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Mathematical Morphology



Mathematical Morphology

Mathematical Morphology was 

developed in France (G. Motheron e J. 

Serra, Ecole des Mines) and in different 

form with the name Image Algebra in 

USA (S. R. Sternberg, Michigan 

University).
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Logic operators between binary images
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Preliminary Statements

 A  En, t  En

 Translation of A by a vector t

At = { c En | c=a+t, aA }

 Reflection of A

Ar= { c | c=-a, aA }

 Complement of A

Ac = En -A 4

A

A(2,1)

Ar

Ac

A
^



Minkowski sum (Dilation)

AB = { cEn | c=a+b, aA, bB }

AB =  Ab , bB

It can be easily shown that: AB = BA
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A B= { (0,0), (1,0) } 

A(0,0) A(1,0) AB



Dilation

 B is usually called structuring element
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A B= {(-1,0), (1,0) } 

A(-1,0) A(1,0) AB



Dilation
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Gonzales-Woods

Structuring 

element: 

Structuring 

element: 
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Dilation

B

ABA

Structuring 

element: 
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Dilation

B

ABA

Structuring 

element: 
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Dilation

B AB

A

Structuring 

element: 
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Dilation

B AB

A

Structuring 

element: 
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Dilation

C ABC

A B

Structuring 

element 1: 

Structuring 

element 2: 
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Dilation

C ABC

A B



Dilation
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Gonzales-Woods

Structuring 

element: 
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Minkowski difference (Erosion) 

A B = { cEn | c + bA, for each bB }

A B =  A-b bB

A B = { cEn | Bc  A }

A B= { (0,0), (1,0) } 

A(-1,0)
A B

Structuring 

element: 



Erosion
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Gonzales-Woods

Structuring 

element: 

A B



Erosion
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Gonzales-Woods

Structuring 

element 1: 

Structuring 

element 2: 
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Erosion

A B

Structuring element: 

A B
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Erosion

A B

Structuring element: 

A B
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Erosion

A B

Structuring element: 

A B



Erosion

Original image              Eroded once             Eroded twice

Structuring 

element: 
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A + {} =  A - {} = A

A + B = (Ac – Br)c

A – B = (Ac + Br)c

(A+B)c=Ac -Br

A+Bt=(A+B)t 

A-Bt=(A-B)-t

A + {a} = A - {a}r = Aa, Translation

Decomposition: B=B1+B2 +B3 +….+Bn 

A+B = (…(((A+ B1)+B2 )+B3) +….)+Bn

A-B = (…(((A- B1)-B2 )-B3) -….)-Bn

Dilation (+) and Erosion (-) 

properties

Erosion and Dilation Duality Theorem: Dilation and Erosion 

transformation bear a similarity, what one does to image 

foreground and the other does for the image background. 

Similar but not identical to De Morgan rule in Boolean Algebra
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(A+B)+C=A+(B+C)           (A-B)-C=A-(B+C)

(AB)+C=(A+C)(B+C)    (A  B)-C=(A-C)  (B-C)

A+(BC)=(A+B)(A+C)    A-(BC)=(A-C)(B-C)

A B(A+C) (B+C)        AB(A-C) (B-C)

BC(A-B)  (A-C)

(AB)+C (A+C)(B+C)  (A B)-C (A-C) (B-C)

A-(BC)(A-C)(B-C

Dilation (+) and Erosion (-) 

properties



Erosion and Dilation summary

Structuring 

element: 
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Closing operator

 C(A, K) = (A   K)   K

 Operator idempotent (the reapplication  has 
not further effects):  AC(A,K)=C(C(A,K),K) 

K

A

A   K

(A   K)  K

Structuring 

element: 




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Closing operator

 C(A, K) = (A   K)   K K

A

A   K

(A   K)   K

Structuring 

element: 









Closing

28

Gonzales-Woods

Structuring 

element: 
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Closing operator

 C(A, K) = (A   K)   K

K

A

A   K

(A   K)   K

Structuring 

element: 





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Opening operator

 O(A, K) = (A   K)   K

 Operator idempotent (the reapplication has 
not further effects):    O(O(A,K),K)=O(A,K)A K

A

Structuring 

element: 

A   K



(A  K)   K



Opening operator

O(A,K) = (A   K)  K
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K

A

(A   K)   K

A   K

Structuring 

element: 







Opening

32
Gonzales-Woods

Structuring

element: 



Original Image Erosion Opening

Structural

element

Dilation Closing

Second erosion Second opening

Second dilation Second closing

Opening and closing



Opening Example

3x9 and 9x3 Structuring Element

36

3*9

9*3

Volker Krüger & Rune Andersen



Use Opening for Separating Blobs

Use large structuring element that fits 

into the big blobs

Structuring Element: 
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Opening and Closing: contour curvature

 Closing a picture is describable as 

pushing object B on top of the scan-

line graph, while traversing the graph 

according the curvature of B

 The peaks usually remains in their 

original form
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 Opening a picture is describable as 

pushing object B under the scan-line 

graph, while traversing the graph 

according the curvature of B

 The valleys usually remains in their 

original form

Structuring 

element: 



The ‘good’ contour

 Opening and Closing operator with a circle as structural elements change 

the boundaries as shown in figure: closing extends the boundary as if a ball 

rolles over the outer border; opening restricts it rolling the inner border

 The larger the circle the smoothed the result. The maximum resulting 

curvature is that of the structural element
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Arjan Kuijper



Opening vs

Closing

40
Gonzales-Woods

Structuring 

element: 



Opening

Closing

41Gonzales-Woods



Hit or Miss operator

A(J,K) = (A   J)(Ac K)

 with the constrain JK=

Suitable for ‘template’ matching

42

Two structuring 

elements J and K 



Hit or Miss

J and K can be seen as a single 

template with three values:

Foreground points

Background points

Do not care points

43

M



Hit or Miss

Search of isolated points(8-connection)

 A  J=A

44

J K

A Ac

Final 

Risult
Ac K



Hit or Miss

Search of isolated points(4-connection)

 A  J=A
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J

A Ac

Ac K

K

Final 

Risult



Hit or Miss
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Pixels satisfying the

background constraints

Pixels satisfying the

foreground constraints



Contour example
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Gonzales-Woods

A-(A B)



Examples: Boundary Extraction

Contour

Internal: A-(A K)

External:  (A  K)Ā  or (A  K)-A

Double: (A  K)(A    K) = (A  K)-(A K)
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D.A. Forsyth

Edgein

Edgeout



Iteration: disks in 4 and 8 connectivity
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55

Structuring 

element: 

Structuring 

element: 

X = { C }; I=1 C = center pixel 

for i=1,R do X=(X  K) X = evolving image

R = radius (4 in ex.)



Recursion: Propagation

 Propagation in a connected component

 Let A be a set containing one or more connected 

components (mask), and consider an array X0 (of the 

same size of the array A) whose elements are 0s, 

except to a point of A foreground (marker).

 X = { X0 }; X = evolving image

 do D = X A = original image 

X = (X  K)A         K is the unitary circle

while(DX)                 in the adopted metric               
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Recursion example: 

Connected Components

52

Gonzales-Woods

Structuring 

element: 



Hole

Filling

53
Gonzales-Woods

Structuring 

element: 



Distance transform

DT implementation using dilation and 

addition operators:

R =  R = evolving image

while(A) do at the end DT

R = R+A

A = A K

done
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Distance Tranform – algorithm
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Structuring 

element: 

Structuring 

element: 
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DT – local maxima

 The local maxima set 

is a compact object 

representation

 The object can be 

rebuilt as union of the 

maximal digital disks 

56
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Distance transform and MAT

 The Distance Transform (DT) is obtained by 

labeling all the pixels inside a binary object 

with their distance to the background

 In figure applying twenty iterations of the 

erosion operator (structural element: unit 

disk) twenty successive colored layers 

showing equi-distant contours from the 

background for a Manhattan distance metric 

are obtained

 Every pixel has a color corresponding to its 

distance label which increases going inwards. 

In practice, this value represents the side of 

the greatest digital disk having its centre on 

this pixel, which is completely contained in 

the binary object.

 Any pattern can be interpreted as the union 

of all its maximal digital disks (local 

maximum in DT). A maximal disk is a disk 

contained in the object that is not 

completely overlapped by any other disk.

 The set of the centers of the maximal disks 

with their labels, constitutes the MAT 57



Reverting progressively MAT

 A procedure to derive the MAT from the DT is 

based on the comparison of neighboring labels to 

establish whether a local maximum exists

 This transform is complete in the sense that it is 

possible to revert it, so obtaining the original 

object back

 This recovery process can be implemented by 

expanding every pixel belonging to the MAT, using 

the corresponding maximal disk whose size is 

given by the pixel label. The logical union of all 

such disks reconstructs the original object

 This figure shows the progressive reconstruction, 

starting from the set of disks corresponding to the 

highest level (two white disks) until the sixth and 

last monk’s profile, where disks, reduced to just 

one pixel, have been included

 This transform is compact since the full object 

may be described only by its labeled disk centers
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Distance between  two points

 Distance between X,YZ:

 A = { X }; D=A Z={}  A= evolving binary 

image

 while(YA) do F= original image (mask)

 Z = A Z= connected component

 A = (A  K)F

 D = D + A

 done

 If A (A  K)F and YA : Z is not

connected and Y is not reachable from X

 Following back the path of max gradient 

we can always find one of the minimum 

paths between X, Y
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K

Y

X

4
4 4 1
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4 4 4 3 2 1
5 5 4 3 2 1 1

6 6 6 5 3 1 1
7 7 2
8 4 3 2 1
9 8 7 6 5 4 3 2 1
8 8 7 6 5 4
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1
1

Structuring 

element: 



Weighted DT

 In this case all neighbors are not considered at the same 

distance (e.g. 8-connectivity)

 Example: a good approximation to the Euclidean 

distance in 8-connectivity (the result is about doubled) 

is given by:

w=

60
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Example

61



Minimum path 

4-conn
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Minimum path 

8-conn
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Minimum path

4-conn



Minimum path 

8-conn
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Minimum path 

4-conn
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8-Convex Hull

 A set A is said to be convex iff the straight 

line segment joining any two points in A 

lies entirely within A.

 The convex hull is the minimum n-sided 

convex polygon that completely 

circumscribes an object, gives another 

possible description of a binary object. An 

example is given in figure where a 

constrained 8-sided polygon has been 

chosen to coarsely describe the monk 

silhouette.

 To obtain the convex hull a simple 

algorithm propagates the object along the 

eight (more generally 2n) orientations and 

then: i) logically OR the opposite 

propagated segments; and ii) logically AND 

the four (more generally n) resulting 

segments. The contour of the obtained 

polygon is the convex hull.
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8-Convex Hull

68



Original shape Thickening 

with first mask  

Union of four 

thickenings

Use of thickening: Convex hull
 Convex hull: union of thickenings, each up to idempotence
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Use of thickening: Convex hull
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Limiting to the original bounding box



Example of using convex hull
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Propagation: examples
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Short

CutMousebyte

Spacing



Mousebyte
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Minimum distance
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