
Histogram and LUT
operations

Local operation

Histogram

H[v] is the number of pixel of the image with value v (v is usually in the range 0-255) H is an array

We usually evaluate a different histogram for each channel

(or we merge the channels in a single «gray» channel)

Cumulative function

C[v] is the number of pixel of the image with value less or equal to v

From a programming point of view

C[0] = H[0]

C[v] = C[v-1] + H[v]  C[v] ≥ C[v-1] (for v>0)

With the common range (0-255)

C[255] is the number of pixels of the image (width x height)

Local operation
The value of the pixels of the new image depends only on the value of the corresponding pixel of the

original image

newImage(i,j) = f(originalImage(i,j))

It is easily implemented by a Look Up Table (an array of integer)

newImage(i,j) = LUT[originalImage(i,j)] (Common programming language notation)

A simple example: the negative image

nnLUT  255)(

The histogram is reflected respect to the original

The original image can be obtained by applying a second

time the LUT

An image with a limited range

Only a small range is used in the image, very clear and

very dark pixels are absent

In this example the blue channel has been selected

Extended dynamics

The pixel distribution may be extended by stretching with the following
LUT (min e max, are the minimum and maximum values):

minmax

min
255)(






n
nLUT

Highlight contrast in a range

A small range may be enhanced (in this case a=50, b=200)





















bnse

bnase
ab

an
anse

nLUT

255

255

0

)(

Bright image

The histogram is compressed towards high values

255/255255)(nnnLUT 

Dark image

The histogram is compressed towards low values

2
2

)255/(255
255

)(n
n

nLUT 

Image equalization

To obtain a uniform distribution of image contrast a technique known
as equalization is employed. This technique consists in making the grey
level distribution as close as possible to a uniform distribution, in an
adaptive way. The more uniform is a grey level distribution, the better
contrasted is the associated image








255

0

0

)(

)(

255)(

i

n

i

iH

iH

nLUT

Image equalization

Cumulative function: original equalized

Perfect uniform distribution

256x256 image
Each column has a unique gray value
Img(i,j) = i

magick -size 256x256 canvas: -fx "i/255" ideal.gif

The pixel has a value in the range 0.0:1.0

Back to color images

• Color images are made by pixels of the three different channels (red,
green, blue)

• RGB sequence: RGBRGBRGBRGBRGBRGBRGBRGB …
• Remember PPM images

• But it is also used an alternative choice:

• BGR sequence: BGRBGRBGRBGRBGRBGRBGRBGR …

• Usually each value is a single byte (so 256x256x256 different colors
are possible ~16 millions)

A practical example: Java

• Java memorizes a pixel value by an «int» (4 bytes)

• The less significant byte for the blue channel, then the green channel and the
red channel

• The most significant byte is used for the transparency of the pixel (alpha
channel: 0  invisible pixel, 255  completly visible)

int pixel = 0xFFRRGGBB;

Some channels are zeroed

java cv.imageframe.Bool 0xFFFF0000 lena-c256.png

java cv.imageframe.Bool 0xFF00FF00 lena-c256.png

java cv.imageframe.Bool 0xFF0000FF lena-c256.png

java cv.imageframe.Bool 0x00FFFFFF lena-c256.png

Get the value of each channel

• V is the int value of each pixel
• R = (V >> 16) & 255; // R = (V/0x10000) & 255

• G = (V >> 8) & 255;

• B = (V) & 255;

• Of course 0  R,G,B  255

• In a similar way we get the pixel value from the channels
• V = (R<<16) | (G<<8) | (B) | 0xFF000000;

Gray scale images

• A gray scale image is an image where all channels are equal
• A simple way to get the gray value (or brightness) from color images is

G = (R+G+B)/3

• But the human eyes have different sensibilities for different colors, a common
choise is

G = 0.299*R + 0.587*G + 0.114*B

• The pixel values for a gray image is

V = 0xFF000000 | (G<<16) | (G<<8) | G

Simple visualization

• See cv.imageframe.ImageFrame

Standard reference system (get pixels)
0

0

H-1

W-1

i

j

I(i,j)

int[] rgbArray = img.getRGB(startX, startY, w, h, null, offset, scansize);

int pixel = rgbArray[offset + (y-startY)*scansize + (x-startX)];

rgbArray.length:(offset + (h-startY)*scansize)

int[] rgbArray = img.getRGB(0, 0, W, H, null, 0, W);

int pixel = pix[y*W + x]; (W*H)

Get a window of size w
and h

Get the complete
image

See Java API java/awt/image/BufferedImage.html

Standard reference system (set pixels)
0

0

H-1

W-1

i

j

I(i,j)

img.setRGB(startX, startY, w, h, rgbArray, offset, scansize);

rgbArray[offset + (y-startY)*scansize + (x-startX)] = pixel;

img.setRGB(0, 0, W, H, rgbArray, 0, W);

Set a window of size w
and h

Set the complete image,
rgbArray is the array with

the new values

See Java API awt/image/BufferedImage.html

Get an image as a matrix

• Get row by row:
int[][] mat = new int[h][w];

for(int i=0; i<h; i++) mat[i] = img.getRGB(0,i,w,h,null,0,w);

int pixel = mat[i][j]; // to handle a single pixel

mat[i][j] = LUT[pixel];

See cv.imageframe.FlipVertical

Other approach

• Get/set a single pixel
int value = img.getRGB(x, y);

img.setRGB(x, y, value); // x, y the coordinates of the pixel

See cv.imageframe.FlipHorizontal, cv.imageframe.Transpose

Automatic thresholding

• Simple approach:
• Start from a first threshold (as an example 128, (max+min)/2, …)

• Evaluate the means of the two regions
• Evaluate a new threshold (m1+m2)/2
• Repeat if the two thresholds differ more then a fixed constant

• Otsu’s algorithm:
• Optimize respect a threshold p1(m1-m)2+p2 (m2-m)2

• m mean of the image, pi is the probability that a pixel belongs to region i
• It may be generalized respect to 2 thresholds (and 3 regions)

• p1(m1-m)2+p2 (m2-m)2+p3 (m3-m)2

• Both algorithms may be optimized using the histogram of the image (not
the image)

