Edge detection




Edge detection

« Goal: ldentify sudden changes
(discontinuities) in an image
Intuitively, most semantic and shape

information from the image can be
encoded in the edges

More compact than pixels

» ldeal: artist’s line drawing (but artist
IS also using object-level knowledge)

Source: D. Lowe



Segmentation

+ Image segmentation consists into the decomposition of the
Image In segments (i.e. components)

 This process is based on a given criteria of homogeneity
(chromatic, morphologic, motion, depth, etc.)

*  From the operational viewpoint, three approach have been
proposed:

- Clustering image data and growing regions
- Border following

- Search of borders



Binary Images

The segmentation process leads to detect an individual object — foreground
- in contrast to the background so it is a binarization process

Some applications are by nature binary: black and white printing, writing,
mechanical parts, bio-imagery like cells or chromosomes, etc. ....

Often the originals contains various grey levels due to:
Non-uniform scene illuminations

Shadowing
Electric noise of the camera



The easiest solution is a
threshold applied to the grey

levels:

O(i,j)) =255if I(i, j)) < Th
O(i, ) = 0 otherwise

It is required the evaluation of
the optimal threshold Th.

Operating on the histogram,
there are two possibilities:

Finding the minimum

Applying statistic criteria

Bimodal Distribution

Number
of
pixels

background
mean
value

Bimodal histogram

Grey levels



Example: mechanical part
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Example: bear
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Texture: Brodatz album
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Border following

« An example of a recursive walk
over the image, following the
contour to be exhibited. In the
example the horizon of an edge
point is the triangle of depth 5
and basis 6, in the direction of
the last found edge segment.
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Search of borders
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Analytic derivative model

« The border search can be based on the discontinuity of an
Image feature like the grey level, a texture or a motion
parameter, the depth in the scene, etc.

* For operators stemming from first order partial derivatives
a maximum response is looked for, either local maximum
or over a threshold whether given or adapted

 Note that the second derivative is used too, and among
second order operators the Laplacian is peculiarly popular
as being scalar then isotropic. There, of course, the zero
crossing — inflection points - are looked for.
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Derivatives and edges

An edge Is a place of rapid change in the image intensity

function.
Intensity function

Image (along horizontal scanline) first derivative

\ |

edges correspond to
extrema of derivative

Source; L. Lazebnik



Analytic derivative model

1.5

f°(x) is the first derivative. Max
determines F/B crossing

i)

f(x) Is the grey

05 1 level, here
representing the
q |r_nage |_n one
dimension
05t

f ”(x) is the second derivative
Zero determines F/B crossing
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Analytic derivative model

The first derivative is given by:

fx+h)— flx—h)

S (x)= o

The second derivative is given by:

JEAm)-2/(x)+ f(x—h)
h?

S (xR

In 2D the derivate is substituted by the vector gradient

16



Convolution

« The convolution is a linear operator,
that is applied when the image 1(X, y) Is
continue. To the digital image I(i, j) a
filter is applied represented by the
mask:

O(XoYo) =) T(xgX, Yory) 1(xy) dx dy

O(x,y) = 2.2 f(x-i, y-j) 1(i.j)
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Example: box filter

1| 1|1
1
—l1]1]|1
9

1| 1|1

Slide credit: David Lowe (UBC)



Image filtering JJEE ABE
f[...] ., ]

h[m,n]=> g[k,I]1 f[m+k,n+1]

Credit: S. Seitz



Image filtering o| Rl BB
f[...] ., ]

h[m,n]=> g[k,I]1 f[m+k,n+1]

Credit: S. Seitz



Image filtering o| Rl BB
f[...] ., ]

h[m,n]=> g[k,I]1 f[m+k,n+1]

Credit: S. Seitz



Image filtering o[- -1 21212z
f[...] ., ]

h[m,n]=> g[k,I]1 f[m+k,n+1]

Credit: S. Seitz



Image filtering o| Rl BB
f[...] ., ]

h[m,n]=> g[k,I]1 f[m+k,n+1]

Credit: S. Seitz



Image filtering JJEE 0K
fL.,.] ., ]
H

h[m,n]=> g[k,I]1 f[m+k,n+1]

Credit: S. Seitz



Image filtering

g[ -

fL..] [...]

9

30

30

h[m,n]=> g[k,I]1 f[m+k,n+1]

Credit: S. Seitz



Image filtering JJEE ABE
f[...] ., ]

h[m,n]=> g[k,I]1 f[m+k,n+1]

Credit: S. Seitz



Box Filter

What does it do?

* Replaces each pixel with 1] 1| 1
an average of its 1
neighborhood el I

9
1|1 |1

« Achieve smoothing effect
(remove sharp features)

Slide credit: David Lowe (UBC)



Smoothing with box filter




Practice with linear filters

o|lo]|o 0
0|1]0 54
o|lo]|o

Original

Source: D. Lowe



Practice with linear filters

Original Filtered
(no change)

Source: D. Lowe



Practice with linear filters

o|lo]|o 0
0|01 e
o|lo]|o

Original

Source: D. Lowe



Practice with linear filters

Original Shifted left
By 1 pixel

Source: D. Lowe



Practice with linear filters

0|00 1

01210 - ‘)
9 o

0|00

(Note that filter sums to 1)

Original

Source: D. Lowe



Practice with linear filters

Ol

Original

Sharpening filter
- Accentuates differences with local
average

Source: D. Lowe



Sharpening

before

Source: D. Lowe



Other filters

Vertical Edge
(absolute value)



Other filters

Horizontal Edge
(absolute value)



More properties

Commutative:a*b=b*a
Conceptually no difference between filter and signal
But particular filtering implementations might break this equality

Assoclative:a*(b*c)=(a*b)*c
Often apply several filters one after another: (((a * b;) * b,) * b,)
This is equivalent to applying one filter: a * (b, * b, * b,)
Distributes over addition:a*(b+c)=(a*b) + (a*c)
Scalars factorout: ka*b=a*kb =k (a* b)
Identity: unit impulsee=1[0,0,1,0,0],a*e=a

Source: S. Lazebnik



Important filter: Gaussian

«  Weight contributions of neighboring pixels by nearness

0.003 0.013 0.022 0.013 0.003
0.013 0.059 0.097 0.059 0.013
0.022 0.097 0.159 0.097 0.022
0.013 0.059 0.097 0.059 0.013
0.003 0.013 0.022 0.013 0.003

5x5,0=1




Smoothing with Gaussian filter




Smoothing with box filter




Gausslan filters

* Remove “high-frequency” components from the image
(low-pass filter)
Images become more smooth

« Convolution with self is another Gaussian

— So can smooth with small-width kernel, repeat, and get same result
as larger-width kernel would have

— Convolving two times with Gaussian kernel of width ¢ IS same as
convolving once with kernel of width o2

- Separable kernel
— Factors into product of two 1D Gaussians

Source: K. Grauman



Separability of the Gaussian filter

» The 2d Gaussian can be expressed by a product of two
functions, one function of x and the other function of y

X2+ Y
Go(x.y) = exp 207

2 2
- 1 exp_ 2x—rrz 1 e)(p_ ZLHZ
B V"EFT \/2?0

* In this case the two functions are the (identical) 1D Gaussian

Source: D. Lowe



Boundary issues

- What about near the edge?
- the filter window falls off the edge of the image

need to extrapolate -

methods: , "
- clip filter (black)
- wrap around

- copy edge
- reflect across edge

Source: S. Marschner



Filtering basics

Say the averaging window size IS 2k+1 X 2k+1:

G[i,j]—(2k+1)2 S % Flitug+ol

—ko=—%k
; \ J
Y |
Attribute uniform Loop over all pixels in neighborhood

weight to each pixel  around image pixel F[i,j]

Now generalize to allow different weights depending on
neighboring pixel’ s relative position:

il= 3 Y Hlu, o] Fi + u, j + 0]

u=—kv=—Fk Y
Non-uniform weights




Correlation filtering

koo k
Gli,j1= >, > Hlu,vIF[i+u,j+ ]

u=—kv=-—k
This is called cross-correlation, denoted G=HXF

Filtering an image: replace each pixel with a linear combination of
Its neighbors.

The filter “kernel” or “mask” HJ[u,v] Is the prescription for the
weights in the linear combination.



Convolution

« Convolution:

Flip the filter in both dimensions (bottom to top, right to left)
- Then apply cross-correlation

Gli, 7] = Z Z Hlu,v]F[t —u,j — v]

u=—kv=—%k

G=Hx*F .

T

Notation for
convolution
operator




Convolution vs. correlation

Convolution
k k
u=—-kv=-—=k
G=HxF

Cross- correlatlon

Gli, 7] = Z Z Hlu,v|F[i + u,j + v]

u=—kv=—=k

G=HQF

For a Gaussian or box filter, how will the outputs differ?



Filtering an impulse signal

What is the result of filtering the impulse signal (image) F
with the arbitrary kernel H?

a
d
g
Hu, v]

Glz, y]



Filtering an impulse signal

What is the result of filtering the impulse signal (image) F
with the arbitrary kernel H?

a
d
g
Hu, v]




Separability example

2D convolution
(center location only)

The filter factors
into a product of 1D
filters:

Perform convolution
along rows:

Followed by convolution

along the remaining column:

1 3 =2+6+3=11
2 5 =6+20+10 = 36
1 4 =4+8+6=18
1 X > 11 65
2
1

3 11
1 5 = 18
4 18
1 11
2 18 - 65
1 18

Source: K. Grauman



Convolution (decomposition)

In general the convolution is a computer demanding operator, e.g. the 5x5 template:

1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1

Is implemented by 25 multiplications for each pixel; note that often complex template
may be decomposed in simple 1D operators (e. g. the isotropic, monotonic decreasing
template)

The previous convolution can be decomposed in the following two 1D operators:

1 4 6 4 1 1
4

6
4
1

in this implementation only10 (5+5) multiplications per pixel are required

Note that applying several filters one after another (((a * b1) * b2) * b3) is equivalent
to applying one filter a * b4 where b4=(b1 * b2 * b3). If this three templates are 3x3
arrays b4 is a 7x7 template.

Each 3x3 kernel has 9 independent values for a total of 27 values meanwhile a general
7x7 templates has 49 independent values: Not al templates are decomposable in a short
sequence of smaller ones! Fortunately in important practical cases (e.g. circular

symmetric and monotonic decreasing) they are. 53



Gradient approximations

* The gradient is a 2D vector

- The digital differential operators are implemented by
template in which the sum of the kernel parameters is null:
In a uniform area the result must be zero (no variation)

« The basic and historical convolution kernels have an
extension limited to 2x2 and 3x3, for each of the two
components

58



Roberts Operator

It is the simplest solution

Two templates are applied M; and M,, obtaining the two orthogonal gradient
components:

G,=M,*l, G,=M,*|

It is very sensible to noise

0
The gradient module and phase are: Gl 0
G,=V G2+ G2
G, = arctg(G,/G,)+n/4
G 0
2 0N

59



|sotropic operator

Two templates are applied M; and M,, obtaining the two orthogonal gradient
components:

G =M*1, G=M*I

1/0]1
N2 0 V2
The gradient module and phase are: G == g
X
Gp=V G2+ G2
G, = arctg(G,/G,)
In C, Java, ...: R
L _ 12[1
phi = atan2(gy, gx) GG
1H2-1
Gy

60



Prewitt and Sobel operators

« To simplify the computation often the isotropic filter is
Implemented by these two simplified solutions:

- Prewitt
o i
101
G, Mol G, |Ef:11
- Sobel
1701 1121
G 2lo]2 G o/ofo
X 10]1 y 1|-2[-1

61



Example Sobel
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Example Sobel

Original image Module Phase

63



Sobel operator

horizontal gradient vertical contour

>

.,

Original image G,

vertical gradient

horizontal contgur



arctg(-13/15)

Sobel operator
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Module

Sobel operator

Phase

66



Example (module)
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Receptive field structure In
On-center Off-surround

Time

D' Response

Stimulus condition Electrical response

© Stephen E. Palmer, 2002



Receptive field structure In
On-center Off-surround

b‘ Response “ ||||| | |||"| |

Time

Stimulus condition Electrical response

© Stephen E. Palmer, 2002



Receptive field structure In
On-center Off-surround

©> ol
Time

Stimulus condition Electrical response

© Stephen E. Palmer, 2002




Receptive field structure In
On-center Off-surround

Response

Time

Stimulus condition Electrical response

© Stephen E. Palmer, 2002



Receptive field structure In
On-center Off-surround

\. Response ‘ | ‘
/ Time

Stimulus condition Electrical response

© Stephen E. Palmer, 2002



Receptive field structure In
On-center Off-surround

Response

Time

Stimulus condition Electrical response

© Stephen E. Palmer, 2002



RF of On-center Off-surround cells

Receptive Field Response Profile

Firing on-center

Rate | /A

off-surround

Horizontai Position

RF of Off-center On-surround cells

Receptive Field Response Profile

Firing on-surround

RACL AN

off-center

Horizontai Position

© Stephen E. Palmer, 2002
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|_ateral inhibition
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|_ateral inhibition

Excitation
wn/_ Inhibition

77



Lateral inhibition: theDoG filter

 The retina receptor apply a lateral inhibition mechanism.

» The implementation of this mechanism can be done by a
filter obtained by the difference of two Gaussian of equal
area, having different o (and amplitude):

1 ch+y2

e_ 20’2

2
2o

* The 'zero-crossing' correspond to the border points. An
advantage of this technique is that the produced contour
are closed.

78



Gaussian filter

O—

O—

2

c=4



Gausslan filters

«  What parameters matter here?
« Variance of Gaussian: determines extent of smoothing

A PN

o = 2 with 30 x 30 kernel o = 5 with 30 x 30 kernel




Gausslan filters

» What parameters matter here?
Size of kernel or mask

Note, Gaussian function has infinite support, but discrete filters use
finite kernels

c =5 with 10 x 10 kernel & =5 with 30 x 30 kernel



Gaussian Filter

1 Original image
2 Filtered image o=8

3 Filtered image o=4

82



The DoG operator

This operator is called usually Difference of Gaussians
(DoG)

The best results are obtained maintaining the external
Gaussian as large as possible but avoiding to include more
than one border

The internal Gaussian is optimized if it covers just the
transition area

Complex scene are better analyzed if a set of different
DoG filters with various o are applied.

83
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DoG Example

85



DoG Example
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Original
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Iscretization of grey level and noise

Original
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Laplacian

2 2
v2g ®h - (a 9(x.y) , g y)j®h(x )
X &’
Vg®h=g®V?’h

X2+vy2 2
Vzh(x,y)=( 4y — 2J@Dh(x,y)
O O

05 4.




John Canny, Rachid Deriche, etc operators
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Canny edge detector (CED)

a) Filter image with derivative of Gaussian
b) Find magnitude and orientation of gradient
c) Non-maximum suppression:
a)  Thin multi-pixel wide “ridges” down to single pixel width
d) Linking and thresholding (hysteresis):
a) Define two thresholds: low and high

b) Use the high threshold to start edge curves and the low
threshold to continue them

. MATLAB: edge (image, ‘canny’);
* >>help edge

Source: D. Lowe, L. Fei-Fei



CED: b) magnitude and orientation of gradient

g
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hy(X:Y)
hy (x,y)

Magnitude: Edge strength \/”'x (x,y)2+hy (x,y)2 Angle: Edge normal arc‘ran(



CED: ¢) Non-maximum suppression

How to turn these thick
regions of the gradient
Into curves?

Edge

.

Iin ) -1
\D

~

\\




CED: ¢) Non-maximum suppression

We wish to mark points along the curve where the magnitude 1s biggest.
We can do this by looking for a maximum along a slice normal to the curve
- non-maximum suppressin. These points should form a curve. There are

then two algorithmic issues: at which point 1s the maximum, and where 1s
the next one? Forsyth, 2002



CED: Non-maximum suppression

® ® ® o o
P
@ ® @
| q
Gradient /
® ® T @ ®
r
® 9 [ ®

Check if pixel is local maximum along gradient direction,
select single max across width of the edge
- requires checking interpolated pixels p and r



Examples: Non-Maximum Suppression

courtesy of G. Loy

Non-maxima
suppressed

Original image Gradient magnitude

Slide credit: Christopher Rasmussen



CED: d) Linking and thresholding (hysteresis)

Problem:
pixels along
this edge
didn’t survive
| the

@8l thresholding

Thinning (non-maximum suppression)



CED: Predicting the next edge point

&
(Gradien

:/\

Forsyth, 2002

Assume the marked point is an edge
point. Then we construct the tangent to
the edge curve (which 1s normal to the
gradient at that point) and use this to
predict the next points (here either r or s).




CED: Closing edge gaps

+  Check that maximum value of gradient value is sufficiently
large
drop-outs? use hysteresis

- use a high threshold to start edge curves and a low threshold to
continue them.

51 T

t, TN /

- O A f

Pixel number in
Not an edge 4 Labeled as edge  ep linked list along
gradient maxima

Gradient magnitude




Example: Canny Edge Detection

gap IS gone

Strong +
connected
weak edges

Original
image




Canny edge detector

Filter image with X, y derivatives of Gaussian
Find magnitude and orientation of gradient

Non-maximum suppression:

Thin multi-pixel wide “ridges” down to single pixel
width

Thresholding and linking (hysteresis):
Define two thresholds: low and high

Use the high threshold to start edge curves and the low
threshold to continue them

MATLAB: edge(image, ‘canny’)

Source: D. Lowe, L. Fei-Fei



Template Matching

An alternative method for edge detection computes the closest
(over all four/eight directions) approximations of g(i,j) in
every 3x3 neighborhood, to keep the one with maximum
convolution value, provided it is large enough

113



Template Matching

+ Kirsh’s operator

31515
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30]5

3013 [5]0]-3
31313
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303
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310]5
31313
333

-3-315
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5-3-3

51013 [5]|0}-3

51-3-3 (51513 151515

- Compass operator
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3/9 operator

110[0
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Contour extraction

B
P=1.5 %0333
£

P; « is the maximum among the 8 parameters P;

The coefficients 3/2 et 1/3 are introduced to normalize the
result so that monochromatic area has P=0

The final threshold can be applied depending on the
minimum average contrast t admitted in the neighborhood
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Practical aspects of the 3/9 filter

The filter implements a relative gray level intensity
analisys. Also the human eye apply a similir approach.

It must be payed attention when looking contours in the
dark!

Note that if P; Is low this edge estimation suffers very
much for the effect of the noise (if the intensity in the area
IS O then P=0/0).

Selecting the threshold for P; note that itis 9 time di
average intensity of the area (if the average area intensity
IS 10 over 255, that is very low, then P, =90, and edges are
looked for in the very dark)
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Contrast and threshold

()
* Let us call contrast the ratio T = —, the threshold Th is

given by:

b’

3 3b 1

b = E[5a+35_§]

P_al 1 1]
T 212t+1 3

1—1
2t +1

Th =

119



Example: Op. 3/9

120



Example: Op. 3/9
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Common types of noise

Salt and pepper noise:
random occurrences of
black and white pixels

Impulse noise: random
occurrences of white pixels

Uniform noise: constant
probability density in a
given range £k

Gaussian noise: variations
In intensity drawn from a
Gaussian normal
distribution

Impulse noise

Gaussian noise

Source: S. Seitz



First attempt at a solution

» Let’s replace each pixel with an average of all the values in

Its neighborhood
* Moving average in 1D:




Weighted Moving Average

- Can add weights to our moving average
- Weights [1,1,1,1,1] /5

Source: S. Marschner



Weighted Moving Average

* Non-uniform weights [1, 4, 6, 4, 1] / 16

T...001464100--

Source: S. Marschner



Degraded image: uniform noise

« The standard model of this noise is additive, independent at each pixel
and independent of the signal intensity with continuous uniform
distribution in a given interval. The noise caused by quantizing the
pixels to discrete levels has an approximately uniform distribution.

This noise can be simulated adding in each pixel
n=2k(rnd — 0,5) being k the noise max intensity
and rnd a random number with 0 <rnd < 1

129



Degraded image: “salt and pepper’

« This is an impulsive or spike noise for which the image has dark pixels and
bright pixels randomly distributed.

This noise can be simulated for each pixel in this way:
If rnd > T7h, I(i,)) = 255
If rnd <Th, I(ij)=0
else n=2[(K- Th,)/(Th,- Th,)](rnd-0,5) and if I(i,j)+n>255: I(i,j)=255, if I(i,j)+n<0:1(i,j)=0
being K the uniform component noise intensity, 0<rnd<l1, and Th, and Th, two suitable
thresholds (1-Th, and Th, are the percentage of extra white and black pixels respectively)
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Average value filter

“» Each pixel takes the average “» Example - given the neighborhood:
value over the neighbors (3x3
In the example)

316|838
3142
51813

the central pixel will take the new
value:

(3+6+8+3+4+2+5+8+3)/9 = 4.67

131



Average value filter: uniform noise

Noisy image Filtered image Second iteration
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Average value filter: uniform noise

Noisy image Filtered image Second iteration
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Average value filter: salt and pepper

Noisy image Filtered image Second iteration
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Average value filter: salt and pepper

Noisy image Filtered image Second Iteration
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Median filters

« A Median Filter operates over a window by selecting the
median intensity in the window.

*  What advantage does a median filter have over a mean filter?
 Is a median filter a kind of convolution?

© 2006 Steve Marschner

Slide by Steve Seitz
136
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Median filter

Plots of a row of the image
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Median and rank filters

“» The median filter assigns to pixel

L X 4

L)

o0

L)

the median value of neighborhood

It is a particular case of the rank
filters family, in which to the pixel
IS assigned the average value over a
predefined range of the neighbors
histogram.

The average excluding the extremes
IS suited for impulse or spike noise
such as the salt and pepper case.

\/

3| 68
3| 4| 2
5 3

the correspondent values are:

<+ Example - given the neighborhood:

D

2333 451|688
median value: 4:
over three values: 4:
over five values: 4,2:
over seven values:

over nine values: 4,66
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Median filter: uniform noise

Noisy image Filtered image  Second iteration Rank 3
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Median filter: uniform noise

Noisy image Filtered image  Second iteration Rank 3
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Median filter: salt and pepper

Noisy image Filtered image  Second iteration Rank 3
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Median filter: salt and pepper

Noisy image Filtered image  Second iteration Rank 3
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Comparison: salt and pepper noise

Mean Gaussian MMedian

TxT
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The Nagao-Matsuyama Filter

This filter selects for the centre
pixel the average for the orientation
with the least variation. Hence, the
steps are as follows:

1. Calculate the variance for each of the
nine sub-groups shown to the right
(including the centre pixel).

2. Determine the sub-group with the
lowest variance.

3. Assign the mean of this sub-group to
the centre pixel.

Nagao-Matsuyama improves the
borders, and is effective at reducing
the edges smoothing. Clearly there
IS a cost in terms of computation
due to the calculation of nine
variances for each pixel.
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Nagao filter: uniform noise

Noisy image Filtered image

145



Nagao filter: uniform noise

Noisy image Filtered image
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Nagao filter: salt and pepper

Noisy image Filtered image
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Nagao filter: salt and pepper

Noisy image Filtered image
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