Histogram and LUT
operations

Local operation

Histogram

4500 T T T T T

+
4000 - i .
+
3500 N .
I+ o+
+
3000 ;ﬁg% ot .
. ¥ 3
2500 - #* * P .
% * b4 ¥ +++
X * x ¥ k3
2000 - % X)@Q‘ A N i
By +
+

0 a0 100 150 200 250 300

H[v] is the number of pixel of the image with value v (v is usually in the range 0-255) H is an array

We usually evaluate a different histogram for each channel
(or we merge the channels in a single «gray» channel)

Cumulative functior

300000 T T T T |

250000

200000

H -

150000

100000

30000

0 i g
0 a0 100 150 200 250 300

C|[v] is the number of pixel of the image with value less or equal to v

From a programming point of view

C[0] = H[O]

C[v] = C|v-1] + H[v] = C]v] = C[v-1] (for v>0)

With the common range (0-255)

C[255] is the number of pixels of the image (width x height)

Local operation

The value of the pixels of the new image depends only on the value of the corresponding pixel of the
original image

newlmage(i,j) = f(originallmage(i,j))

It is easily implemented by a Look Up Table (an array of integer)

newlmage(i,j) = LUT[originallmage(i,j)] (Common programming language notation)

A simple example: the negative image

4500

4000

3500

3000

2500

2000

1500

1000

LUT (n) =255—n 500

The histogram is reflected respect to the original

The original image can be obtained by applying a second
time the LUT

An image with a limited range

3500

3000 ’g %
bl "I
X
2500 * * .
*
* *
*
2000 *
*
¥ *
*
1500 *
*
#* ¥
* *
1000 *
*
*
500 *
*
#*
Uﬂ ' '
100 150 200 250

300

Only a small range is used in the image, very clear and

very dark pixels are absent

In this example the blue channel has been selected

Extended dynamics

The pixel distribution may be extended by stretching with the following
LUT (min e max, are the minimum and maximum values):

3500 T T T

n—min 3000 | 7 %
LUT () = 255x | L A
maX— mln 2500 : % *

2000

* ¥

1500

E

1000

200

0 a0 100 150 200 250 300

Highlight contrast in a range

A small range may be enhanced (in this case a=50, b=200)

0 se n<a
n—a
LUT(n)=<255><b se a<n<b 3500
*
255 se n>b 3000 F 4 et %;EWH ﬁe*
* %ﬁx *
2500 * W *
*
* #*
2000 *E;K
*
* *
*
1500 £
*
by %
| E]
1000) W .
Fx
500 = n
*

0 a0 100 150 200 250 300

Bright image

The histogram is compressed towards high values

LUT (n) = +/255xn = 255+/n/ 255

7000

e000

2000

4000

3000

2000

1000

Dark image

The histogram is compressed towards low values

n2

Image equalization

To obtain a uniform distribution of image contrast a technique known
as equalization is employed. This technique consists in making the grey
level distribution as close as possible to a uniform distribution, in an

adaptive way. The more uniform is a grey level distribution, the better
contrasted is the associated image

S H (i)

LUT (n) = 255x =0

ZH(i)

Image equalization

120000 T T

100000

80000

60000

40000

20000

0 a0 100 150 200

Cumulative function: original equalized

250

300

225 219

\gs and pictures, it is useful for detecting
‘which are non-text. Fig. 2(b) and Fig. 1(b)
ok iod

S & L by very few
scanning of the image in order to find

Perfect uniform distribution

J0000 T T T T T

60000

50000

40000

30000

20000

10000

256x256 image
Each column has a unique gray value

Img(i,j) =i

0 a0 100 150 200 250 300

magick -size 256x256 canvas: -fx "i/255" ideal.gif

The pixel has a value in the range 0.0:1.0

Back to color images

* Color images are made by pixels of the three different channels (red,
green, blue)

* RGB sequence: RGBRGBRGBRGBRGBRGBRGBRGB ...
* Remember PPM images

e Butitis also used an alternative choice:
* BGR sequence: BGRBGRBGRBGRBGRBGRBGRBGR ...

e Usually each value is a single byte (so 256x256x256 different colors
are possible ~16 millions)

A practical example: Java

* Java memorizes a pixel value by an «1nt» (4 bytes)

* The less significant byte for the blue channel, then the green channel and the
red channel

 The most significant byte is used for the transparency of the pixel (alpha
channel: 0 - invisible pixel, 255 - completly visible)

int pixel = O0xFFRRGGBB;

Some channels are zeroed

java cv.imageframe.Bool OxFFFFOOO0O lena-c256.png
java cv.imageframe.Bool OxFFOOFFOO lena-c256.png

java cv.imageframe.Bool OxFFOOOOFF lena-c256.png

java cv.imageframe.Bool OxOOFFFFFF lena-c256.png

Get the value of each channel

* VVis the int value of each pixel
« R=(V>>16) & 255; //R=(/0x10000) & 255
« G=(V>>8) & 255;
e B=(V)& 255;
e Of course 0<R,G,B< 255

* In a similar way we get the pixel value from the channels
* V = (R<<16) | (G<<8) | (B) | OXFFO00000;

Gray scale images

* A gray scale image is an image where all channels are equal
* A simple way to get the gray value (or brightness) from color images is
G = (R+G+B)/3

* But the human eyes have different sensibilities for different colors, a common
choise is

G =0.299*R + 0.587*G + 0.114*B
* The pixel values for a gray image is
V = 0xFFO00000 | (G<<16) | (G<<8) | G

Simple visualization

e See cv.imageframe.lImageFrame

Standard reference system (get pixels)

0 j W-1

H-1

int[] rgbArray = img.getRGB(startX, startY, w, h, null, offset, scansize);
int pixel = rgbArray[offset + (y-startY)*scansize + (x-startX)];
rgbArray.length: (offset + (h-startY) *scansize)

int[] rgbArray = img.getRGB(O, 0, W, H, null, 0, W);

int pixel = pix[y*W + x]; (W*H)

See Java API java/awt/image/Bufferedimage.html

Standard reference system (set pixels)

0 j W-1

H-1

img.setRGB (startX, startY, w, h, rgbArray, offset, scansize);
rgbArray[offset + (y-startyY) *scansize + (x-startX)] = pixel;
img.setRGB (0, 0, W, H, rgbArray, 0, W);

See Java APl awt/image/Bufferedimage.html

Get an Image as a matrix

e Get row by row:
int[][] mat = new int[h][w];
for(int i=0; i<h; i++) mat[i] = img.getRGB(0,i,w,h,null,0,w);

int pixel = mat[i][j]; // to handle a single pixel
mat[i][j] = LUT[pixel];

See cv.imageframe.FlipVertical

Other approach

* Get/set a single pixel
int value = img.getRGB(x, y);
img.setRGB(x, y, value); // x, y the coordinates of the pixel

See cv.imageframe.FlipHorizontal, cv.imageframe.Transpose

Automatic thresholding

* Simple approach:

e Start from a first threshold (as an example 128, (max+min)/2, ...)
* Evaluate the means of the two regions
* Evaluate a new threshold (m;+m,)/2
* Repeat if the two thresholds differ more then a fixed constant

e Otsu’s algorithm:
* Optimize respect a threshold p,(m;-m)%+p, (m,-m)?
* m mean of the image, p,is the probability that a pixel belongs to region i
* It may be generalized respect to 2 thresholds (and 3 regions)
¢ pl(ml-m)2+p2(mz-m)2+p3(m3-m)2

e Both algorithms may be optimized using the histogram of the image (not
the image)

