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Why do we need invariant features in CV ?

Multiple views require reliable correspondences

» how do we usually get multiple views ?

> we use multiple cameras simultaneously
> one camera is moving while acquiring data - and the scene is static

A fundamental step for :
» estimating how cameras are located relatively to each other
» recovering scene depth
> estimating ego-movement (visual odometry)
» matching image content in general

The foundations of Computer Vision are based on these tasks, and features play
thus a significant role in this field.
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Why do we need invariant features in CV ?

Why not use contours?

» the processing effort is relatively low

> parametric curves may be extracted relatively easy as well (Hough)

» various applications for specific environments :
> road / panel / text detection
» medical and satellite imagery
» inspection for industrial vision

Aerial imagery Lane detection Industrial vision

V' Fast, specialized tasks
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Simple motivator - panoramic images
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Simple motivator - panoramic images
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Simple motivator - panoramic images
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The core of the problem

translation
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> translation

» Euclidean (translation + rotation)

> similarity transform (tr. + rot. 4 scale)

» affine (rot. 4 scale + shear + translation)

» projective

E. Aldea (CS&MM- U Pavia) COMPUTER VISION

(7/47)



Why we need invariance in CV

Objective
» identify structures which are invariant with respect to rotation, rescaling, etc.

» these structures are commonly called interest points or corners

How to :
> identify them in a non supervised manner?
» associate them robustly ?
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Corner detectors : the basics

Definition
Corner : a location in the image which is characterized by strong intensity variation
along two different directions.

We will still need to compute the local image gradients
> but it is not enough (to do it only in the image reference system)!
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Corner detectors : the basics

Definition _
Strategy : the content of a patch centered in the corner should vary across all
possible directions

"0

Typical behavior :
» homogeneous regions : no change in patch content
» contours : no change along the contour
» corners : important change across all directions
» corner quality : defined by the smallest possible change
» proposed by Moravec in 1980

E. Aldea (CS&MM- U Pavia) COMPUTER VISION (10/47)



Corner detectors : the basics

Intensity change by shift of (Ax, Ay)

E(x,y,Ax,Ay) = ZZW(XJ) [ 1(x,y) — I(x—l—Ax,y—l—Ay)}2

x oy

support intensity shifted intensity

FIGURE — Possible choices for the support function w(x, y)

E(x,y) large highlights a potential corner.

Costly if we do not use any tricks

» what is approximately the computational cost for an image of side N if we
implement this method naively using a patch of side K?
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Corner detectors : the basics

First order approximation by Taylor series development
f(x+ Ax,y + Ay) = f(x,y) + K(x, y)Ax + f,(x, y) Ay

We use this approximation to rewrite the intensity variation due to shift :
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Corner detectors : the structure tensor

Properties

» the eigenvectors highlight the main directions of gradient variation around the
location we consider (see the ellipse of constant change)

P> ex. :if Ay > A1, strong variation along v» and smaller variation in the
direction of vy

» if corner, A1, Ay are large

A7)
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Corner detectors : the structure tensor

Properties

> the eigenvectors highlight the main directions of gradient variation around the
location we consider (see the ellipse of constant change)

P> ex. :if Ay > Ay, strong variation along v, and smaller variation in the
direction of vy

> if corner, A1, \> are large

A
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Corner detectors : the structure tensor

Properties

» the eigenvectors highlight the main directions of gradient variation around the
location we consider (see the ellipse of constant change)

> ex. :if Ay > A1, strong variation along v, and smaller variation in the
direction of v;

» if corner, A\1, A\, are large
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Corner detectors : the structure tensor

Decision based on the tensor eigenvalues

> one may compute A1, Ay explicitly, but too costly
» prefered method :

R = det(M) — atrace’(M) = Ay — (M1 + \2)?

» the value of parameter « is usually 0.04 - 0.06
» interesting eigenvalues = local maxima of R

A
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Corner detectors : Harris detector

Main algorithm steps
1. compute gradients /. = %g(ap) 1, 1, = a%g(crg) * 1
2. compute the structure tensor :

2
M=glo)x| &5 Z'jly

3. compute the response function R :

R = det(M) — atrace*(M)

~

apply thresholding to R

5. non maximal suppression on the values of R
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Corner detectors : example

FIGURE — Initial pair
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Corner detectors : example

FIGURE — response function R
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Corner detectors : example

FIGURE — Thresholding R
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Corner detectors : example

FI1GURE — Non maximal suppression on R
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Corner detectors : example

F1GURE — Detector results
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Conclusion : Harris detector

Conclusions
v/ rotation invariant detector

v intensity change invariant
X not robust to scale change
X no descriptor provided for matching

A T~
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The characteristic scale

Short intro to Laplacian filtering :

Laplacian of Gaussian 1
operator
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Gaussian filter + Laplace (LoG) - zero crossing
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The characteristic scale

Original signal
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The Laplacian response - maximal if the Laplacian scale corresponds to the scale

of the variation in the image space
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The characteristic scale

Unnormalized Laplacian response
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If one varies o, the Laplacien response varies as well ; the operation has to be
normalized by a multiplication by ¢
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The characteristic

scale

Original signal

Unnormalized Laplacian response
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FIGURE — Multi scale normalized Laplacian response
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The pyramid representation
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Approximating the Laplacian

= Laplacian
= DoG

Laplacian :
L =0*(Gu(x,y,0) + Gyy(x,y,0))
Difference of Gaussians :
DoG = G(x,y, ko) — G(x,y,0)
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The SIFT detector

Scale Invariant Feature Transform
» high performance
» very costly
> the descriptor is integrated (it is also provided by the algorithm)

Construction of the scale space
Computing the DoGs

Computing the characteristic scale
Sub-pixel localization

Eliminating contour responses

Computing the orientation

N o e

Computing the descriptor
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The SIFT detector

Construction of the scale space
Computing the DoGs

Computing the characteristic scale
Sub-pixel localization

Eliminating contour responses

Computing the orientation

No o s whd =

Computing the descriptor
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Computing the DoGs
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The SIFT detector

Construction of the scale space
Computing the DoGs

Computing the characteristic scale
Sub-pixel localization

Eliminating contour responses

Computing the orientation

No o s whd =

Computing the descriptor
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Identifying the extrema
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The SIFT detector

Construction of the scale space
Computing the DoGs

Computing the characteristic scale
Sub-pixel localization

Eliminating contour responses

Computing the orientation

No o s whd =

Computing the descriptor
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Sub-pixel localization

Interpolation of discrete values of D(x,y, o). Use of the Taylor series second order
development :

oDT 1 ;8°D
D(x)=D+ — x—|—§x FRe

ox
Solution :
g _&D'oD
Toox2 Ox
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The SIFT detector

Construction of the scale space
Computing the DoGs

Computing the characteristic scale
Sub-pixel localization

Eliminating contour responses

Computing the orientation

No o s whd =

Computing the descriptor
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Computing the orientation

Compute local gradients at the characteristic scale
Compute local gradient histogram

The canonic orientation is the maximal direction

Each corner is characterized by : location, scale, orientation
Local coordinate system for building up the descriptor

ok wh=
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The SIFT detector

Construction of the scale space
Computing the DoGs

Computing the characteristic scale
Sub-pixel localization

Eliminating contour responses

Computing the orientation

No o s whd =

Computing the descriptor
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Computing the descriptor

1. Local gradient orientations in 16 neghboring regions
2. Coordinate system defined by the corner

3. 4*4*8 orientations = 128 (descriptor dimension)
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Conclusions about SIFT

» Scale invariant

» Rotation invariant

» |llumination invariant
» Perspective invariant
» Costly
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The FAST detector

Features from Accelerated Segment Test

» extremely fast

> no complex operations (convolution, gradient computation etc.)
» not too robust
>

no descriptor
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The FAST detector - strategy

d, Iy
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The FAST detector

Question 1
Sketch a naive implementation in order to test whether a pixel is a FAST corner or
not.
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The FAST detector

Question 2

How many possible configurations are in total ?
How many coin configurations ¢ € @ are there?
What does the following function :

H(Q) = (c+¢)log(c+¢)—clogc— Clogc

represent ?
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The FAST detector

Question 3
Given that the entropy gain is :

Hg = H(Q) — H(A) — H(B)

where @ = AU B, think of a trick in order to improve the test that you proposed
for Question 1.
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Corner association (matching)

How to do it ?
» matching needs to be fast and reliable
> if the detector provides a descriptor (i.e. SIFT), use it for matching

» otherwise, a simple solution is patch matching : a patch is extracted around
the corner, and matched against a candidate in the destination image using a
correlation, SSD or SAD function

> other solutions exist (BRIEF, FREAK etc.)

Tricks used commonly in order to improve matching quality

> these tricks usually increase the computation time but remove false matches
(and also some good matches sometimes)

» married matching : the best candidate has to pick up the initial corner as best
candidate as well

> ranking : the second match must have a significantly larger distance/lower
similarity than the best match, in order to avoid confusion between similarly
looking corners
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Detectors - conclusion

Overview
» FAST : not so robust, no descriptor provided - but runs in 1Ims on a regular
image ;
» Harris : slightly more robust, no descriptor provided - runs in 25-40ms on a
regular image

» SIFT : very robust, descriptor provided - runs in 2-5 seconds on a regular
image

» plenty other detectors which provide some advantage in terms of either
computational time or some invariance : SURF, AGAST, ORB, HOOFR etc.

Which detector to choose ?
» the choice is application dependent
> FAST : great for real time robotic navigation
» SIFT : useful when quality is important

» most other descriptors provide a compromise between robustness and cost
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