance in 8-connectivity (the result is about doubled)
is given by:

312(3

w=|2

312(3

WIN
N |G W IN

W (N

N |G
N |G
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Example

+61



Minimum path
4-conn




Minimum path
8-conn
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Minimum path
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Minimum path
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8-Convex Hull

+ Aset Ais said to be convex iff the straight
line segment joining any two points in A
lies entirely within A.

+ The convex hull is the minimum n-sided
convex polygon that completely
circumscribes an object, gives another
possible description of a binary object. An
example is given in figure where a
constrained 8-sided polygon has been
chosen to coarsely describe the monk
silhouette.

+ To obtain the convex hull a simple
algorithm propagates the object along the
eight (more generally 2n) orientations and
then: i) logically OR the opposite
propagated segments; and ii) logically AND
the four (more generally n) resulting
segments. The contour of the obtained
polygon is the convex hull.




8-Convex Hull




Use of thickening: Convex hull

+ Convex hull: union of thickenings, each up to idempotence

T

Union of four
thickenings

Original shape Thickening
with first mask

—
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Use of thickening: Convex hull

+Limiting to the original bounding box
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Example of using convex hull

Morfologia binaria
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Propagation: examples
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Mousebyte
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Minimum distance
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