

UNIVERSITY OF PAVIA

FACULTY OF ENGINEERING

DEPARTMENT OF ELECTRICAL, COMPUTER AND BIOMEDICAL ENGINEERING

MASTER’S DEGREE IN COMPUTER SCIENCE AND MULTIMEDIA

MASTER THESIS

TITLE in English

3D computer graphics for digital humanities: experiencing Pavia cultural

heritage through the digital eye

TITLE in Italian

Computer grafica 3D per digital humanities: vivere il patrimonio

culturale pavese attraverso l'occhio digitale

Candidate: Alessio Gullotti

Supervisor: Prof. Virginio Cantoni

A.Y.2020/2021

 2

Index

Introduction

1.1 History of 3D modeling 10

1.2 CGI & Art 17

1.3 Fields of application of 3D 45
1.3.1 Manufacturing & Engineering 45

1.3.2 Healthcare 45

1.3.3 Construction 45

1.3.4 Art & Entertainment 46
1.3.5 Research 46

Understanding the fundamentals of 3d in blender

2.1 Modeling 51
2.1.1 Modifiers 54

2.1.1.1 Generate 55

2.1.1.2 Deform 57
2.1.1.3 Physics 58

2.1.1.3.1 Particles systems 58

2.1.1.3.2 Rigid body 59

2.1.1.3.3 Soft body 59

2.1.1.3.4 Forces & Collision 59

2.2 Shading 60
2.2.1 Shaders 60
2.2.2 Texture mapping 61

2.2.2.1 UV unwrapping 62

2.3 Lighting 63
2.3.1 Type of lights 63

2.3.2 Additional methods 63
2.3.3 Camera 64

2.4 Animating 65
2.4.1 Keyframing 66

2.4.2 Rigging 67
2.4.2.1 Armature 67
2.4.2.2 Constraints 68
2.4.2.3 Shape keys 68
2.4.2.4 Drivers 68

2.5 Rendering 69
2.5.1 General approaches 69

2.5.2 Render engines in Blender 70

 3

Project presentation

3.1 Preparing asset 71
3.1.1 Buildings 71

3.1.1.1 Collegio Ghislieri 71
3.1.1.2 Collegio Borromeo 73
3.1.1.3 Walls 75
3.1.1.4 Church of S. Maria di Canepanova 77
3.1.1.5 Monastery of San Felice 79
3.1.1.6 Palazzo Broletto 80
3.1.1.7 Visconti castle 82

3.1.2 People 84
3.1.2.1 Villagers 85
3.1.2.2 Soldiers 85
3.1.3.1 Common issues 85

3.1.3.1.1 UV Mapping 85

3.1.3.1.2 Bad topology 86

3.1.3 A closer look to the asset 86
3.1.3.2 Updating asset 86

3.1.3.1.1 Collegio Ghislieri 86

3.1.3.1.2 Medieval Walls 88

3.1.3.1.3 Neighborhood Pavia Nord-east 89

3.2 Setting up the scene 90
3.2.1 Match between the model and the maps 90
3.2.2 Populating the city 92

3.2.2.1 Scatter Object 92
3.2.2.2 Particle system 92
3.2.2.3 Geometry nodes 93
3.2.2.4 Diversity 95

3.3 Animation 96
3.3.1 Animating the camera 96

3.3.1.1 Planning shots 96

3.3.2 Effects of destruction and construction 97
3.3.2.1 Build modifier 97
3.3.2.2 Materials 98
3.3.2.3 Dynamic paint & Mask modifier 98
3.3.2.4 Explode modifier & Collision 99
3.3.2.5 Cell fracture & Rigid body 100
3.3.2.6 Shape keys 101
3.3.2.7 Destruction of the Visconti castle 101

3.4 Rendering 104
3.4.1 Lighting 104
3.4.2 Rendering 105

3.4.2.1 Noise 105
3.4.2.2 Light path 106
3.4.2.3 Resolution & Tiles 106
3.4.2.4 Render output 106

 4

3.5 Post-production 107

3.5.1 Color grading 107
3.5.1.1 Tools 108
3.5.1.2 Balancing and Shot Matching 108
3.5.1.3 Setting Tonal Range 109
3.5.1.4 Balancing Colors 109
3.5.1.5 Look 110
3.5.1.6 Contrast 110

3.6 The final products 113

3.7 The future.... 113
3.7.1 First Person Experience 113

3.7.2 Real-time render 114
3.7.3 Pavia navigation add-on 114
3.7.4 Achieving a more realistic look 114

Conclusions 116

Bibliography 117

 5

Abstract

This study aims to digitally reconstruct the Renaissance history of the city of Pavia, investigating the

creation process as well as the media which will be used to deliver the virtual experience.

It focuses on the recording of a virtual tour of the city in the second half of the 1500s and the search for

an interactive method to visualize the changes that have occurred during the century.

Especially in a city like Pavia, where some monuments have been partially or completely destroyed,

modeling and rendering with the aid of reference images are effective tools to reconstruct what no

longer exists, creating the possibility of producing and distributing humanistic knowledge through

immersive experiences.

 6

INTRODUCTION

The term graphic generically indicates the product of design oriented towards visual communication.

Computer graphics is a sub-field of computer science which studies methods for digitally synthesizing and

manipulating visual content. It is the science and art of communicating visually via a computer’s display

and its interaction devices.

It is a cross-disciplinary field in which physics, mathematics, human perception, human-computer

interaction, engineering, graphic design, and art all play important roles.

Physics is used to model light and to simulate phenomena, mathematics to describe shape. Human

perceptual abilities determine the correct amount of detail in models - complexity is useless if it will be

not noticed.

Graphic design and art combine with human-computer interaction to make the computer-to-human

direction of communication most effective.

We could state that computer graphics refers to taking a model of the objects in a scene (a geometric

description of the things in the scene and a description of how they reflect light) and a model of the

light emitted into the scene (a mathematical description of the sources of light energy, the directions of

radiation, the distribution of light wavelengths, etc.), and then producing a representation of a particular

view of the scene (the light arriving at some imaginary eye or camera in the scene).

Usually abbreviated as CG, it includes user interface design, sprite graphics, rendering, ray tracing,

geometry processing, computer animation, vector graphics, 3D modeling, shaders, GPU (graphics

processing units) design, implicit surfaces, visualization, image processing, computational photography,

scientific visualization, computational geometry and computer vision, motion capture, motion tracking,

particles system, physics system, among others.

Although originally it was a subject treated almost exclusively by researchers in universities, very soon

arose the curiosity to see what could create such an instrument in the hands of artists. Many of the so-

called innovators were housed in universities and research labs and were working to solve fundamental

problems of showing data on computer through “pictures” and founding a way to interact with them.

So, it was created as a visualization tool for scientist and engineers in government and corporate

research centers such as Bell Labs and Boeing in the 1950s. It is at Boeing, that William Fetter coined

the phrase "Computer Graphics" to describe what he was doing at the time (Fetter has said that the

terms were given to him by Verne Hudson of the Wichita Division of Boeing).

The term encompasses two-dimensional graphics and image processing, but often refers to the study of

three-dimensional computer graphics. The basic process in 3D computer graphics is 3D modeling (or

three-dimensional modeling), the process of developing a mathematical coordinate-based representation

 7

of any three-dimensional surface of an object (living or inanimate). It is possible to create any kind of

object, either real or imaginary, capturing size, shape, and shading. The product is called 3D model and

the creator may be referred to as a 3D artist or a 3D modeler.

A 3D model can also be displayed as a 2-dimensional image or used in a computer simulation of physical

phenomena. To create a 2-dimensional image, the model should be rendered, this process requires to

set up the scene with lights and a camera and generate an image from a mathematical description of a

3D scene, interpreted by algorithms that define the color of each point of the digital image. It can be

physically created using a 3D printing device that form 2D layers of the model with three-dimensional

material, one layer at a time. In many fields such as manufacturing, 3D modeling is merely a stage in the

entire development process, often used to create rapid and valid prototype before producing any

physical product.

The possibilities provided by 3D software seems endless and are improving each day passing by. As

already said, there's not only the possibility to recreate objects shapes through simple modeling

techniques (move, rotate, extrude, inset faces, edges or vertices) and even the same properties of the

surface, including how interacts with the light, smoothness or roughness, transparency among others,

through the process of shading, you can also use an even more manual approach sculpting and painting

the meshes or a more computerized approach, called procedural, that allows to exploit a set of rules to

create large and complex environment or textures with specific patterns, in addition with the benefit of

infinite resolution.

Rocks, plants, tree trunks are examples of very complex objects with high levels of details combined

with the inherent randomness of nature that makes them more difficult to reproduce them with high

fidelity. However, scanner can collect data (shape and appearance) of any kind of object to construct

digital 3D models. 3D scanning can be done using laser scanner or photogrammetry.

Another example of technique that collects data, specifically motion data, is motion tracking. In the

simplest form possible can be imagined as following a point (usually a group of pixels) moving on a

screen.

In general, it may refer to:

1 . Mot ion capture: the process of recording the movement of objects or people

2 . Match m oving : a cinematic technique that allows the insertion of computer graphics into live-

action footage with correct position, scale, orientation, and motion relative to the objects in the

shot

3 . V ideo t rack ing : the process of locating a moving object over time using a camera

Motion can be approached in multiple ways.

Highly chaotic systems, natural phenomena, or processes caused by chemical reactions, such as sparks,

falling leaves, rock falls, clouds, fog, snow, dust, meteor tails, stars and galaxies, or abstract visual effects

like glowing trails, magic spells would need a huge effort by an animator to recreate them by hand.

 8

Therefore, math and physics are tools widely used in 3D animation. Implementing real world

phenomena is difficult and it always requires approximation. 3D software provides algorithms for

creating simulation through particle systems and physics engine. The idea of particles system (as the

name suggests) is to think about object as particles; fluids would be difficult to animate using traditional

technique, instead using millions of particles (small enough to make impossible to distinguish them) we

can recreate an approximation of real-world motion using physics law

They are also useful for creating hair and furry animals, where a vast number of little strands are needed

and interact with external forces being able to be attached to the skin.

Physics engines include the possibility to simulate the motion of solid objects, create forces to influence

a simulation. Object can be used as brushes or canvas if dynamic paint is used, creating vertex colors,

image sequences or displacement. This makes many effects possible like, for example footsteps in the

snow, raindrops that make the ground wet, paint that sticks to walls, or objects that gradually freeze.

Soft body simulation is used for simulating soft deformable objects. It was designed primarily for adding

secondary motion to animation, like jiggle for body parts of a moving character.

Figure 1.1 A coefficient establishes the amount of deformation of a soft body

It also works for simulating more general soft objects that bend, deform, and react to forces like gravity

and wind, or collide with other objects.

Detecting collision is also a complex subject, especially with soft bodies that deform and particles

system.

Cloth simulation is one of the hardest aspects of computer graphics, it is a deceptively simple real-world

item, but it has extraordinarily complex internal and environmental interactions.

Cloth is modeled to simulate real world objects such as fabrics, flags, banners. And yet cloth can also be

used to model 3D objects such as teddy bears, pillows, balloons, or balls.

 9

Figure 1.2 Cloth interacts with and is affected by other moving objects, the wind, and other forces, as well as a

general aerodynamic model.

Fluid physics are used to simulate physical properties of liquids especially water. Gas or smoke

simulations are a subset of the fluids system and can be used for simulating collections of airborne

solids, liquid particulates and gases, such as those that make up smoke.

Figure 1.3 Fluid simulations are usually generated using an element as a source and a domain inside of which the

simulations are contained

Much of the current research in graphics is in methods for creating geometric models, methods for

representing surface reflectance (and subsurface reflectance, and reflectance of participating media such

as fog and smoke, etc.), the animation of scenes by physical laws and by approximations of those laws,

the control of animation, interaction with virtual objects, the invention of non-photorealistic

representations, and, in recent years, an increasing integration of techniques from computer vision. As a

result, the fields of computer graphics and computer vision are growing increasingly closer to each

other.

While graphics has had an enormous impact on the entertainment industry and digital art, its influence

in other areas—science, engineering (including computer-aided design and manufacturing), medicine,

desktop publishing, website design, communication, information handling, and analysis are just a few

examples—continues to grow daily.

 10

1.1 History of 3D modeling

Paradoxically, the history of 3D modeling began way before the first PC appeared. It all started with the

mathematical ideas that are behind 3D visualization.

In fact, some of the basic ideas came from Euclid, sometimes referred to as the “founder of geometry”,

who lived in the 3rd century BC. Then, Rene Descartes in the 1600s gave the world analytic geometry,

also known as coordinate geometry, which allowed to accurately track distances and locations. Later in

the mid 18th century, English mathematician James Joseph Sylvester invented matrix mathematics.

In the 1950s, computers were developed and put to many mathematical application, mainly military and

scientific, but not much else.

The progress in the history of 3D modeling came when the first commercially available CAD or

Computer Aided Design systems started coming out in the 1960s.

The first software capable of revolutionizing how computer can be utilized was Sketchpad . Up until

that time, buttons and switches were mainly used to provide input for computers. In 1963, Ivan

Sutherland, American electrical engineer and computer scientist, was working on his PhD in EE in the

Lincoln Labs on their TX-2 computer. He presented Sketchpad, also known as “Robot Draftsman”,

described in a paper, "Sketchpad: A Man-machine Graphical Communications System", which used the

light pen to create engineering drawings directly on the CRT. Highly precise drawings could be created,

manipulated, duplicated, and stored. The TX-2 included a nine-inch CRT and a light pen which first gave

Sutherland his idea. He wanted to be able to draw on the computer and the software he invented made

this possible. It is considered the ancestor of modern computer-aided design (CAD) programs as well as

a breakthrough in the development of computer graphics in general.

But it wasn't the only one, Tom Diamond patented an approach to handwriting recognition in 1957 that

utilized an innovative tablet that detected the regions of interaction, giving rise to the graphics tablet.

One of the most innovative input approaches at the time was manifested by the Rand Tablet. It

consisted of a matrix of crossed conductors. The circuitry of the tablet used to switch techniques to

apply pulses to the conductors in sequence, thus coding their individual locations. General Motors and

IBM formally disclosed at the 1964 Fall Joint Computer Conference the DAC- 1 system , introducing

transformations on geometric objects for display, including rotation and and zoom, and a no-display

(later called "clipping") function. It used a light pencil, instead of the commonly used light gun or light

pen.

 11

Figure 1.4 From left to right: Sketchpad, Rand tablet, Dac-1 system. The first attempts to change the interaction

with machines.

If the sixties started improving the human-computer interaction to achieve the possibility of using the

screen as a sheet of paper, the seventies made progress in the visualization of 3d objects. Since the

objects were represent as lines on a screen (often referred as wireframe), researchers started studying

solutions to represent the surface of objects. One of the first effective technique that sped up

processing by simplifying the original algorithms for rendering and delivered better visual results in light,

reflection and shading was Gouraud shading (or Smooth shading), a per-vertex color computation

technique published in 1971. It uses interpolation to produce continuous shading of surfaces

represented by polygon meshes. It is most often used on triangle meshes by computing the lighting at

the corners of each triangle and linearly interpolating the resulting colors for each pixel covered by the

triangle, achieving continuous lighting.

Computer graphics pioneer Bui Tuong Phong picked up where Henri Gouraud left and invented a per-

fragment color computation, also called normal-vector interpolation shading or Phong interpolat ion .

It interpolates surface normals across rasterized polygons and computes pixel colors based on the

interpolated normals and a reflection model. Phong shading may also refer to the specific combination

of Phong interpolation and the Phong reflection model.

Phong reflect ion m odel describes the way a surface reflects light as a combination of the diffuse

reflection of rough surfaces with the specular reflection of shiny surfaces. It also includes an ambient

term to account for the small amount of light that is scattered about the entire scene. Obviously, it

achieves a greater level of photorealism in the materials with an increasing cost in rendering time.

 12

Figure 1.5 Comparison between wireframe, flat shading and smooth shading. Phong considers the reflection as

combination of ambient and diffuse light and specular reflection.

There are different rendering techniques to capture the final look of a 3d model in an image, but all of

them are based on two approaches: ray casting (rasterization) and ray tracing.

The first ray cast ing algorithm was presented by Arthur Appel in 1968. The basic idea of ray casting is

to start the rays from the eye, one per pixel, and find the closest object that blocks the path (it is

necessary to think of an image as a grid, in which each square corresponds to a pixel). The hit object is

what the eye sees through that pixel. Using the properties of the material and the effects of light in the

scene, this algorithm can determine the color of the object.

Turner Whitted presented an algorithm for ray tracing in 1979. Previous algorithms launched the beam

from the eye towards the scene, but the rays were no longer tracked. Whitted considered that when a

ray hits a surface, it can generate up to three new ray types: reflection, refraction and shadow. A

reflected ray continues in the direction of the mirror reflection on a shiny surface. At this point it

interacts with other objects in the scene; the first object that hits will be the one seen in the reflection

present on the original object. The refracted ray travels through the transparent material in a similar

way, with the addition that it can enter or exit a material. To avoid tracing all the rays present in a

scene, a shadow ray is used to test whether the surface is visible to a light. A ray hits a surface

somewhere, if this point "sees" the light, a ray (from the point of view of the computer a segment) is

followed to the source. If an opaque object is encountered on the way, the surface is in shadow, and

that source does not contribute to the color calculation.

 13

Figure 1.6 Ray casting, Arthur Appel 1968.

Figure 1.7 Ray tracing, Turner Whitted 1979.

It seems incredible, but in this decade the University of Utah was the place to go if you need an important

breakthrough in this field. After Phong and Gouraud, another important moment was in 1975 when Martin

Newell developed the Utah teapot model, or the Newell teapot , which is a 3D model of an ordinary

Melitta-brand teapot. It was based on a mathematical model, and he found its shape ideal for testing

because of its structure, variety of surfaces it possessed and the item’s ability to cast shadows on itself. It

has become the symbol for 3D computer graphics and an in-joke within the computer graphics

community. Using a teapot model is considered the 3D equivalent of a "Hello, World!" program, a way

to create an easy 3D scene with a somewhat complex model acting as the basic geometry for a scene

 14

with a light setup. The original, physical teapot resides in the Computer History Museum in Mountain

View, California.

Figure 1.8 Newell teapot by Martin Newell

In the same period, Edward Catmull made two new fundamental computer-graphics discoveries: texture

mapping and bicubic patches. Texture mapping exploits the UV mapping process to project a 2D image

onto a 3D surface. He invented algorithms for spatial anti-aliasing and refining subdivision surfaces. He

also independently discovered Z-buffering, which had been described, 8 months before, by Wolfgang

Straßer in his PhD thesis “Schnelle Kurven-und Flächendarstellung auf graphischen Sichtgeräten".

Finally, in 1978, James F. Blinn devised new methods to represent how objects and light interact in a three-

dimensional virtual world, like environment mapping and bump mapping. Bump mapping is a texture

mapping technique in computer graphics for simulating bumps and wrinkles on the surface of an object.

This is achieved by perturbing the surface normals of the object and using the perturbed normal during

lighting calculations. The result is an apparently bumpy surface rather than a smooth surface although the

surface of the underlying object is not changed.

Blinn became widely known for his work as a computer graphics expert at NASA's Jet Propulsion

Laboratory (JPL), particularly the animations for the Voyager project, and the research of the Blinn–

Phong shading model.

He is credited with formulating Blinn's Law, which asserts that rendering time tends to remain constant,

even as computers get faster.

Only in 1996 a new technique, called normal mapping, used for faking the lighting of bumps and dents

was introduced by Krishnamurthy and Levoy. It is used to add details without using more polygons. A

common use of this technique is to greatly enhance the appearance and details of a low polygon model

by generating a normal map from a high polygon model or height map. Normal maps are commonly

stored as regular RGB images where the RGB components correspond to the X, Y, and Z coordinates,

respectively, of the surface normal.

 15

Figure 1.9 Image of an atlas applied to a sphere.

Figure 1.10 Bump map adds details preserving the original mesh.

The eighties are the period where computer graphics garnered most of his popularity with his

modernization and commercialization. Since the home computer proliferated, a subject which had

previously been an academics-only discipline was adopted by a much larger audience, and the number of

computer graphics developers increased significantly. Proprietary animation software was developed by

and for commercial firms using it for 3D animations in sequences for movies and commercials as well as

for TV spots and music videos. The 1980s is also called the golden era of videogames; millions-selling

systems from Atari, Nintendo and Sega, among other companies, exposed computer graphics for the

first time to a new, young, and impressionable audience – as did MS-DOS-based personal computers,

Apple IIs, Macs, and Amigas, all of which also allowed users to program their own games if skilled

enough. For the arcades, advances were made in commercial, real-time 3D graphics.

This decade is known for the rise of pseudo 3D graphics, the developers used physical projections

which gave the illusion of 3D presence. First person view (FPV) shooters and slashers were dynamically

re-developing the advantages of 3D technology. The racing videogames developers started to use a rear-

positioned camera view. In other situation, such as when the player must fight with enemies around him,

three dimensions were necessary to make it more playable. Wolfenstein 3D was a pioneer in this

category. The creators of the first 3D shooter game succeeded to implement texture mapping to wrap

different objects.

 16

The eighties generated an army of enthusiast young people amazed by the power of computer graphics

inspiring them to create their own games and companies.

The last decade of the XX century gave birth to the "the world's first GPU", or at least this was the

slogan used by Nvidia when marketed the GeForce 256 in 1999. The seminal GeForce 256 was the first

home video card billed as a graphics processing unit or GPU, which in its own words contained

"integrated transform, lighting, triangle setup/clipping, and rendering engines". In the 1970s, the term

originally stood for graphics processor unit and described a programmable processing unit

independently working from the CPU and responsible for graphics manipulation and output. Later, in

1994, Sony used the term (now standing for graphics processing unit) in reference to the PlayStation

console's Toshiba-designed Sony GPU in 1994.

By the end of the decade, computers adopted common frameworks for graphics processing such as

DirectX and OpenGL. AMD also became a leading developer of graphics boards in this decade, creating

a "duopoly" in the field which exists this day.

With the introduction of the Nvidia GeForce 8 series, and then new generic stream processing unit

GPUs became a more generalized computing device.

GPGPU for General Purpose Computing on GPU, a subfield of research, which perform computation in

applications traditionally handled by the central processing unit (CPU), were used to pass data to

algorithms as texture maps and execute algorithms by drawing a triangle or quad with an appropriate

pixel shader.

Computer graphics become more detailed and realistic each passing day, due to more powerful graphics

hardware.

A separate part of the history of 3D modeling is the invention of stereolithography (SLA or SL; also

known as stereolithography apparatus or resin printing) is a form of 3D printing technology used for

creating models, prototypes, patterns, and production parts in a layer-by-layer fashion using

photochemical processes by which light causes chemical monomers and oligomers to cross-link

together to form polymers.

 17

Figure 1.11 3D printer injects liquid on a surface creating layer by layer the 3d object

Stereolithography is recognized as the first commercial rapid prototyping device for what is commonly

known today as 3D printing. 3D printing has been identified as a ‘disruptive technology’, an innovation

that has displaced established technologies and created new industries.

1.2 CGI & Art

A long time ago a man, named Alfred Hitchcock, hired another man, John Whitney, to made computer

animated opening sequence for his movie Vertigo (1958). He used a strong moving spiral element which

correspond to the staircase that triggers Scottie’s Vertigo (Figure 1.6, left). Whitney rigged up an anti-

aircraft targeting computer called The M5 gun director to a platform. It was composed by 11.000

components and five soldier were required to make it work. Then he placed cells on that platform and

used a pendulum to achieve the needed endless rotation.

 18

Figure 1.12 Spiral sequence from “Vertigo”, A. Hitchcock.

The early computer graphics used configurations of lines representing three-dimensional objects moving

to construct film sequences "frame-by-frame".

The first computer animation at the Bell Laboratories was a simple box with edge lines gyrating around

a sphere. The sphere should outline the earth and the box should represent a satellite gyrating around

the earth.

Another example is a film that presented a four-dimensional hypercube as a rotating "cube within a

cube" (1965). A. Michael Noll realized this film using a program of the Bell Laboratories. It exposed one

object in slightly displaced perspectives.

Figure 1.13 Cube within cube from “Hypercube”, Michael Noll.

 19

Figure 1.14 Sticks figures dancing from “A computer-generated ballet”, Michael Noll.

During these years, universities and labs try to create the very first computer animation languages. In

1965 Ken Knowlton developed at the Bell Labs Beflix, a program capable of drawing basic shapes, lines

and letters. Bell Labs was interested in what this technology could do in the hands of an artist.

Using this program, Noll was able to render stick-figures against a black background, or “stage”, and

program them to “dance”. The animation was called "A Computer-Generated Ballet".

Figure 1.15 “Kitty”, Nikolai Konstantinov.

 20

Figure 1.16 ”Poemfield”, Stan Vanderbeek and Ken Knowlton.

Figure 1.17 ”Humming bird”, Charles Csuri and James Shaffer.

Beflix was also used to create a series of computer-animated films called Poemfields between 1964 and

1967. The first digital morphing ever featured a hummingbird in a ten-minute computer animated film by

Charles Csuri and James Shaffer.

 21

The push towards computer-generated cartoons began when in 1968 Nikolai Konstantinov led a group

of Soviet physicists to the creation of an animated cat walking, using mathematical equations.

In the sixties were held the early exhibitions of computer art. Generative Computergrafik, February

1965, at the Technische Hochschule in Stuttgart, Germany, featured work by Georg Nees. Computer-

Generated Pictures, April 1965, at the Howard Wise Gallery in New York, featured works by Bela

Julesz and A. Michael Noll and was reviewed as art by The New York Times.

A third exhibition was put up in November 1965 at Galerie Wendelin Niedlich in Stuttgart, Germany,

showing works by Frieder Nake and Georg Nees. Analogue computer art by Maughan Mason along with

digital computer art by Noll were exhibited at the AFIPS Fall Joint Computer Conference in Las Vegas

toward the end of 1965.

Few years later, the Institute of Contemporary Arts (ICA) in London hosted one of the most influential

early exhibitions of computer art called Cybernetic Serendipity (1968). The exhibition, curated by Jasia

Reichardt, included many of the first digital artists, Nam June Paik, Frieder Nake, Leslie Mezei, Georg

Nees, A. Michael Noll, John Whitney, and Charles Csuri. One year later, the Computer Arts Society

was founded, also in London. One of the first morphing in history was in that exhibition, the computer

graphics "Running Cola is Africa" showed a runner transformed first into a Cola bottle and then into

Africa´s geographic outline.

Figure 1.18 “Running Cola is Africa”.

The seventies are a turning point for the development of software for three-dimensional animation.

Edwin Earl Catmull and Frederick I. Parke created the animation of a hand, shown three times first as

wireframe, then halftone and finally with smooth shading (Figure 1.8, middle) and an animation of a face

with Gouraud shading. They documented the animation in the making in "Halftone Animation" in 1972.

 22

Figure 1.19 Edward Catmull’s hand.

Figure 1.20 Human face model, “Futureworld”.

The hand animation was picked up by a Hollywood producer and incorporated in the 1976

"Futureworld", the first film to use 3D computer graphics and a science-fiction sequel to the 1973 film

Westworld, which was the first to use a pixelated image generated by a computer as an interpretation

of how robots could see ("Gunslinger" vision).

This amazing work was quickly recognized by the Oscars about a decade later with a Scientific &

Engineering Academy Award.

George Lucas, founder of Industrial Light & Magic, after creating the first film to fully embrace computer

generated animation "Star Wars: A New Hope"(1977) showing a wireframe rendering of the Death Star

designed to help give the Rebel Alliance some last minute training, expand the computer animation

 23

division within ILM (Industrial Light and Magic) as he intended to increase its use in the sequel and

approached Catmull in 1979 and asked him to lead a group to bring computer graphics, video editing,

and digital audio into the entertainment field. Lucas had already made a deal with a computer company

called Triple-I, the team behind the effects for both “Westworld” and “Futureworld”, and asked them

to create a digital model of an X-wing fighter from Star Wars, which they did. In 1979 Catmull became

the Vice President at Industrial Light & Magic computer graphics division at Lucasfilm.

Figure 1.21 Scene from "Star Wars: A New Hope" applying CGI to a footage

But "Star Wars" was not the only one to have a unique and avant-garde visual style for the time.

In 1976, animator Steven Lisberger got an idea when he saw the video game Pong.

He imagined a warrior whose world was contained within the game. This idea would become the film

Tron, the first science fiction film to focus on virtual reality and first movie of Disney to make great use

of computer graphics.

 24

Figure 1.22 "Pong”, two-dimensional sports game that simulates table tennis (1972).

Originally intended to be an animated film, computer scientist Alan Kay convinced Lisberger to instead

use computer animation.

They enlisted the help of Triple-I and approached Disney with their test animations.

The final look of Tron was a combination of live-action, back-lit and computer animation that is still

impressive today.

It was accomplished by filming in high-contrast black and white film with the actors acting against a black

background.

This footage was then placed over a light table and re-filmed several times frame by frame using different

color filters, with the computer animation matted in.

Figure 1.23 ”Tron”, Steven Lisberger .

 25

Technology was used not only for incredible futuristic effects, but many artists used it as a media for

storytelling. A major strive would be made with Peter Foldes’ 1974 short, Hunger. The story, told

without words, is a morality tale about greed and gluttony in contemporary society. Foldes uses

interpolation, the act of animating the frames in-between key frames to create a smooth transition, to

transform a man consumed by gluttony.

 Figure 1.24 Man consumed by gluttony, “Hunger”.

In 1984, Eddie Garrick produced The Magic Egg: A Computer Odyssey, described as “a computer -

graphics Fantasia.” It was an audio/visual experience created entirely on computer, featuring synthesizers

and animation commissioned from artists and

research labs. Contributors included John Whitney, as well as the Computer Graphics Lab at the New

York Institute of Technology. At the time, NYIT was the top computer animation research facility in the

world. It had been founded with the purpose of not only simplifying the animation process but of taking

the medium in new directions.

Tony de Peltrie (1985) tells the story of a faded piano player recalling his past glory.

Tony was the first computer-animated human to convey emotion through facial expressions and body

movements. While he very much falls into the uncanny valley, we as an audience are still able to feel his

melancholy and his joy.

 26

Figure 1.25 ”Tony de Peltrie”.

In 1979 and 1981, two first-timers were added to the history of the CGI. First, “Cosmos”, a tv-series

shot by Carl Sagan, with the first particle system computer animation, then Adam Power’s “The juggler”

with the first motion capture cgi animation.

Two other pieces of video would also outlast the era as historically relevant: Dire Straits' iconic, near-

fully-CGI video for their song "Money for Nothing" in 1985, which popularized CGI among music fans of

that era, and a scene from Young Sherlock Holmes the same year featuring the first fully CGI character

in a feature movie (an animated stained-glass knight).

Figure 1.26 “Money for nothing”, The Dire Straits

 27

Figure 1.27 ”Cosmos”, Carl Sagan.

Figure 1.28 ” Young Sherlock Holmes”

 28

Figure 1.29 “The juggler”, Adam Power (bottom-right).

"Rendez-vous in Montreal”, directed by Nadia Magnenat Thalmann and Daniel Thalmann, showed

Humphrey Bogart and Marilyn Monroe agree to come back from the dead, meeting at a Montreal Cafe.

This marked the first time a deceased actor’s likeness had been digitally reproduced, an effect

accomplished by mapping out polygons on sculptures of the actors and creating a 3D model.

Figure 1.30 Marilyn Monroe (left), Humphrey Bogart (right)

But it is necessary to jump back in time to see another relevant breakthrough starring the already

known, Ed Catmull, and Alvy Ray Smith.

In 1979, NYIT began production on what it hoped would be the first ever fully computer animated

narrative film, titled The Works, but despite having the most powerful computers available, they

abandoned the project because it still would have taken seven years to generate enough images needed

for the planned 90-minute run-time. NYIT’s goal of creating the first computer animated narrative

would eventually be achieved in Montreal. Nadia Magnenat Thalmann, Philippe Bergeron and Daniel

Thalmann had been experimenting with 3D modelling, specifically 3D character modelling. In 1982, they

 29

produced the 8-minute short, Dream Flight, the story of an alien dreaming of flying through space and

arriving on Earth.

Figure 1.31 “Dream flight”, Nadia Magnenat Thalmann, Philippe Bergeron and Daniel Thalmann

Figure 1.32 “ Star Trek 2: The Wrath of Khan”, Loren Carpenter.

Ed Catmull and Alvy Ray Smith had made several breakthroughs at NYIT, most notably, alpha

compositing, but when it was clear that "The Works" was a doomed project, they joined ILM to

produce the Genesis one-minute demo film sequence in Star Trek 2: The Wrath of Khan in 1982, the

first completely computer-generated cinematic image (CGI) sequence.

 30

The sequence presented a planet being revived by a "Genesis Torpedo". The "genesis effect" scene

featured an entire fractally-landscaped planet produced by Loren Carpenter.

Agitated surfaces representing fields of heat energy among others were generated with particle systems.

A couple of years later, Alvy Ray Smith conceived and directed in 1984 "The Adventures of André &

Wally B", the simple story of a funny character named André (inspired by the appearance of Mickey

Mouse) and a pesky bee, Wally B. The short featured impressive animations for the time, thanks also to

the unprecedented use of motion blur in CGI, while the rendering process was done thanks to Cray X-

MP computers.

The short was a complete success and gave the opportunity to a division of Lucasfilm to break away

from the company from the company with funding from Apple founder, Steve Jobs, and being

independent under the well-known name of Pixar.

Under Jobs, they would release a commercial version of their hardware system known as the Pixar

Image Computer and produce a series of animated shorts intended to promote the product’s

capabilities. unfortunately, the sales didn't go well, even though one of their clients, very pleased with

their purchase, was the famous Walt Disney Company. Their Feature Animation department utilized

the hardware for its Computer Animation Production System, or CAPS, which allowed hand-drawn

animation to be digitally inked and colored.

The first Disney feature to be entirely produced with this process was The Rescuers Down Under

(1990), followed by Beauty and The Beast one year later.

Beauty and The Beast also made use of CAPS ability to blend hand-drawn and computer animation. The

film’s famous ballroom scene finds Belle and Beast dancing through a 3D-environment.

Figure 1.33 “The Adventures of André & Wally B", Alvy Ray Smith

 31

Figure 1.34 Ballroom scene, “ The Beauty and The Beast”.

Disney executives were impressed with this sequence and decided to invest more resources into

computer animation. So, Steve Jobs agreed to finance Pixar’s Tin Toy, despite the financial struggle

caused by the poor sales of the Image Computer. The short was intended to showcase their Renderman

software, which allowed photorealistic 3D rendering, and starred the toy of the title, a mechanical one-

man band player named Tinny, and an infant named Billy.

The film won the Oscar for Best Animated Short, the first computer-animated film to do so, and gained

so attention from Disney, that they approached Pixar with the possibility of producing a feature-length

computer-animated narrative, which had long been a goal of Catmull and Smith.

After tense negotiations, they agreed to produce a film based on Tin Toy, entitled Toy Story.

Figure 1.35 “Tin toy" (left). “Toy story” (right).

 32

The plot and characters went through many changes, with the original version being so dark and mean -

spirited that the production was even temporarily shut down. Production restarted in February 1994,

now with the story of two toys fighting for the attention of their owner. The film featured the voice

talents of Tom Hanks and Tim Allen as pull-string cowboy Woody and astronaut Buzz Lightyear, who

throughout the film go from rivals to the best of friends.

In order to render "Toy Story", the animators had 117 computers running 24 hours a day. Each

individual frame could take from 45 minutes to 30 hours to render, depending on how complex. There

was a total of 114,240 frames to render. Throughout the movie, there are over 77 minutes of animation

spread across 1,561 shots.

There were a lot of limitations. For instance, at this time, Pixar hadn't quite figured out how to fully

animate human characters. Animating clothes was time-consuming, so you'll notice a lot of shots of

hands and feet in the movie from a toy's perspective. Additionally, they would sometimes choose not to

fully light characters, being able to cover missing details. It took years of technological breakthroughs to

get where they are now.

Getting a given character to move starts in rigging and modeling. A 3D model needs a rig, which is

essentially an inner skeleton, and it gives to the animators a set of controls used to make different parts

of a character move around.

Figure 1.36 Buzz Lightyear and Woody.

 33

Figure 1.37 Woody face rig.

The early version of Woody had 596 controls, which may seem like a lot but by 2019's toy story 4

Woody had more than 7 000.

To make things a little more complicated one control point is often connected to other control points,

for example moving the eyebrow will influence the wrinkles on the forehead. Increasing the number of

controls to the characters would have added realism and details to their movement but back then Pixar

was making a brand-new rig for every single character, costing a huge amount of work and time.

With Toy story 2, things were different. Pixar introduced Geppetto, later updated to Presto which

allowed animators to reuse and adapt rigs for multiple characters, speeding up the animation process

and giving animators more control over movements and facial expressions. The sea lions in “Finding

Dory” were constructed from dog rigs with legs folded into flippers.

 34

Figure 1.38 Geppetto applied to James Sullivan, “Monster & co.”

Figure 1.39 Sea lions, “Finding Dory”.

After making major strides with toys and sea creatures the most difficult challenge was yet to come

humans.

Mr. Incredible, from The Incredibles (2004), consisted of 426 primary controls, 111 secondary animation

controls for more subtle movements and 1061 modeling controls for sizing and other adjustments. To

really make his movements realistic they used full body reference footage. Humans also have muscles

which could bulge and flex and make the skin move, so Pixar developed a new system called Goo which

allowed animators to integrate this kind of behavior in the characters, adding more control and realism

to the movements.

For the movie “Cars”, Pixar developed a system called Ground locking, which made sure the cars always

stayed on the same path regardless of terrain without animators having to move them frame by frame.

 35

Figure 1.40 Mr. Incredibles, “The Incredibles”. Demonstration of the system Goo developed by Pixar

 36

Figure 1.41 Saetta McQueen, “Cars”.

By 2007 the number of controls in the human face went up to 150, so animators could give characters a

much wider range of emotion. When Toy story 3 came out in 2010 Pixar's animators had gotten such

precise control over how characters move, however there was one particularly hard toy to animate the

octopus named Stretch. Despite the innovations and stretchiness from the Incredibles, making eight

tentacles stretch and curl was still a daunting task. But it was a challenge they would eventually win with

Finding Dory. Hank, the octopus in Finding Dory, needed to move around quite a bit and grab onto

things and had more than 350 suckers combined on his tentacles. Those were so unpredictable that

they had to be simulated with hair particles.

 37

Figure 1.42 Hank, “Finding Dory”

In 2017 they produced Coco, which came with a new big challenge: Music. They had to figure out, how

to Miguel, the protagonist, to accurately play guitar. They used reference video crafted for this purpose

and mimicked the exact movements on the hand of the model in sync with the music. But they pushed

it even further in Soul (2020) and make playing music look even more real. For the scene where Joe

plays the piano, they went far beyond just matching the music directly to audio. They built a piano rig,

which functions like a digital piano, they fed the audio files directly into the rig and the piano would play

automatically in time with the music. They also developed a finger contact rig like the one used on

Coco, in this way when Joe's finger intersected the space of a key it would calculate the proper angle

that piano key needed to rotate to make it look like he's pushing it. While the piano played on its own,

 38

the hands still needed to capture the complicated motions of playing which is why Joe was equipped

with 292 controls in each of his hands.

Figure 1.43 Coco playing guitar, “Coco”

 39

Figure 1.44 Joe playing piano, “Soul” (right)

From 2010 to 2019, technology changed in major ways, which had an enormous impact on the movies.

From realistic environments to convincing fake animals, to aging and de-aging actors and even doubling

them, it almost felt like there was nothing CGI could not do.

Armie Hammer played twins Cameron and Tyler Winklevoss in “The Social network” (2010), but actors

playing double is nothing new.

Typically, when an actor plays two characters that interact, filmmakers use techniques like split screens

and over-the-shoulder shots, which this movie certainly used. When the twins needed to be in the same

scene, the movie used two different actors. Actor Josh Pence served as Armie Hammer's body double;

Hammer's face was then grafted onto Pence's body in post-production. The two would switch off who

would be Cameron and who would be Tyler from scene to scene.

 40

Figure 1.45 CGI doppelgänger, “The social network”

Face replacement did not start with "The Social Network", but this movie was, at the time, the first

utterly convincing version of the technology, especially since it was a movie with no sci-fi elements.

These techniques paved the way for an entire movie about doubles in the form of "Us"(2019) and for

Chris Evans to fight himself in "Avengers: Endgame"(2019).

Lola Visual Effects took what it learned on "The Social Network" and applied it to the Marvel Cinematic

Universe, in particular the face replacement in "Captain America: the first avenger"(2011).

Before becoming into Captain America, Steve Rogers is small and scrawny, nothing like actor Chris

Evans.

For some shots, actor Leander Deeny doubled as the skinny Steve Rogers. For others, the VFX team

replaced Deeny's entire head with Evans' head. First Evans would shoot the scene looking like himself.

Deeny would watch Evans perform the scene and precisely mimic his every move. The crew would

shoot a clean plate without characters. Then, VFX artists would place Evans' face over Deeny's.

But for most of these scenes, the VFX team digitally shrunk Evans down.

For this, Lola Visual Effects invented a new method for shrinking, which it called "Steve slimming."

Lola Visual Effects' artists stated that they learned a lot from this experience, like how to highlight an

actor's performance without letting CGI get in the way.

This lesson turned out to be extremely useful in case of de-aging.

"Captain America: Civil War" featured a de-aged Robert Downey Jr. as Young Tony Stark. Some cases

of de-aging involve a body double, and others involve replacing the actor with a digital double.

 41

Figure 1.46 Chris Evans’ face replacement, “Captain America: the first avenger”.

Figure 1.47 Robert Downey Jr.’s de-aging, “Captain America: Civil War”.

However, innovative technology allowed Downey to perform the scene normally as himself. VFX artists

used digital compositing to de-age the actor. This way, Downey could still perform the scene as usual

and the VFX team would not lose the actor's many nuances, which is a technological achievement that

helped three years later in "The Irishman"(2019). One of the biggest challenges of de-aging a well-known

star is that audiences are familiar with how they looked when they were younger, especially with an

actor like Downey, who has been in movies since he was a child. So the VFX team analyzed old footage

of him in 1987's "Less Than Zero," which helps explain why this young version of Tony Stark was so

convincing.

Technology can also achieve the inverse process: aging.

Hayley Atwell was aged up for a pivotal scene where she plays a much older Peggy Carter. Five years

later, Captain America would finally get to act his age in "Avengers: Endgame," as Chris Evans was aged

up using a mix of CGI, makeup, and a body double.

 42

If the visual appearance does not seem a problem anymore, there is another issue more subtle that

need to be solved: de-aging an actor's movements. It may be a CGI breakthrough for the 2020s.

Figure 1.48 Robert De Niro’s de-aging, “Irishman”

Figure 1.49 Chris Evans’s aging, “Avengers: Endgame”

Thanks to motion-capture technology, actors could show their full range of emotions while being

transformed into any kind of creature. Mo-cap was refined in the 2000s in the "Lord of the Rings"

trilogy, "King Kong," and "Avatar." It became commonplace in the 2010s, hitting its stride over the

course of the "Planet of the Apes" reboot trilogy. Much of the work on all these movies was done by

the famed visual effects studio Weta Digital.

By the time of "Rise of the Planet of the Apes," cameras were able to capture the most subtle of

movements and details, which made the apes more believable. And it was also the first movie to ever

shoot motion capture in a live-action location, as opposed to just a bare soundstage.

 43

After Gollum ("The lord of the rings" trilogy), Cesare ("Planet of the Apes"), Kong ("King kong"), Andy

Serkis played the menacing Supreme Leader Snoke, showing up as a hologram in "The Force Awakens"

and then in person in "The Last Jedi"(Star Wars).

By the time "The Last Jedi" rolled around, they were able to add so many details to the skin, like age

spots and veins.

The visual effects team shot Serkis with high-resolution cameras positioned at every conceivable angle

to create a digital clone of him. As Serkis performed, they could automatically capture every subtle facial

move, from how he smiles to how he furrows his brow. They even studied the elderly to see how light

would realistically hit Snoke's skin.

Figure 1.50 Andy Serkis’ facial capture, “Rise of the planet of the apes”.

 44

Figure 1.51 “The jungle book”

In the live action "Jungle Book" remake, actor Neel Sethi played Mowgli and was the only human

character in the film. He acted on a completely empty soundstage, besides puppets and creature

performers that would then be digitally replaced with the actual CGI characters.

The biggest breakthrough on this movie: muscle movement. MPC Film developed new software for

animating an animal's muscle structure.

Developed by George Lucas' Industrial Light & Magic, it was pioneered in the production of “The

Mandalorian”. It is a new way of thinking about the set, with LED screens that reproduce the

background and adapt to the movements of the camera.

The actors could see their surroundings, but the surroundings were not actually there.

All of this is just LED screens displaying backgrounds pre-made in a video game engine. LED walls make

the lighting better, filming smoother, and in certain cases, cost a lot less than using green screens.

The idea is not entirely new, the predecessor to what is seen on "The Mandalorian" is a driving scene

like this one, from "Dr. No".

There is the actor in the car and a screen with footage of the road moving, creating the illusion that

actor is driving.

But the technology was limited, changing the camera angle was impossible. The projected footage can't

move with the camera.

But by using Unreal Engine, tech borrowed from the video game field, that problem is solved.

 45

Artists can create a photorealistic 3D background that moves strictly with the camera's field of view,

known as the Frustum.

So, if the camera moves and rotate, the background follows camera movement very precisely and

motion-tracked cameras can execute traditional cinematography techniques within the virtual set,

achieving cinematic movements like the parallax effect, where an object in the foreground moves at a

different speed than the background, amplifies the illusion of filming at an actual location.

Lighting is one of the key benefits of working with virtual sets.

The light coming from the LEDs provide realistic colors and reflections on the actors and props,

something exceedingly difficult to achieve with green screen.

1.3 Fields of application of 3D

1.3.1 Manufacturing & Engineering

Whether it is reverse engineering or conceptualization of an entirely new product, 3D modeling is

extensively used to improve the design, re-fabricate parts, and rush products to market. 3D modeling

has also the opportunity to go beyond the creation of virtual models. With the advent of reliable, multi-

media 3D Printing technologies, it is not so strange to imagine that virtual models can be converted in

real product.

Automobiles Jewelry Spare & Replacements Parts

Aerospace Glasses and Eyewear Shoes

3D Food printing Fashion and Smart Clothing 3D Bioprinting

1.3.2 Healthcare

3D-printed models have been used in many medical areas ranging accurate replication of anatomy and

pathology to assist pre-surgical planning and simulation of complex surgical or interventional

procedures, the creation of medical tools and equipment, custom-made prosthetics.

Audiology Dentistry Prosthetics

Surgery 3D Printed Organs

1.3.3 Construction

As an industry already based on geometric design, prototyping and modeling, architecture stands to gain

enormously from advances in 3D technologies. The possibility of preview an entire construction could

be a useful tool in real estate, too. Customers can see their home even before the first brick is placed.

 46

The limit of 3D printing lies in the production of smaller objects, but, perhaps one day, it will be

possible to create homes and large structures that are entirely the product of 3D printing, opening new

frontiers in sustainable living and construction.

Architecture Real Estate Housing and construction

1.3.4 Art & Entertainment

Art & entertainment are probably the fields that use most the advantages of 3D technologies. But visual

effects are not the only subject 3D can be used for, it is a useful tool to create photographies and pieces

of art, such as sculptures, that can be 3D printed. It also has the power to bring entirely new

dimensions to forms like dance and music. Using advanced sensing technologies, they transform

movement, orientation, and touch into music.

3D printing can be considered also for manufacture musical instrument, especially the ones that need a

certain level of perfection like violins or personal customization.

Finally, 3D technologies have been used to restore the works of some of history's most famous artists,

returning works by the likes of Michelangelo and da Vinci to their former glory, but they are also useful

to recreate works of art or places that does not exist anymore.

Sculptures Photography Art Restoration

Movies, VFX and Gaming Dance and Music Musical Instruments

1.3.5 Research

Digital technologies can be of tremendous use in legal investigations and can augment the abilities of

forensic artists to reconstruct accurate models of persons of interest, victims, or crime scenes. Forensic

facial reconstruction is a method used in forensic anthropology to aid in the identification of skeletal

remains.

Paleontologists can also benefit 3D printing, as it may help complete dinosaur skeletons by printing

elusive missing bones. The Smithsonian Museum staff experimented recently by printing the missing

bones of a T. rex exactly to specification.

The studies of linguistics, philology, literature, history, archeology, history of visual arts, musicology,

human-machine interaction, librarianship and the teaching sector are field of application of the digital

humanities, which integrates computational procedures in disciplines that traditionally uses other

approaches.

Forensics Paleontology

Digital humanities

UNDERSTANDING THE
FUNDAMENTALS OF 3D IN BLENDER

This chapter will introduce the basic knowledge to understand better the tools and methods used

during the project.

In Blender, any project starts with a default set up with a cube, a light, and a camera. These objects are

visible in the 3D v iewport , a window that allows you to view and interact with the entire 3D scene. It

serves many purposes, allowing you to sculpt, paint, animate, deform, move elements, and position

cameras and lights, but one of the most important is navigating the scene. You can also use Cam era

v iew to preview what will be rendered by the camera.

Figure 2.1 3D viewport full view.

Figure 2.2 3D viewport camera view.

A 3D scene can be composed of many objects, whose visibility can be disabled in the 3D viewport or

during the rendering phase by the user, but there are also some types of objects that are not rendered

by default.

Each object stores a data structure composed by two parts:

1 . Object : it holds information about the position, rotation, and size of a particular element.

2. Object Data : it holds everything else, such as mesh, modifiers, actions.

To determine where the object is in 3D space, each object has an origin point that will be used for this

purpose. The origin point of each object can be modified. The origin point is considered by the software

as the center of gravity, and it can be used as a pivot point for rotating an object.

Figure 2.3 The origin point used as a pivot for rotating the object on the Z axis. First on the center of the object

(left), then on the center of one of the faces (right).

Each Blender object has a type:

• Mesh: objects composed of vertices, edges, and polygonal faces.

• Curve: mathematically defined objects which can be manipulated with control handles or

control points (instead of vertices), to edit their length and curvature.

• Text : a two-dimensional representation of a text.

• Em pty: null objects that are simple visual transform nodes that do not render. They are useful

for controlling the position or movement of other objects.

• L ight : empty objects that emit light and are used for lighting the scene in renders.

• Cam era : object used to determine what appears in the render.

• Force F ield : objects that give simulations external forces, creating movement, and are

represented in the 3D Viewport as small control objects.

The 3D viewport allows to display / shade objects in the scene in 4 modes:

• Wirefram e: only the edges of the objects are displayed.

• Solid : the surface of the objects is rendered using the Workbench engine, which is used to

shade and light it and assign random colors to objects.

• Materia l prev iew: instead of using default color, the software will apply the materials to the

model, that is the set of information that determines its appearance.

• Rendered: the entire scene is displayed using the Render engine selected for rendering the

images.

Figure 2.4 A cube is displayed as wireframe, solid, material preview and rendered.

The functioning of a standard graphics system is typically described by an abstraction called the graphics

pipeline. The term “pipeline” indicates a process that involves multiple steps, which are performed in

sequence in a typical architecture, and usually involves:

1 . Modeling

2 . Shading

3 . L ight ing

4 . Anim at ing

5 . Rendering

2.1 Modeling

The starting point of any more or less complex object are those shapes that can be automatically

generated by the software, called Primitive meshes, and they include cubes, spheres, planes, cylinders,

torus, etc. Meshes are composed by vertices, edges, and faces.

Typically, models are created in a convenient coordinate system; a cube that is to be used as one of a

pair of dice might be modeled as a unit cube, centered at the origin in 3-space, with all x, y, and z

coordinates between −0. 5 and 0. 5. This coordinate system is called modeling space or object space.

This cube is then placed in a scene, a model of a collection of objects and light sources, and it has global

coordinates which are said to be in world space.

The attributes of virtual cameras and lights are also linked to the world space coordinate system.

Cameras are used to render 3D model into a 2D plane, so all objects in world space must have the

corresponding coordinates in camera view, which captures only a portion of a scene; these coordinates

are called camera-space coordinates or simply camera coordinates.

These camera coordinates are transformed into normalized device coordinates, which decide which

objects are inside and outside the camera view based on their distance from the camera and solve the

issue of overlapping objects. Finally, the visible fragments are transformed to pixel coordinates to

visualize the image on the display.

A vertex is the lowest-level component that makes up a 3D model. Each point exists in 3D space with

specific coordinates on X, Y, Z axis. When two points are connected, a line is drawn between them.

When three or more points form a closed broken line, they can become corners of surfaces on a model

called a polygon (or simply face). A triangle, for example, consists of three points and one polygon.

Multiple polygons can share the same points when used on a contiguous (seamless) mesh. Every point in

an object stores information about its position. Points also can store a variety of additional information

using vertex maps.

Texture, or UV, maps store texture placement information. Weight maps store a single value defined as

weight. The most common use of a weight map is for defining a bone’s influence on a point when

rigging.

Morph maps (or Shape keys) store offset information (alternate XYZ values) for a point’s position and

are commonly used for associating different shapes with a single mesh.

Color maps hold values for Red, Green, Blue, and Alpha (RGBA) color information associated with the

vertex.

An edge is a one-dimensional line that connects two points in a polygon. Like points, multiple polygons

can share the same edges when used on a contiguous mesh. Edge weighting increases or decreases the

sharpness of an edge between two subdivision surface polygons, allowing for harder or softer corners

without additional geometry being added.

Faces are geometric shapes consisting of several points that define the surface of a 3D object, and they

are what is rendered by the software.

The organization, flow and structure of these components is commonly called Topology .

The topology of meshes defines what is connected to what and is of primary importance in many mesh

algorithms, which often proceed by adjacency search like depth-first or breadth-first search.

A good topology is usually made of faces quads and as even-sized squares as possible and with the least

number of vertices.

Good topology makes geometry easy to select, manipulate, and construct, and even better for sculpting

onto. Also, generating and using UV maps are easier with clean topology.

It makes deformed animations look better, is not affected by weird artefacts (pinching and stretching),

get better result with modifiers, uses less memory.

Figure 2.5 A good topology vs a bad topology.

Meshes are not the only object type which can be used for modeling, there are also Curve objects that

have completely distinctive characteristics.

A spline is a curve in 3D space defined by at least two points. The most common spline used in digital

modeling is the Bézier curve. Bézier curves are used to model smooth curves using far fewer points

than a polygonal model would require. Control points make up the curve and can be used to

dramatically manipulate the curve with little effort.

A Non-Uniform Rational B-Splines (NURBS) surface is a smooth mesh defined by a series of connected

splines, which are polynomial curves. This smooth surface is converted to polygons at render time, so

NURBS surfaces can contain an arbitrary number of polygons. NURBS can be converted to Mesh

objects and are useful for constructing many types of organic 3D forms because of the minimal nature

of their curves. NURBS geometry is smooth by default and doesn’t need to be subdivided to “become”

smooth like polygon geometry does.

As already said, Blender provides a lot of tools for modeling, but the way you can interact with the

object depends on the Mode currently enabled on the 3D viewport.

Each mode is designed to edit an aspect of the selected object.

• Object m ode: it is the default mode, available for all object types. It is dedicated to applying

transformation such as translation, rotation, and scale to an object in the world space,

considering the entire mesh as a single point (the origin point).

• Edit m ode: this mode lets you to manipulating mesh data (vertices, edges, faces, normals) in a

local coordinate system, directly selecting the parts of the mesh which needs to be manipulated.

• Sculpt m ode: it is similar to Edit Mode because it has the same purpose, but a different

approach: instead of dealing with individual elements (vertices, edges, and faces), an area of the

model is altered using Blender’s mesh 3D-sculpting tools, called brushes. In other words, instead

of selecting a group of vertices, Sculpt Mode manipulates geometry in the brush region of

influence. Brush options include the type of brush, radius, strength. Brushes can be also

customized, using textures to add fine detail to each stroke. Traditional polygonal modeling is

perfect for items with rigid shapes and surfaces, while 3D sculpting shines in creating objects

with organic and smooth shapes.

• Vertex pa int : vertex painting works directly on the mesh. Each individual vertex can be

assigned a vertex color, but the colors applied using vertex painting are visible even if there is a

UV texture or a material applied. It is a straightforward way of painting color onto an object, by

directly manipulating the color of vertices, rather than textures, and is straightforward. When a

vertex is painted, the color of the vertex is modified according to the settings of the brush. The

color of all visible planes and edges attached to the vertex are then modified with a gradient to

the color of the other connected vertices.

• Weight pa int : it works exactly as vertex paint, but the color is used to assign weight to the

vertices on a vertex group. It is primarily used for rigging meshes, where the vertex groups are

used to define the relative bone influences on the mesh. But we use it also for controlling

particle emission, hair density, many modifiers, shape keys, etc. For example, if a bone is moved,

it will move the vertices of a mesh, accordingly to the amount of influence. Weights are

visualized by a gradient using a cold/hot color system, such that areas of low value (with weights

close to 0.0) are displayed as blue (cold) and areas of high value (with weights close to 1.0) are

displayed as red (hot). And all in-between values are displayed as rainbow colors (blue, green,

yellow, orange, red).

• Texture pa int : this last mode allows to paint a texture applied on a model, either using the

brush to paint on the image or directly on the mesh. The process of UV unwrapping is

necessary before trying to paint on the model.

2.1.1 Modifiers

Modifiers are procedural, non-destructive methods for manipulating and generating a mesh’s geometry.

Procedural means that modifiers can be combined into a stack, called Modifiers Stack, that stores them

in a specific order, creating a chain of operations executed in sequence. Switching position of modifiers

change the final result in most of the cases.

Non-destructive means that the object's geometry does not really change until the modifier is applied

permanently. They just affect how an object is displayed and rendered and it is still possible to edit the

mesh, for example a low poly mesh can maintain its obvious advantages and be displayed as a high-

resolution mesh using a subdivide and smooth modifier.

Modifiers are controlled with just a few actions and can save a lot of time.

Using modifiers, it is important to have a good topology and normalize the scale of an object to work in

the best way possible.

Some modifiers generate new geometry, replacing or adding to your mesh, while others deform existing

geometry according to certain rules or offer ways to plug simulations and other more complex entities

into your scene.

• Modify : they usually do not directly affect the geometry of the object, but some other data,

such as vertex groups.

• Generate: constructive/destructive tools that will affect the whole topology of the mesh.

• Deform : these only change the shape of an object, without altering its topology.

• Physics : those represent physics simulations. Their only role is to define the position in the

modifier stack from which is taken the base data for the simulation they represent.

2.1.1.1 Generate

Generate modifiers are constructive/destructive tools that will affect the whole topology of the mesh .

The Array m odifier creates an array of copies of an object in a desired arrangement. Vertices in

adjacent copies can be merged within an editable tolerance to have a continuous geometry and a

smooth subsurface. This modifier can be useful for creating complex repetitive shapes. Multiple array

modifiers may be active for an object at the same time.

 Figure 2.6 A roof is composed by a set of tiles, which makes it a perfect example for the usage of the Array

modifier.

The Boolean m odifier performs operations on meshes that are otherwise too complex to achieve

with as few steps by editing meshes manually. It uses one of the three available Boolean operations to

create a single mesh out of two mesh objects: union, intersection, or difference. The second mesh

object or the collection of objects that is used as second operand is called target.

The result depends on the geometry of the two objects, specifically faces and vertices. For example, in

case of a difference the base object will be cut wherever it intersects the target object, this could create

strange geometry adding vertices in an unwanted position.

Figure 2.7 Boolean modifier is extremely useful to create holes in a mesh

The Build m odifier causes the faces of the mesh object to appear or disappear one after the other

over time. Faces appear in a specific sequence, accordingly with the index to which they are assigned (by

default, the order of creation).

The face/vertex order can be altered in Edit Mode by using Sort Mesh Elements.

Geom etry nodes is a particular modifier because it modifies an object's geometry in way more

complex than the other modifiers and it works with nodes.

Nodes are divided in categories:

1. Attribute: Nodes for working with data stored per object element, e.g. size, location, rotation).

2. Color: Nodes for modifying color data passed through color sockets.

3. Geometry: Nodes that can operate on different geometry types (volume, mesh).

4. Input: Nodes used as input to other nodes.

5. Mesh: Nodes that only operate on meshes.

6. Point: Nodes that modify the object elements, e.g. vertices.

7. Utilities: Nodes with general purpose for modifying data.

8. Vector: Nodes for modifying vector quantities.

Each node performs some operations, and they are connected via sockets to form a node tree. Each

node is executed from the beginning of the chain in sequence and all operations converge to a socket,

which contains all the geometry information, at the end.

The Mirror m odifier mirrors a mesh along its local X, Y and/or Z axes, across the Object Origin. It

can also use another object as the mirror center, then use that object’s local axes instead of its own. It

is especially useful to model object with symmetry, allowing you to work on just a part of the model.

The Mask m odifier allows vertices of an object to be hidden dynamically based on vertex groups. This

modifier needs two inputs: a vertex group and a threshold.

Each vertex inside the vertex group has a specific weight, so when the threshold is greater than the

weight of the vertex, the vertex will be hidden. The operation is reversible.

The Solidify m odifier extrudes the geometry along its normals to create a solid shell from surface.

The Subdiv ision Surface m odifier is used to split the faces of a mesh into smaller faces, giving it a

smooth appearance. It is produced by a recursive algorithmic method and enables to create complex

smooth surfaces while modeling simple, low vertex meshes. It avoids the need to save and maintain

enormous amounts of data and gives a smooth “organic” look to the object.

Figure 2.8 Subdivision surface modifier smooths the curvature of a surface increasing the resolution of the mesh

and averaging the location of the points in between the original vertices.

2.1.1.2 Deform

The Curve m odifier provides a simple but efficient method of deforming a mesh along the path of a

curve. The object can be deformed on all global axis, X, Y, or Z.

The Explode m odifier uses both the mesh geometry and a particles system to simulate an object that

breaks into pieces.

Each face of the mesh will attach to an emitted particle, following its path, so both the number of

emitted particles and number of faces determine how granular the effect is. It is also possible to split the

mesh in pieces based on location of emitted particles, instead of using existing faces, decide if the faces

are visible when their attached particles are unborn, alive, or dead and the scale factor of each face using

the size of its attached particle, once that particle is alive.

The Shrinkwrap m odifier allows an object to “shrink” to the surface of another object. It moves

each vertex of the object being modified to the closest position on the surface of the given mesh (using

one of the methods available). It has several usages from retopology, placing object on top of other

object (like a house to the ground, or windows to walls), making surfaces automatically respond to

changes on other surfaces (for example wheels on a dirt road)

Figure 2.9 Example of Shrinkwrap modifier usage on nets which wrap objects

2.1.1.3 Physics

2.1.1.3.1 Particles systems

Particles systems contain a set of individual particles, each of which can be efficiently simulated as a

single point mass. Particles can be emitted from a surface or attached to it.

Particles systems can have millions of particles that play a role analogous to individual molecules and are

frequently used to model objects with certain kind of behavior or amorphous compressible objects.

The Emitter type is ideal for replicating phenomena - such as sparks, rain, rock falls, clouds, fog, snow,

dust, smoke, fire, stars, or abstract visual effects like magic spells - which requires particles that fade out

quickly and are then re-emitted from the effect's source.

The other type, named Hair, is ideal for things that contain many strands - such as fur, hair, and grass -

which requires scattering objects on the surface.

The particles are set into motion using some algorithm and can be rendered in different ways, also as

objects or entire collections of objects.

Controls for creating moving, changing, and deleting particles during their lifetime are part of the

system.

Particles can interact with the forces in the world based on five options:

• No: particles will not move.

• Newtonian : particles are subject to gravity, acceleration, and force fields defined on other

objects.

• Keyed: it makes the movement of one particle system dependent on the

• movement of another particle system.

• Boids: particles are controlled by a limited artificial intelligence, which can be programmed to

follow basic rules and behaviors.

• F luid : it mimics the properties of fluid dynamic systems.

Figure 2.5 The same particle system set as Emitter and Hair.

2.1.1.3.2 Rigid body

 The rigid body simulation can be used to simulate the motion of solid objects. It affects the position

and orientation of objects and does not deform them.

There are two types of rigid bodies: active (dynamically simulated) and passive (static). To create more

complex simulation, it is possible to combine the animation of an object based on keyframes and the

simulation of the rigid body. There are several factors which affect the simulation such as scale, mass,

origin point, and the shape used to perform calculation to detect collisions.

Primitive shapes are best in terms of memory and performance but do not necessarily reflect the actual

shape of the object. On the other hand, mesh-based shapes (Convex Hull and Mesh) are calculated

based on the geometry of the object, so they require more complex operations.

2.1.1.3.3 Soft body

Soft body dynamics refers to the way that flexible materials deform in response to the forces on them.

It works by treating a mesh as a network of springs. The edges of the mesh are given springlike

behavior. Parameters are used to determine how these “springs” react to forces and how the soft body

simulation itself interacts with the mesh. Soft body simulations can provide a stretchy, flexible surface

effect like cloth. Cloth simulation is similar to a soft body simulation, but it has complex internal and

environmental interactions that makes it a separate subject.

2.1.1.3.4 Forces & Collision

Many natural forces, from wind to magnetism, can be made to act on particle systems by using force

fields. Forces offers a way to influence simulation. Collision can be detected on an object only in relation

to particles, soft bodies, and cloth objects.

It is possible to control some properties to simulate impacts between different object, such as objects

that fall in a dense fluid or bounce on an elastic surface.

2.1.1.3.5 Dynamic paint

Dynamic paint is a modifier and physics system that can turn objects into brushes or canvases.

Object, used as brushes, will paint on object, used as canvas.

The painted color can have different based on the type of the canvas surface:

1 . Pa int : the brush will paint on the vertex of the surface, as in the vertex paint mode.

2 . Displacem ent : the brush will paint on the surface and the information is used to displace the

vertices of the mesh.

3 . Wave: It produces simulated wave motion every time that the brush touches the canvas

surface. The resulting effect will be considering the velocity with which the brush touches the

canvas to reproduce the strength of the wave motion.

4 . Weight : the brush will affect the weight of the vertices, changing its color.

 2.2 Shading

Shading refers to the process of creating the final look of an object in the 3D scene. This process could

affect either the appearance of an object or the geometry of the surface.

2.2.1 Shaders

Shaders are small programs that describe how subsequent polygons and images are to be processed

during rendering.

An important aspect of the rendering process is the lighting setup because light and shadow are the

information which allow humans to perceive the world, but shader allows to create a set of operations,

named Materia ls , which define how light rays interacts with the objects.

Materials are what you layer on top of a 3D object, to control the way the object is perceived when

rendered. They define how light rays interacts with the surface, or the nuances of color, texture,

transparency, and reflectivity, as well as a material, such as wood, marbles, behaves in the real world.

The simplest shading model is based on an observation made by Lambert in the 18th century: the

amount of energy from a light source that falls on an area of surface depends on the angle of the surface

to the light.

Lambertian shading is view independent: the direction from which you look does not change the color

of a surface. It is also called diffuse, does not produce any highlights, and leads to a very matte, chalky

appearance. Many real surfaces have some level of shininess, producing highlights, or specular

reflections, that appear to move around as the viewpoint changes (Fresnel effect), so many shading

models add a specular component to Lambertian shading.

Materials can simulate object which are soft like leather, or clear and transparent and bouncing light

around like glass or crystal. They can define the appearance of the surface, the volume inside the object,

and the displacement of the surface.

The surface shader controls the textures and light interaction at the surface of the mesh.

The volume shader defines the interior of the mesh. A material can have just a volume shader for cases

like smoke and fire, or it can be combined with a surface shader for materials like cloudy glass. The

shape of the surface and the volume inside it may be altered by displacement.

Figure 2.6 Photorealistic materials applied to spheres

2.2.2 Texture mapping

Texture mapping refers to using an image, called a texture map, texture image, or just a texture, to

store the details that you want to go on a surface, then mathematically “mapping” the image onto the

surface.

The most basic use of texture mapping takes a polygon (or a collection of polygons) and assigns a color

to each point via a lookup in a texture image. This is called diffuse m apping .

The idea of using a texture to modify the color characteristics of each point of an image is only one of

many applications of texture mapping. The central ideas of texture mapping have been generalized and

applied to many surface properties.

The appearance of a surface, for instance, depends in part on the surface’s normal vector (or normal),

which is the vector that is perpendicular to the surface at each point. This normal vector is used to

compute how light reflects from the surface.

If instead of using the true normal to a surface (or its approximation by interpolation) we use a different

one at different points of each polygon, the surface will have a different appearance at different points,

appearing to tilt more toward or away from us, and this idea can be used to generate surfaces which

seems lumpy, while the underlying shape is smooth. Unfortunately, near the silhouette of the surface

the unvarying nature is evident; this is a common limitation of such mapping tricks. On the other hand,

being able to draw just a few normal-mapped polygons instead of thousands of individual ones can be

enough of an advantage to make this choice appropriate.

Norm al m apping takes advantage of this fact by making the shading normal depend on values read

from a texture map. The simplest way to do this is just to store the normals in a texture, with three

numbers stored at every pixel, instead of as the three components of a color, as the 3D coordinates of

the normal vector.

Displacem ent m apping is the alternative to normal mapping, and it is used to alter the geometry,

instead of the normals. A scalar (one-channel) map gives the height of each point and changes the

surface, moving each point along the normal of the smooth surface to a new location. The most

common way to implement displacement maps is to tessellate the smooth surface with many small

triangles, and then displace the vertices of the resulting mesh using the displacement map. Usually, you

use either a displacement map or a normal map, not both.

Roughness m apping describes the surface irregularities that cause light diffusion. The light intensity

does not change, what changes is the direction of the rays. Rougher surfaces will have larger and

dimmer-looking highlights. Smoother surfaces will have sharp specular reflections.

Meta llic m apping describes which areas in the base color should be interpreted as reflected

color(dielectric) and which areas denote metal reflectance values.

2.2.2.1 UV unwrapping

 UV unwrapping describes the process of creating a set of 2D coordinates for the faces of a model,

which we can then use to apply textures to the model.

Objects need to be cut on the surface (along edges called seams) and spread it out flat.

Each vertex has its coordinates x, y and z in the 3D space. A UV map associates to each vertex a

separate set of 2D coordinates that will be used to map a 2D image to the surface of the mesh.

Figure 2.7 Unwrapping a cube

2.3 Lighting

Light and shadows are used by the visual system as cues to determine depth perception and distance.

They are key factors that most impact how we perceive a scene.

Lighting can change the mood of an image and make characters and environment look either scary or

friendly, cold, or warm. Blender provides many ways to add light to scene.

2.3.1 Type of lights

The Point light is an omni-directional point of light that emits energy equally in all directions. Being a

point light source, the direction of the light hitting an object’s surface is determined by the line joining

the light and the point on the surface of the object itself.

As in real life, the intensity of a ray decays based on (among other variables) the distance that run from

the Point light to the object. In other words, surfaces that are further away from the light will be

rendered darker.

The Spot light is like a spotlight at a theater or a flashlight. It emits a cone-shaped beam of light from

their origin, making them a valuable tool for lighting specific areas. They support both ray-traced

shadows and shadow buffers. Shadow buffers produce shadows without ray tracing and are significantly

faster to render. This makes them very versatile and useful for scenes that need a high degree of control

over lighting.

The Area light is a surface that emits light from all over its area. It produces shadows with soft

borders by sampling a light along a grid the size of which is defined by the user. This is in direct contrast

to point-like artificial lights which produce sharp borders. Area lamps support ray-traced shadows and

are well suited for creating soft shadows and studio style lighting, but they can slow render time

significantly because they require more samples than other lamp types to produce noise-free results.

The Sun light provides light of constant intensity emitted in a single direction from infinitely far away.

A sun light can be very handy for a uniform clear daylight open-space illumination.

The World defines the scene’s background, as well as the environment lighting. By default, world use

the Background Shader node which lights the scene and sets the background color or texture and adds

to the overall lighting a constant amount of light.

2.3.2 Additional methods

Environm ent texture can also be used to introduce detail into the illumination without having to

model complicated light source geometry. HDRI (high-dynamic-range image) are used in 3D programs

to act as a light source to illuminate your scene, creating very natural lighting effects. They also provide

much more realistic reflections.

Shadow m aps are a technique for using the machinery of texture mapping to get shadows from point

light sources. Shadows are simple to include in ray-traced images, but it’s not obvious how to get

shadows in rasterized renderings, because surfaces are considered one at a time, in isolation.

Materia l can make objects emit light through the Emission shader. It is useful to build customized

lamps, since the light objects does not have a shape to render, or reproduce phenomena such as

fluorescence, incandescence.

2.3.3 Camera

Cam era object s captures a portion of the scene which will be used in rendering. They are invisible in

renders, so they do not have any material or surface to edit. Many cameras can be added to the same

scene, switching between them to choose which is the active one.

Perspect ive cam era is the most common type of camera because it simulates the behavior of real

cameras. Considering perspective, distant objects will appear smaller than objects in the foreground, and

parallel lines will converge to a vanishing point.

The Foca l Length controls the angle of view of a lens. Longer focal lengths result in a smaller FOV

(more zoom), while short focal lengths allow you to see more of the scene at once (larger FOV, less

zoom). The smaller the focal length, the more the perspective distortion.

Figure 2.8 Perspective camera with 35 mm focal length (left). Perspective camera with 210 mm focal length

instead of 35 mm (right).

The Lens shift allows for the adjustment of vanishing points. Vanishing points refer to the positions to

which parallel lines converge.

Especially when rotating the camera, it happens that the perspective is distorted much more. Perfect

vertical lines start to converge in one point. Using the lens shift can avoid this distortion, it is equivalent

to rendering an image with a larger FOV and cropping it off-center.

Figure 2.9 Horizontal lens shift of 0.330 (left). Rotation of the camera object instead of a lens shift (right).

Orthographic cam eras, on the other hand, completely discard perspective. Parallel rays are shot

from the camera. As a result, all objects appear the same in size, no matter what their distance from the

lens is. Orthographic projections come in handy for precise measurements when creating architectural

and engineering renderings.

2.4 Animating

Animation is derived from the Latin “anima” and means the act, process, or result of imparting life,

interest, spirit, motion, or activity. Animation without computers, which is often referred to as

“traditional” animation, has a long and rich history of its own and along with it some time-tested rules

which have been crystallized, giving general high-level guidance to how animation should be done. These

principles apply equally to computer animation.

When you see a sequence of related images in rapid succession, they blend and create the perception

that objects in the images are moving. The individual images are called frames and the entire sequence is

called an animation.

Animation can be achieved through:

1 . Keyfram ing : it gives the most direct control to the animator who provides necessary data at

some moments in time and the computer fills in the rest.

2 . Procedura l anim at ion : it involves specially designed, often empirical, mathematical functions

and procedures whose output resembles some particular motion.

3 . Physics- based techniques : they solve differential equation of motion.

4 . Mot ion capture: it uses special equipment or techniques to record real-world motion and

then transfers this motion into that of computer models

Producing the animations manually is expensive and slow because of the time and skill that the artists

require in the process. In a key pose animation scheme (a.k.a. key frame, interpolation-based animation),

an animation specifies the poses to hit at specific times, and an algorithm computes the intermediate

poses, usually in the absence of full physics.

Using dynamics for creating animation is computationally challenging but it makes the effort of the

artists less. Algorithms and computer hardware has become both more efficient and less expensive. In a

dynamics (a.k.a. physically based animation, simulation) scheme, objects are represented by position and

velocity and a procedure must be computing the new object position at each frame.

Modern animators combine poses with the efficiency and realism of physically based simulation. A classic

method is inverse kinematics (IK). An IK solver is given an initial pose, a set of constraints, and a goal. It

then solves for the intermediate poses that best satisfy these, and the final pose if it was not

determined.

2.4.1 Keyframing

The term keyframing can be misleading when applied to 3D computer animation since it does not

involve frames as images but as moment in time. It means storing a specified set of values that will

describe the 3D scene. Animating a scene implicates that some subset of these values must change with

time.

One can, of course, explicitly set these values at every frame, but this will not be particularly efficient.

Instead, frames can be chosen along the timeline of animation to create keyframes for parameters and

their values.

Figure 2.10 The ball animation is recreated using keyframes with the object in a specific configuration

Once the animator sets the key, the animation system interpolates values for in-between frames.

The basic types of interpolation are:

1 . Constant : There is no interpolation at all. The curve holds the value of its last keyframe, giving

a discrete (stairway) “curve”.

2 . L inear: This simple interpolation creates a straight segment, giving a non-continuous line.

3 . Béz ier: The more powerful and useful interpolation, and the default one. It gives nicely

smoothed curves, i.e. smooth animations.

Although we are interested only in a discrete set of values, keyframe interpolation is represented and

controlled by animation curves, also known as F-Curves. These curves can change the type of

interpolation between each pair of keyframes. Each keyframe has a handle that determine the slope of

the curve, creating steeper or smoother changes.

2.4.2 Rigging

Rigging is a general term used for adding controls to objects, typically for the purpose of animation. A

rig consists of a hierarchy of transform nodes that is attached to a character.

It often involves using one or more of the following features:

1 . Arm atures: they allow mesh objects to have flexible joints and is often used for skeletal

animation.

2 . Constra int s : to control the kinds of motions that make sense and add functionality to the rig.

3 . Object Modifiers : mesh deformation can be quite involved, there are multiple modifiers that

help control this.

4 . Shape Keys : to support different target shapes (such as facial expressions) to be controlled.

5 . Drivers: your rig can control many different values at once, as well as making some properties

automatically update based on customizable mathematical expression and a set of variables.

2.4.2.1 Armature

An armature in Blender can be thought of as the structure of a real skeleton, and just like it an armature

can consist of many bones. These bones can be moved around, and the bones attached directly and

indirectly will move and deform in an analogous way. Once an armature is ready and pose in a resting

position, it must be applied to the mesh that you want to animate. Just like marionettes, bones work as

the strings attached to the puppet, so each bone moves certain parts of the mesh, which depends on

the vertex group associated with the bone and the weight associated with the vertices in the same

vertex group.

Figure 2.11 A rig applied on a character model

2.4.2.2 Constraints

Constraints are used to limit and control an object behavior using numerical values or another object,

called “target”.

A similar concept is parenting, an object can have children and any translation, rotation, or scale of the

parent will also affects its children.

In both cases, you can control an object’s animation through the targets used by its constraints (this is a

form of indirect animation).

Copy const ra int s force its owner to match the property of a target, such as location, rotation and/or

scale.

L im it const ra int s set lower and upper bounds defining where the object can move in relation to the

space or a target object, how much it can rotate or be scaled.

Transform at ion const ra int s control location, rotation, or scale of an object mapping one of the

same set of properties from a target object. For example, the wheels rotate in relation to how much

the vehicle to which they are coupled moves, transforming a position value with a rotation value.

The Track To const ra int is used to track the movement of another object, making its owner always

point to the target, specifically at its origin point.

The Follow Path const ra int forces an object to follow a specific path. The path must be an object of

type Curve.

2.4.2.3 Shape keys

The purpose of shape keys is creating different versions of the same mesh, and this is useful in many

cases. First, shape keys are the most efficient way to morph a mesh using target shapes, for example

growing trees or flowers. Furthermore, they can store the poses generated by an armature, allowing to

create libraries of poses for common movements such as facial expressions and gestures.

Shape keys can also be used as a corrective tool to solve rigging problems like strange deformations

which would occur mostly in joints.

2.4.2.4 Drivers

Drivers are a way to control values of properties by means of a function, or a mathematical expression .

A driver is associated with a property of an object that can be animated and it uses a function in which

variables can be properties of other objects or global variables. They can be used, for example, to set

constraints, make objects move with a certain speed or animate a corrective shape key associated with

a movement that will cause strange deformations.

2.5 Rendering

Rendering is a process that takes as its input a set of objects and produces as its output an array of

pixels. It takes what is viewed from the camera and transforms it in an image.

Each object in the camera view contributes to each pixel but how it contributes depends on the

rendering approach. It is important to know that during the rendering process, the mesh of an object is

divided in triangles.

2.5.1 General approaches

There are two generalized approaches:

1. In object-order rendering, each object is considered in turn, and for each object all the pixels

that it influences are found and updated.

2. In image order rendering, each pixel is considered in turn, and for each pixel all the objects that

influence it are found and the pixel value is computed.

Ray casting creates one ray per pixel and casts it at every surface. Ray casting lets us process each pixel

to completion independently. This suggests parallel processing of pixels to increase performance. It also

encourages us to keep the entire scene in memory, since we do not know which triangles we will need

at each pixel.

Rasterization allows us to process each triangle to completion independently, typically implemented by

marching along the rows of the image, which are called rasters.

It solves the problem of holding the entire scene in memory and allows to render much larger scene,

because it processes one triangle at a time. It suggests triangles as the level of parallelism. The

computation about triangles can be stored in registers or cache to avoid memory traffic, and only one

triangle needs to be in memory at a time.

Furthermore, each pixel is touched multiple times and it needs a data structure that helps resolve

visibility between visit, comparing the distance to the current point and to the previously closest point.

In this way, each pixel is affected only by nearest point and not by one which is hidden. This array is

called a depth buffer or a Z-buffer. Because computing the distance to a point is potentially expensive,

depth buffers are often implemented to encode some other value that has the same comparison

properties as distance along a ray.

Ray tracing is an image-order algorithm, works by computing one pixel at a time, and for each pixel the

basic task is to find the object that is seen at that pixel’s position in the image. Each pixel sends a ray in a

different direction, and any object that is seen by that pixel must intersect it. The object closest to

camera, intersecting the same ray as other objects, will block them from being viewed by the camera.

Once that object is found, a shading computation uses the intersection point, surface normal, and other

information (depending on the desired type of rendering) to determine the color of the pixel.

A basic ray tracer therefore has three parts:

1. ray generation, which computes the origin and direction of each pixel’s viewing ray based on the

camera geometry.

2. ray intersection, which finds the closest object intersecting the viewing ray.

3. shading, which computes the pixel color based on the results of ray intersection.

 2.5.2 Render engines in Blender

Cycles works by casting rays of light from each pixel of the camera into the scene. They reflect, refract,

or get absorbed by objects until they either hit a light source or reach their bounce limit. Following just

one ray of light from one pixel is not that accurate since many objects or texture details can be smaller

than one pixel, so Cycles fires additional randomized rays (samples) from that pixel and averages the

result over time. This brute force approach of averaging randomized samples is called a Monte -Carlo

simulation, and when applied to paths of light it is called path tracing.

Eevee uses rasterization via OpenGL 3.3, which is why it can be blazing fast in comparison to other types

of rendering. Rasterization estimates the way light interacts with objects and materials using numerous

algorithms. The key thing to remember is that this speed comes at the cost of accuracy because it is

working with pixel information instead of paths of light.

There are some differences in term of:

1. Render time: One of Eevee’s most outstanding characteristics is its super-fast render time. It can

be up to 12 times faster than Cycles using the same scene and hardware. That means you will

not need to wait as long for your scene renders to finish.

2. Quality: Due to a key difference between the two renderers, Eevee manages to render your

scenes with decent quality. That said, it is not always better than Cycles, especially for photo-

realistic renders.

Figure 2.12 A scene of Spring (2019) rendered with cycles and eevee

PROJECT PRESENTATION

The "Virtual reconstruction of Pavia in the 16th century" project has the goal of producing a 3D

reconstruction of Pavia during the Renaissance and the changes that have affected the city in this

historical period.

The project aims to:

1. Create a virtual interactive environment of Pavia in the 16th century that represents palaces,

churches, and monuments as accurate as possible.

2. Reproduce different views of the city and produce videos in which the camera can move freely

to explore the city as a tourist.

3. Develop an app for smartphones and tablets to access information relating to the framed area,

with the possibility of comparing existing buildings with those digitally reconstructed in 3D on

site.

As part of this larger project, the work that will be presented will focus on:

1. The creation of a video of the virtual tour n ° 8. The itinerary shows the buildings built in the

second half of the 1500s (Collegio Borromeo, S. M. di Canepanova church and Collegio

Ghislieri).

2. Finding a method to represent the temporal changes of the city during the 16th century.

Equipment

Hardware Software
PC Asus P8Z77V-LX 3D Blender

CPU Intel i7 3770 Image editing Gimp
RAM 32 GB Video editing DaVinci Resolve
GPU Nvidia GTX TitanZ

12288Mb GDDR5

3.1 Preparing asset

3.1.1 Buildings

3.1.1.1 Collegio Ghislieri

The Collegio Ghislieri was founded in 1567 by Pope Pius V Ghislieri for young students from his native

place with the intention of promoting a cultural and moral renewal of society through the formation of

a professional and religiously trained ruling class. The construction of the building, intended to house it,

was undertaken in 1571 under the direction of Pellegrino Tibaldi, one of the greatest architects of the

time, who followed the works until 1585, the year in which he was called to Spain by Philip II. In 1588

the Milanese architect Martino Bassi took over, whose project for the church (later built between 1601-

1605 by the engineer Alessandro Mollo) with a central development with a monumental entrance from

the square, was not implemented. The interior is now defined in the Baroque reform that should have

been extended to the facade as well.

The austere spirit of the Counter-Reformation pervades the whole building, starting from the severe

facade which, closed at the edges by ashlar and pilasters and articulated in the sequence of windows cut

directly into the masonry and resting on string courses, presents the sumptuous portal of Roman school

and the lantern tower, typical elements of Tibaldi's formal repertoire.

Figure 3.1 Facade of the college on piazza Ghislieri (left). Central courtyard(right).

Figure 3.2 Rendering of Piazza Collegio Ghislieri.

Figure 3.3 Rendering of the central courtyard of the Collegio Ghislieri.

3.1.1.2 Collegio Borromeo

Pope Pius IV's bull of foundation “Ad apostolicae dignitatis apicem” (15 October 1561) established the

start of the San Carlo project to build a university college for young students of the diocese of Milan on

the area of a house already owned by the Borromeo family in Pavia: the project was entrusted to the

architect Pellegrino Pellegrini known as Tibaldi (1526-1596).

The foundation of the College is part of both the more complex framework of the educational and

pedagogical reform promoted by Carlo (archbishop of Milan since 1560).

The first stone was in fact laid on June 19, 1564, and the construction of the large square-shaped factory

proceeded for over twenty years (finished in 1588) with a formal Mannerist repertoire, expressed in the

facade with a strong plastic prominence and the monumental portal.

Figure 3.4 Drawing of the façade by Federico Zuccari, 1604

Figure 3.5 Project of the structure depicted by Giorgio Vasari, 1586.

Figure 3.6 Rendering from above of the Collegio Borromeo

Figure 3.7 Rendering of the central courtyard of the Collegio Borromeo.

3.1.1.3 Walls

The city of Pavia was defended by a formidable circle of Roman walls, of which no traces remain. At the

end of the 12th century a new medieval wall fortification was built and only some sections between

Porta Stoppa and the Castle and Porta Nuova on the Lungo Ticino Sforza still survive.

Figure 3.8 Maps of Pavia which reconstructs the perimeters of the successive walls over time.

In the sixteenth century the city, under the Spanish domination, was surrounded by a new bastion of

walls, however, using the new pentagonal bastions in place of the old towers. It followed the pre-

existing layout of the medieval walls, joining for a good stretch to the south along the Ticino with the

relative gates (Porta Nuova and Porta Calcinara).

The first bastion fortifications were erected by the French in 1506, but the new defensive system was

made by the Spaniards who, from 1557 to 1560, erected a series of mighty curtains around the city

reinforced at the corners by twelve bastions.

The Spanish age wall built around the middle of the 16th century was partially destroyed in the 19th

century for reasons of visibility and demolished after the First World War.

Of the ancient gates remains Porta Milano, from the early nineteenth century with the two marble

towers surmounted by the statues of the Po and the Ticino.

Figure 3.9 3D representation of the medieval walls

Figure 3.10 3D representation of the Spanish walls.

3.1.1.4 Church of S. Maria di Canepanova

It is the most important 16th century monument in the city of Pavia. A religious congregation promoted

in 1492 the construction of the sanctuary in honor of the Virgin due to the miracles performed by the

fresco already painted outside a Canepanova house.

The construction of the church began in 1500 and the first part was completed in 1507. The project of

the church, with a central plan and dome, with a square choir, was then enlarged between the end of

the 16th century and the beginning of the 17th century on the area of a fifteenth-century building (the

so-called Canepanova cloister) still partially subsisting was probably defined by Bramante, as some

scholars claim, while the works were carried out under the direction of Giovanni Antonio Amadeo.

Figure 3.11 Map of the church from the drawing of Ottavio Ballada, 1617

Figure 3.12 Facade of the church.

Figure 3.13 Rendering from above of the church of S. M. di Canepanova.

3.1.1.5 Monastery of San Felice

It was one of the main female Benedictine monasteries of Pavia. Originally founded in the Lombard

period, it was completely rebuilt in 1500, by Giovanni Antonio Amadeo or one of his followers, by

order of Abbess Andriola de Barrachis (whose name is inscribed, with the date, 1500 in a capital of the

cloister). Painter and sensitive interpreter of Renaissance values, she appears to be the promoter of a

renewal integrated with the pictorial decoration that in the cloister also fakes the architectural illusion

of candelabra columns painted along the perimeter walls.

Figure 3.14 Map of the monastery from the drawing of Ottavio Ballada, 1617.

Figure 3.15 Central courtyard of the monastery.

Figure 3.16 3D representation of the monastery of S. Felice.

 3.1.1.6 Palazzo Broletto

Palazzo Broletto in Pavia is a twelfth century building located in Piazza della Vittoria. It was built at the

behest of the bishop San Damiano who elected it as a bishopric.

During the sixteenth century it was modified with the addition of two loggias:

• The logg ia on P iazza Grande: except for the head to the west, erected with the staircase

shortly after the mid-1500s, the loggia with a double order of arches, with profiles and oculi in

terracotta, renews in widely recurring forms in the cloisters and courtyards of the early 1500s

in Pavia the Gothic facade (partly preserved in the back wall) of the thirteenth century Broletto.

• The logg ia of the notaries: it was erected as a vestibule by the college of notaries which

held its seat on the ground floor of the Broletto. Dated to 1539 by two epigraphs still walled up

on the front, it denotes the final evolution of the Renaissance language in Pavia.

Figure 3.17 Loggia on Piazza Grande.

Figure 3.18 Loggia of the notaries.

Figure 3.19 3D representation of Palazzo Broletto.

3.1.1.7 Visconti castle

In 1359 Galeazzo II Visconti conquered Pavia after a long siege, as soon as he took the city the lord

decided, perhaps due to disagreements with his brother Bernabò, to move his court from Milan to

Pavia.

He had the houses and churches located in the area chosen for the castle, west of S. Pietro in Ciel

d’Oro, demolished, and the works proceeded quickly and in just 5 years the building was completed.

Galeazzo II ordered his subjects to send workers and craftsmen, while the Piacentini were forced to dig

the moat. The Castle of Pavia was above all the splendid seat of a refined court: a square layout (150

meters per side) with square corner towers and subdivision of the buildings into square spans, a typical

design of the Visconti castles, characterized by large, mullioned windows, the air porch of the courtyard

and the frescoes of the internal rooms, elements that reflect the taste of the international Gothic.

The castle was the scene of the famous battle of Pavia in 1525 where it lost the northern part, which

fell under the blows of French artillery during the siege of 1527 and in its place was built a section of the

bastion wall made by the Spaniards in the middle of the century, which allowed the soldiers to have a

wide view of the area outside the walls.

Between the sixteenth and seventeenth centuries, a foundry was created inside the castle to make

cannons, one of these pieces of fire is kept in Lisbon and dates to 1572 and could be transported on the

walls built by the Spaniards through a slide in case of enemy attacks.

The castle continued to be the residence of the castellans and the Spanish general Antonio de Leyva

placed his residence in the eastern part of the building.

Figure 3.20 The Visconti castle from above.

Figure 3.21 3D representation of it (right).

3.1.2 People

3.1.2.1 Villagers

Figure 3.22 Generic female characters

Figure 3.23 Generic male characters

Figure 3.24 A friar and a student

3.1.2.2 Soldiers

Figure 3.25 Soldiers include knights, arquebusiers and infantrymen

3.1.3 A closer look to the asset

Being the combination of the work of many students and some of them worked on different software, it

was necessary to examine the status of the various elements and possibly make corrections.

3.1.3.1 Common issues

3.1.3.1.1 UV Mapping

Figure 3.26 Typical UV mapping errors include texture stretching, texture scale and rotation.

Uv map are created in blender using various algorithms including:

• UV- unwrap : This tool unwraps the faces of the object to provide the “best fit” scenario

based on how the faces are connected and will fit within the image and considers any seams

within the selected faces. If possible, each selected face gets its own different area of the image

and is not overlapping any other faces UVs. If all faces of an object are selected, then each face is

mapped to a part of the image.

• Sm art UV P roject : it cuts the mesh based on an angle threshold (angular changes in your

mesh), automatically creating seams. This algorithm examines the shape of your object, the faces

selected and their relation to one another, and creates a UV map based on this information.

• Project from V iew: it takes the current view in the 3D Viewport and flattens the mesh as it

appears.

Most of the time, smart UV project is a fast way to obtain a good result with minimum effort. Once the

Uv map is generated, it can be modified manually moving the vertices of the mesh on the image flat

plane.

Figure 3.27 Editing a Uv map of a cube in the Uv editor

3.1.3.1.2 Bad topology

The chance of finding problems in a mesh is usually very high. One of the most subtle problems to

identify, but extremely easy to solve, is doubles. Doubles are overlapping vertices or so close that are

perceived as one and result in a waste of memory and in an increasing mesh complexity that could

compromise the application of smooth shading or subdivision surface modifiers. Blender provides an

algorithm that merges all the vertices that are close to each other within a certain distance. Sometimes,

if the model has been already unwrapped and shaded, this method, being automatic, can change the final

look because some important vertices are displaced, so you need to be careful using it.

3.1.3.2 Updating asset

3.1.3.1.1 Collegio Ghislieri

The Collegio Ghislieri was surrounded by a courtyard on the south side and one on the west side. In

the west one we find the church of San Pio and a small house.

A quick create to create a simple low-poly house is to:

• Block the big shapes – start with a cube, change the size to create a rectangular shape and

adding a triangular shape for the roof.

• Add a new layer of deta il – windows and doors can be obtained making holes in the mesh.

Once you have the shape of a window, the Boolean modifier will help to modify the original

mesh faster subtracting the target shape

Figure 3.28 Map of the Collegio Ghislieri from the drawing of Ottavio Ballada, 1617

Figure 3.29 Rendering of the Collegio Ghislieri

Figure 3.30 Rendering of the Collegio Ghislieri.

3.1.3.1.2 Medieval Walls

The medieval walls are based on four architectural elements: the wall, the arches, the doors and the

towers. They are inside the walls made by the Spaniards and follows the same path surrounding the city.

Figure 3.31 Breaking down a complex model in simpler elements

First, you create a tower, a door, a small section of the wall and an arch. To further speed up the

process, you can exploit the natural symmetry of these object and work only on a section of the model,

applying a mirror modifier.

Thus, it is possible to combine all these elements together to achieve the desired wall structure.

• Create a path with a curve object

• Take the small section of the wall and apply an array m odifier to create a sequence of copies

to simulate the walls. Apply a curve-deform modifier so the walls now will be forced to follow

the path created previously.

• Create a new plane, enter in edit mode, and merge all the vertices into one. Apply an array

modifier to create as many copies as you want and apply a curve- deform modifier with the

same path. Create a new geom etry node and add a Point inst ance node. It will replace each

vertex with a specific object, in this case the tower.

• Take the last two elements, duplicate-link them (this will create a new object with all its data

linked to the original object) and put them on the desired position.

Figure 3.32 Procedural generation of the walls

Once the design process is complete, you can apply all the modifier and work on the details.

3.1.3.1.3 Neighborhood Pavia Nord-east

This set of houses was full of problems (non-manifold mesh, missing windows, and doors), so it was

deleted and did it from scratch.

Using as reference the old neighborhood, it was easy to create a similar design for the low walls and

rearrange the new houses, obtained copying the models spread all over the city, to fill the gaps.

Figure 3.33 Old version of the neighborhood

Figure 3.34 New version of the neighborhood

3.2 Setting up the scene

3.2.1 Match between the model and the maps

Figure 3.35 Map of Pavia, taken from Google maps.

Figure 3.36 An ancient map of Pavia drawn by Ottavio Ballada, 1617.

Figure 3.37 3D representation of the mid-1500s city.

3.2.2 Populating the city

Placing characters on a scene is not a difficult problem to solve, you can always manually take each

person and place them anywhere and anyway you want, but if you consider populating an entire city,

which implicates hundreds or even thousands of people, this could take an exceedingly long time.

So, apart in some cases like characters in the foreground, the focus should be how to find the quickest

and effective method to automatically scatter many characters that also gives you access to the largest

set of controls to tweak the algorithm.

3.2.2.1 Scatter Object

Object Scatter is an addon installed in Blender that allows you to scatter an object on any surface. By

dragging the mouse over the parts on which you want the selected object to be scattered, the drawn

lines tell the software where to place the copies of the object.

There are several settings that can be changed to achieve the desired result: number of object instances,

rotation, randomness in rotation. Once the operation is confirmed, the objects are not individually

editable, and this becomes a problem if you must arrange intersecting objects.

3.2.2.2 Particle system

Particle systems generate a set of particles randomly placed on a mesh. Furthermore, Hair particles

systems create strands, which are static by default, can be used as placeholders for our characters on

the streets and you can decide what kind of source to use (vertices, faces or volumes) to produce them.

Density weight map helps to establish how the particles are scattered on the mesh. Strands can be

rendered as a single object or a collection, for each particle will be chosen an object inside the

collection randomly. Rotation can be controlled using the normal of the faces/vertices, so the

characters’ rotation axis is perpendicular to ground, and adding a value of randomness to affect the final

value.

Emitting from faces or volume, the issue of intersecting objects appears when you reach a certain

number of particles that depends on the mesh geometry and the size of characters. Vertices can be a

solution because the objects will be placed where the vertices of the mesh are in space.

One of the drawbacks of using particles systems is the slow rendering time because the computation is

much more complex when dealing with an enormous number of particles that are simulated.

3.2.2.3 Geometry nodes

Geometry nodes are a new feature for Blender, they were introduced in February 2021 with Blender

2.92. In contrast with the other modeling techniques available on this software, geometry nodes use

node trees to apply set of operations to a model. This tool does not already have all the features that

you can use normally, but it is extremely powerful.

In this case, you can use these nodes in the same way as the particles systems: use the faces or the

vertices of a mesh to create a random set of points and substitute them with any object or collection.

The advantage is that there are not simulations involved, the algorithm generates the points once

speeding up the rendering process.

Furthermore, there are interesting new features:

• Set a threshold distance between the generated points, so that the objects will not intersect

one another.

• Replace points with a whole collection, this could be useful for scattering arranged groups of

people.

• Use math operation to control the attributes of each point (position, rotation, scale) which can

be used either for static geometry or animation.

Figure 3.38 Examples of crowd generated using geometry nodes

3.2.2.4 Diversity

Using a small set of characters to simulate the population of a city can increase the sense of monotony

in a scene because, especially when multiple characters appear on the screen, there is a higher chance

that some of them are the same model and maybe close to each other, making impossible to not notice

it. Monotony is usually boring to stare at and should be avoided.

However, without modeling new characters there is a quick way to create the illusion of diversity.

• Applying a random rotation and scale to all the characters.

• Mirroring poses.

• Randomizing colors for clothes and hair.

Figure 3.39 Monotony creates the military effect, in which the women seem a troop of soldiers. Randomness in

rotation and mirrored poses simulate the behavior of people in crowds. Randomness in size and colors better

reflect the inherent randomness of the real world.

3.3 Animation

3.3.1 Animating the camera

Camera motion can be handled easily with keyframing which gives a wide range of possibilities to

control the animation.

• Locat ion e rotat ion can be keyframed, using a key-pose scheme and editing the animation

curve to control the interpolation.

• A curve object allows you to create efficiently a curvilinear path, controlling the radius and

tilt of a curve. A follow path const ra int will force the camera to follow a path. Combining

them together, it makes a lot easier to move a camera along a curve than with location and

rotation keyframing. It is also possible to create a system of more complicated dependencies to

have more degree of freedom. For example, by applying the constraint follow path to an empty

object and making it a parent of the camera, the camera movement is still able to follow the

curve but has the possibility to move freely in space.

• Track to const ra int will force the camera to be oriented towards a target object. It cannot

be used to change the position of the camera, but it can be used to control its rotation.

• A cam era rig is a skeleton used to control how the camera is positioned. The Root Bone is

the parent of the entire rig, and all the children will follow its transformations. The Control

Bone is the bone that will translate the camera around. The Aim bone is used to track an

object.

• Walk / fly nav igat ion is an operator that allows you to navigate the scene with first person

controls. With a combination of keyboard and mouse, it works like any other navigation system

available in 3D games (move forward, backward, left, right, jump, rotate camera). This operator

can be applied to the camera view and using the auto keyframe function while an animation is

playing, the software will record the attributes of the cameras at each frame in which they

change value, creating a record of the walk-through.

3.3.1.1 Planning shots

Most of the videos of virtual tours on the web use a single camera moving throughout the city.

However, the strategy chosen to film this itinerary is to use different cameras, each with its own

function and technical characteristics (focal length, constraint) in order to make the animation system

more versatile and easier to handle. Using different shots allows you to focus more on details (what is

changed about the city), showing the buildings from different angles, without overwhelming the viewer

with too much information at the same time.

3.3.2 Effects of destruction and construction

3.3.2.1 Build modifier

The build m odifier is a fast and easy tool to make objects gradually appear or disappear. It takes the

faces of a mesh, ordered by an index, and creates an animation based on an interval of frames.

Figure 3.40 The build modifier applied to the Collegio Ghislieri

By default, the sequence of appearance/disappearance of the faces is driven by the order of creation, but

Blender offers algorithms to sort the elements.

3.3.2.2 Materials

Materials can be used to control how the object is rendered and can be set to be transparent, so that

light can pass through any objects using the material. Transparency establishes how much an object

interacts with light and it is controlled using an alpha channel, where the value 0 means “fully

transparent” and 1 “fully opaque”. The alpha channel can be driven using a grayscale mask texture,

which is mapped onto the model and can be animated.

Figure 3.41 Combine a shader with a transparent BSDF and use a gradient mask to control how much the

shaders are mixed; an object can transit from fully opaque to fully transparent.

3.3.2.3 Dynamic paint & Mask modifier

The m ask m odifier takes as inputs a vertex group, which contains a set of vertices and assigns a

weight to each one of them, and a threshold which is compared to the weight of the vertices to make

them appear or disappear. Weight paint mode allows to paint directly on the mesh and change the

weights and animating the threshold value the mask modifier will decide which vertices hide.

Another approach uses Dynam ic pa int to turn an object in a brush and the object to be masked in a

canvas, setting the surface type to Weight. The brush can now affect the weights of the vertices

according to their position in space and more precisely, the brush will interact with the portion of the

canvas, derived from their intersection. Brushes can be animated, moving the object around or changing

its shape with shape keys or modifier.

Figure 3.42 An object is used as a brush and paints the weight on the target.

Figure 3.43 The mask modifier analyzes the weights to decide which vertices will be hidden.

3.3.2.4 Explode modifier & Collision

The explode m odifier uses a particle system to attach the faces of the mesh (either the original faces

or the new faces generated by cutting the mesh based on the location of the emitted particle) to the

particles. The particles can be controlled with physics, so they can have mass and be dragged down by

gravity according to Newton’s law. Gravity is not the only force that can interact with particles, there

are other type of forces (wind, turbulence....) which can be used to create more complex dynamics.

The resulting effect is an object broken into pieces and the pieces will move based on the forces that

interact with them or objects that have Collision enabled, such as the ground on which the particles

will bounce and stop their motion due to friction.

Figure 3.44 Particles emitted from the walls will break the mesh into pieces and bounce on the ground with

collision enabled.

3.3.2.5 Cell fracture & Rigid body

The Cell F racture operator generates fractures based on the geometry of a mesh. It works using a

combination of Boolean operations to divide an object in many parts and it needs a source which can be

the vertices of the same object or another object, a particles system, or lines drawn on the model using

the grease pencil.

Figure 3.45 Fracture patterns can be achieved drawing lines on the surface and the algorithm will use them as a

guide.

Once the object is fractured in pieces, you select all of them and add rigid body physics making them all

of type Active. It is important to check that all pieces have the origin point in the center of geometry,

otherwise they will act strangely. You can also assign a mass based on the volume of the piece and some

density preset values (brick, iron, ice...).

Those fractures need to interact with the ground which will have rigid body physics of type Passive, not

being affected by any force.

3.3.2.6 Shape keys

Shape keys are data structure that stores information about the position of the vertices inside a mesh.

They can be used to assign different shapes to the same mesh, allowing to transit from one shape to

another. It is useful to animate faces, which involve specific and frequent muscle movements, and it’s

faster to use, sliding a value between 0 and 1, than posing the character every time. Shape keys are very

powerful and precise, but precision comes at high cost in terms of time.

3.3.2.7 Destruction of the Visconti castle

While the other monuments are mostly animated using the Build modifier (in case of construction) or a

simple explode modifier (for the medieval walls), the destruction of the Visconti castle has a more

complex approach. These animation starts with an army of soldiers who arrange the cannons in front of

the castle, then cannons fire and the castle falls.

Figure 3.46 The shot begins with a close-up of a cannon pushed by a soldier

The cannon is animated using keyframes, while the wheels, the soldier and the camera are parented to

the cannon so that they inherit its transformation. The wheels rotation is obtained mapping the distance

traveled by the cannon to the angle. The camera is still free to move around while the parenting forces

it to follow the cannon movement.

Creating a simple rig for character to control only certain parts of the mesh like head, torso, or an arm,

and linking the bones to mesh using vertex weight paint, characters can be animated with small

movements. Inverse and forward k inem at ics are the most common bone constraints as they help

to produce movements quickly. Bones are usually linked by a chain; a bone can be a parent of multiple

bones and/or be a child of another bone. Forward k inem at ics mean that moving the parent moves

the child and its names derives from the fact that the transformations of the bones only influence bones

that are further forward down the chain (moving your right forearm moves your right hand, moving

your hand does not move your hand). Inverse k inem at ics is the opposite and allows the

transformation of a bone near the end of a chain to influence bones that are further up the chain

(moving your hand moves your arm). For example, to obtain the motion in figure 3.47 forward

kinematics needs to pose the arm, the forearm, and the hand, while inverse kinematics needs to know

only where the hand is located.

Figure 3.47 The soldier on the left turns his head to the right and raises his arm to give the fire signal

The firing of the cannons can be simulated using smoke and fire simulation, which are created using

Mantaflow, the new physically based fluid simulation framework in Blender for gas (smoke & fire) and

liquid simulations.

Figure 3.48 Smoke behavior after the firing of cannon is simulated using particles

The first thing that happens when cannon fires is an explosion and then the smoke slowly covers the

entire scene. These simulations can be controlled using particles systems, since the particles will be used

to generate the gas, their behavior can be a preview of how the smoke will behave.

An explosion involves a mass of smoke and fire that develops rapidly and moves with a certain speed,

which can be modeled as an emitter that generates thousands of particles in fractions of a second with a

high initial velocity along the direction of fire. After that, there will be a cloud of smoke that, once the

energy generated by the explosion has dissipated, will be affected by various forces, including wind,

turbulence, interaction with the particles of air. The behavior of the cloud can be simulated with

particles that are emitted in the direction of the shot with an additional random value that will help the

smoke to spread in space and Force field objects that will affect the movement of the particles, which

otherwise will only interact to the ground until they stop.

The cannonball can be animated as a parabolic motion; to do that, the ball will be marked as an active

rigid body, which allows Blender to overwrite its position anytime the simulation is running. In this

situation, the ball will be affected by gravity and just fall which is not what is wanted. To create the

parabolic motion, the ball needs a force that will interact with gravity and this force can be animated

manually. So, at the beginning the ball moves because of the keyframes then the animation system

switches from keyframes to the rigid body simulation, generating the parabolic motion. Additional

motion can be achieved reusing some parts of the castle as passive rigid body and the cannonballs will

interact with them. The last step is baking the rigid body motion into keyframes.

Now that the motion of the cannonballs is solved, you can find the spots where the castle is hit. The

destruction of the castle is performed using a particles system and an explode modifier , but to make

more realistic the parts hit by the cannonballs are isolated from the rest and it is easier to control the

effect. Additional particles systems can be used to add to dust to the broken pieces and, as before,

smoke. The cannonballs and the ground can be marked as Collision objects and will influence the

motion of the particles.

Figure 3.49 The castle hit by cannonballs

3.4 Rendering

3.4.1 Lighting

Before the rendering process, the scene needs a lighting setup. There are various possibilities do th is in

simpler or more complex ways involving a combination of lamps, emitting objects, images or procedural

textures. Being an outdoor scene, the goal is to have as natural light as possible to reflect the lighting

deriving from the sun's rays.

The Pro Lighting Skis add-on is a useful resource for outdoor lighting. A sun lam p just illuminates all

the objects in the scene from one logical direction, while real lighting is produced by millions of light

sources. The sky shows shades of blue from the atmosphere, reflected light from the clouds and a

horizon gradient and light comes from everywhere with different hues, saturations and brightness.

HDR lighting uses a single 360-degree photograph which stores more accurate information about

lighting since it is based on a real photo.

Pro-Lighting Skies contains a collection of HDR, including sunny, cloudy, overcast, morning, sunset,

nighttime, and evening skies.

It provides controls to change the intensity of the sunlight and its inclination, the intensity and hue of

the light of the sky.

3.4.2 Rendering

Rendering is the most delicate part of the pipeline because every decision made in the previous phase of

the project will be combined into the final image/video. Rendering is always a trade-off between quality,

quantity, and time.

For the creation of the material that will be used to edit the final video, the number of frames will be

limited to a maximum of 3000, which at a frame rate of 25 frames per second is equivalent to a 2-

minute video. Cycles is the render engine used for the final rendering, and the number of samples used

is small (128 samples - some professional renders may have a minimum of 1000-3000 samples).

With this rendering options each frame can be rendered between 3 and 10 minutes; so, to create a 1-

second of video it takes between 75 and 150 minutes (about 2 and a half hours), consequently for the

entire 2-minute video from 6 to 20 days (about 3 weeks), if the video does not contain any error and

some parts of the video need to be rendered again.

3.4.2.1 Noise

Noise is the principal reason to increase the number of samples, if it is too low Cycles does not have

enough information to make correct calculation, creating random variation of brightness or color

information in adjacent pixels where it should not be present.

Unfortunately, increasing the number of samples to achieve a better computation of light make the

rendering time slower. Each sample requires approximately the same amount of computation, so if you

want to double the number of samples the expected rendering time will be double.

Luckily, there exists a tool, called denoiser, which analyzes the pixels inside a section of the image (tiles)

to detect noise and smooth it. Using denoisers can save a lot of time by keeping the number of samples

low (not too low), but it still needs enough information to avoid that the generation of a smear effect

where the amount of noise is high.

The denoising process filters the resulting image using information about the objects gathered during

rendering to get rid of noise, while preserving visual detail as well as possible.

NLM is a non-local means algorithm, it computes the value of a pixel based on the weighted averages of

all the pixels assigning larger weights to pixels that are similar in terms of their local neighborhoods or

patches.

Intel Open Im age Denoise is an open-source library of high-performance, high-quality denoising

filters for images rendered with ray tracing. It filters out the Monte Carlo noise inherent to stochastic

ray tracing methods like path tracing with a collection of deep learning based denoising algorithms and it

runs on CPU.

Opt iX uses GPU-accelerated artificial intelligence to dramatically reduce the time to render a high-

fidelity image that is visually noiseless. It works only with Nvidia GPUs.

3.4.2.2 Light path

A ray- t racing eng ine follows the path of a ray to determine which points it hits and with which

intensity. Every time a ray hits an object it will bounce and lose some energy; ideally the number of

bounces should be infinite, in practice a smaller number may be sufficient because most of the energy

will have already been dispersed, and further bounces will have no visible effect. Intentionally leaving out

some light interactions leads to a faster convergence.

3.4.2.3 Resolution & Tiles

Camera view coordinates are transformed into pixel coordinates and consequently, what is seen on the

camera preview shows on the 3D viewport will be transformed in an image. Images has a specific

number of pixels on the x-, y- axis which depends on its resolution. High resolution images take more

time than low resolution ones because more pixel values must be computed.

Currently, Cycles, like many other engines, subdivides the image in sections called tiles. Depending on

what device you are using for rendering, different tile sizes can give faster renders. For CPU rendering

smaller tiles sizes (like 32 × 32) tend to be faster, while for GPU rendering larger tile sizes give a better

performance (like 256 × 256). A smart decision is to use a tile resolution that is a divider of the image

resolution, so that the resulted grid has cells with the same size.

Recently, Blender announced the version 3.0 that will replace Cycles with Cycles X, which shows some

promising results in terms of rendering time. It is still under development, but one of the new features

is that there will be no tiles, so the image will be rendered all at once.

3.4.2.4 Render output

The result of the rendering process is a raster image, a rectangular array of values, called pixel values, all

of which have the same type. These pixel values may be real numbers representing levels of gray (a

grayscale image), or they may be triples of numbers representing mixtures of red, green, and blue (an

RGB image), or they may contain, at each pixel, other information in addition to color or grayscale data.

Image, like other files, are stored in many formats which establish how to store and organize the

information about the pixels. For example, in a colored image, a pixel is identified by a triplet of RGB

values, each channel with a fixed number of bits. Images are usually compressed to reduce their file size.

• Bitm ap stores two-dimensional digital images both monochrome and color, in various color

depths, and optionally with data compression, alpha channels, and color profiles. The speed at

which images are read or written to disk is faster when compared to other file types, but it

consumes a lot of memory space on the disk.

• Open EXR is an incredibly powerful image file format that is both high dynamic-range (HDR)

and surprisingly space efficient. It stores in a single file an image sequence corresponding to the

render passes (different interactions between objects). It supports different pixel sizes, including

32-bit unsigned integer, 32-bit, and 16-bit floating point values, as well as various compression

techniques which include lossless and lossy compression algorithms.

• JPEG is a lossy compression format and has become a de facto standard that is especially

appropriate for natural images containing gray values or RGB values. Compression reduces the

size of the file (measured in bytes), losing information and consequently, quality. When

comparing images, it makes impossible to know whether the images are different or if the

difference is an artifact created by the JPEG compression algorithm.

• TIFF is a non-compressed lossless format. It stores multiple channels, each with a description

of its contents. For image editing and compositing tools, in which multiple layers of images are

blended or laid atop one another, a TIFF image provides an ideal representation for

intermediate (or final) results. It preserves more quality at the highest resolution but require

more disk space for storage.

• PNG comes close to TIFF in quality and is ideal for complex images. It can support 32-bit

images with up to 8 bit per channel for each of the red, green, blue and alpha (RGBA) channels.

3.5 Post-production

Post-production refers to the final stage before creating the final output, in this case a video. Post-

production will be done either in DaVinci resolve and Blender, which gives a wider range of tools to edit

the video.

3.5.1 Color grading

Blender has a color management option in the rendering panel, which was set to Filmic . Filmic

compresses the scene referred linear radiometric energy values and the gamut for high intensity values.

The rendered images are loaded on DaVinci, and you can use the Color Page for color balancing and

color correction. It uses a node graph in which each node receives an RGB signal in input and sends an

RGB signal as an output making it possible to fragment the color grading process into a pipeline where

each node has its own function.

3.5.1.1 Tools

Prim aries wheels (and the corresponding bars and log wheels) control the tonal and chromatic

values of an image based on three luminance ranges (highlights, midtones, and shadows).

• L ift targets the shadows of the image.

• Gam m a targets the midtones of the image.

• Gain targets the highlights of the image.

• Offset affects the entire image uniformly.

• Master wheels are the dark horizontal sliders beneath the Color wheel that control the YRGB

values of those respective ranges.

Custom curves give precise control over the chromatic values of an image based on RGB and

luminance curves.

• Custom RGBY adjusts luminance and color in relation to tonal areas

• Hue vs Hue changes a certain shade to another.

• Hue vs Sat alters the saturation of any hue in the image

• Hue vs Lum alters the brightness of elements of a specific color.

Scopes provide graphic readouts of the luminance and chrominance values of an image for the

purposes of balancing and matching.

• Waveform shows the luminance and color values superimposed on each other in the current

frame. Colors appear white if individual channels have the same intensity level.

• Vectorscope shows a circular graph that represents the hue and saturation levels in the image.

This is usually useful for checking that skin tones have not taken on unwanted colors, such as

green, yellow, or magenta.

• Histogram provides a graphical representation of the tonal distribution of each channel. It is

ideal for evaluating hue, identifying overexposed elements in the highlights or flattened elements

in the shadows, and for adjusting brightness and contrast.

• CIE chrom at icit y determines whether the colors reside within the project delivery format

limits specified in the settings.

3.5.1.2 Balancing and Shot Matching

The first stage of grading, which is categorized as a primary grade because affects the entire image, must

adjust shot luminance and chrominance to create a level starting point for your grade.

 It involves techniques known as normalization, balancing, and shot matching.

Normalization and balancing involve creating a neutral starting point for all the clips, where there is not

a strong color dominance and normalize the distribution of color values.

Shot matching means creating a link between all the clips through color and luminance. It guarantees the

“continuity” in the scene, especially in terms of light and shadow.

3.5.1.3 Setting Tonal Range

The human eye is particularly sensitive to light sources and shadows, which is why it makes sense to

begin adjusting them. The waveform scope can serve this purpose. The vertical axis of the scope

represents the entire luminance range of the image. The bottom of the display represents the blackest

black (0 in a 10-bit depth signal), and the top represents the whitest white (1023 in 10-bit). Everything

between represents the full midtones range of the image in a grayscale format.

Figure 3.50 The horizontal axis represents the columns of pixels of the image and the vertical axis the luminance

of the correspondent pixels.

Each color channel is overlapped in the trace. White in the trace indicates that each channel has an

equal intensity. When adjusting just the luminance in an image, the RGB channels in the waveform can

be disabled and you see only a single signal.

Any part of the trace that goes below 0 (black point) and above 1023 (white point) in the sRGB gamut

will be clipped, which will result in a loss of image detail.

Normalizing a footage implies bring the shadows at around 5-10% above the black point (0) on the

scope, while the pure white should stop well under the white point (90%), leaves space to super-white

elements such as blown out headlights, lens flares, or metallic specular highlights that can extend beyond

the white point. If the image is still too dark or too bright means that the midtones are too

compressed, so the gamma wheel can help stretching them.

3.5.1.4 Balancing Colors

After adjusting the tonal range, you should examine the relations between the RGB values on the image.

For example, deep shadows, which are supposed to be black, should have the value on each channel,

otherwise we will have a color dominance. The same reasoning applies to something that should be

white like clouds, this will help to make the image more neutral.

3.5.1.5 Look

A balanced image makes easier to manipulate colors and create a specific look. Color when used

correctly can guide the viewers to what is important, adjust the mood or the atmosphere or be used to

tell a story.

Figure 3.51 Scenes from "Up". Vibrant colors express a joyous happy moment in their life. Very desatured colors

makes the scene sadder.

In this case, we will create a node to adjust the saturation of the overall image to make the colors a

little bit more vibrant.

3.5.1.6 Contrast

Contrast describes the relationship between the darkest and brightest parts of an image. Increasing the

contrast means deepening the shadows while brightening up the highlights, sharpening the differences

between pixels and making object more distinguishable. The pivot control establishes which levels of the

luminance scale the contrast will affect more.

Figure 3.52 The contrast between light and dark was the foundation of the chiaroscuro technique, as

demonstrated by the masters Caravaggio (“The Calling of Saint Matthew”, 1599-1600) and Rembrandt (“The

Philosopher in Meditation “, 1632).

Figure 3.53 Progressive look of the image from original to final grade, normalizing the colors, saturation and

contrast

3.6 The final products

The virtual tour of the city, as specified in the project presentation, is a recording of a camera moving in

the scene and the rendering is done at a resolution of 1280x 720 px, using 128 samples and the

OpenImage denoiser. The final step is editing all the sequences into a single video, which can be seen on

YouTube at https://www.youtube.com/watch?v=EC-OZi1o-iI&t=25s.

The timeline, instead, is different from the recording because the viewer should be able to travel

through time and as the city of Pavia evolves, new buildings rise, and others are destroyed. For convenience,

the changes are grouped together into four temporal sequences:

• 1500-1530: the north wing of the castle collapse during the battle of Pavia, the monastery of San

Felice is built.

• 1530-1550: the medieval walls are destroyed, and the Spaniards built the new walls, Palazzo

Broletto was expanded with the construction of two loggias.

• 1550-1575: the construction Collegio Borromeo and the Collegio Ghislieri has started and ended.

• 1575-1600: the church of S. M. di Canepanova is completed.

The simplest solution is to render the sequences and create the transitions while editing the video,

grouping together the sequences and adding new sources to support and make the video more

understandable, such as maps that show how the city changes in a sequence and which monuments are

involved, titles for each animation sequence, labels and markers (like YouTube allows to add to a video)

that indicate in which period the changes take place.

The rendering is done at a resolution of 1280x 720 px, using 40 samples and the Optix denoiser.

3.7 The future....

To create interactive environments, there are different software which can import a scene and provide

navigation tools. Most of them are dedicated to real-time immersive 3D architectural visualization, such

as Twinmotion, or game development, such as Unity, Unreal Engine, Godot.

In the past, Blender also had its personal game engine, but the Blender Game Engine was removed from

Blender in 2018 with the release of the version 2.8 to focus on providing a good support for external

game engines like Godot, Armory3D and Blend4Web.

However, there is a possibility to create a real- time walkthrough also in Blender, combining camera

movements and animation sequences.

3.7.1 First Person Experience

Widely used in videogames, first person perspective is any graphical perspective rendered from the

viewpoint of the player's character. Camera view is linked to the user view, creating an immersive

experience in the environment. A person can, then, walk as the camera moves forward, backward, left,

or right and move his head as the camera tilts, pans or rolls.

The walk navigation function allows you to move the camera in space using the W, A, S, D keys and

rotate it moving the mouse pointer, while using another customizable keystroke you can trigger the

next sequence until the last one resets the timeline to the 1500 and the cycle restart.

3.7.2 Real-time render

Eevee is Blender’s real-time render engine built within Blender using OpenGL focused on speed and

interactivity while achieving the goal of previewing PBR (Physically Based Rendering) materials . Since it

uses rasterization, it is faster than a ray tracing engine and focus only on estimating the way light

interacts with objects and materials. In this way a user can preview materials and objects in real-time

and navigate the viewport while the scene is rendered.

3.7.3 Pavia navigation add-on

Blender is a software based on python language and includes a console to run commands or python

scripts. Python scripts are useful to create additional functionalities, called add-on, to the Blender

library. To install a new add-on, you need to go the Preferences tab and once it is installed you must

enable it.

The objective is to create an add-on that calls the function Walk navigation, which contains all the

command to navigate the scene, and plays the sequences in order every time you press a specific key,

allowing you shift timeline while you are walking.

 3.7.4 Achieving a more realistic look

Eevee is faster than Cycles but the speed increases at the expense of the ability of creating a

photorealistic look. Since the render is in real-time, the post-production process is not a solution

available.

However, one of the big differences between Eevee and Cycles is the accuracy of light and shadow

because Cycles considers random samples of light that bounce around the scene and make accurate

computation to calculate the intensity of light on the surfaces. If the position of the light source does

not change and effects that depends on the position of the viewer are discarded, maps can be used to

fake lighting.

Cycles provides a tool to create images that stores the result of the render passes (normals, albedo,

shadows). This process is called baking and it is usually used to create high resolution maps from high

poly meshes to apply them on the relative low poly meshes.

Complex object may contain multiple material applied; in this case the baking process can combined all

the information gathered during the rendering to create a single material.

Figure 3.54 Rendering the scene with Eevee

Figure 3.55 Rendering the scene with Cycles

Figure 3.56 Rendering the scene with Eevee after baking

Conclusions

The "Virtual reconstruction of Pavia in the 16th century" project is gradually getting closer to its

objectives, but before taking it to the next steps it has extensive room for improvement. If rendering

animations is the only current solution available to create a final product to share with the public, the

issue here is not just a matter of hardware power. Just to compare some numbers, the PC used during

this project has 32 GB of RAM and the average size of the files containing all the models is 7GB, that

seems handleable, however, even with no other programs opened, Blender often freezes. hangs or

crashes making very difficult to work on the models, which are usually imported in a separate file,

modified individually and then reimported in the original file. The rendering process causes the same

issues because memory usage is a key factor. Using small number of samples, controlling the number of

light bounces and limiting the resolution of images to very low resolution still generates very high peak

of memory usage that must be balanced with the tile resolution and other options with the aim of

speeding up the otherwise too slow rendering time (at the cost of increasing the memory usage) in

order to not make the software crash. The answer seems easy (to blame the hardware), but, before

thinking about an upgrade, there is still one thing to try: optimizing the asset. It is not easy, and it is

definitely time consuming, but it has a lot of benefits.

The retopology of the models, which aims to reduce meshes of millions of triangles to few thousands

maintaining almost the same quality, will improve the performance of the software (the more polygons

are rendered, the more computations are necessary to move the vertices when navigating the scene,

playing animations, etc.) and helps to set boundaries, especially when the final product will run on a pc

or a phone which can have different requirements. Low poly organized mesh not only will allow

previewing real time animation, which is a great advantage when you want to animate something, but

will improve rigged animation and modifier results, making everything look better.

The optimization of the asset can be achieved also using instancing, which means making copies of an

object with all their data linked to the original object or even copies of an entire collection, which saves

a lot of memory in relations to just duplicating data blocks.

Blender is a program with many purposes but creating applications or games in it is not its main

purpose. In this sense, Blender is working to have a good support for external game engines like Godot,

Armory3D and Blend4Web, but in general it is possible to export the model using the standard formats.

For example, architectural real time walkthrough software are powerful tools which allow to navigate

the rendered scene in real time, add scripts to handle specific events and even transfer the experience

from a monitor to a virtual reality visor, transforming keyboard and mouse inputs into a real walk.

Finally, software and hardware are key factors that also depends on the resources available for the

project, but keeping the models organized and optimized should be important as well, especially on

large projects where small errors spread along thousands of models could impact severely the

performance of any machine.

Bibliography

• Itinerari monumentali a Pavia, testi di Donata Vicini, a cura dell'Assessorato alla Cultura del

Comune di Pavia e dell'A.P.T. Pavia, Tipografia Popolare - Pavia, 1990-1993.

• FONDAZIONE GHISLIERI - La storia - Fondazione Ghislieri, https://www.ghislieri.it/fondazione-

ghislieri/benvenuti/centro-didattica-universitaria-ricerca/la-storia/

• Collegio Ghislieri | Collegi di Pavia, https://www.collegidipavia.it/collegio/2/collegio-ghislieri

• FONDAZIONE GHISLIERI - PALAZZO DEL COLLEGIO - Fondazione Ghislieri,

https://www.ghislieri.it/fondazione-ghislieri/luoghi/luoghi/

• Almo Collegio Borromeo Pavia | Storia del Collegio, http://www.collegioborromeo.it/it/almo-

collegio-borromeo/storia-del-collegio/

• EX Monastero di San Felice,

http://www.paviaedintorni.it/temi/arteearchitettura_file/arteinstrada_file/PAVIA%20VINCOLI%2

0URBANISTICI_file/PAGINA%20%20ELENCO%20EX%20MONASTERI%20E%20CONVENTI_fi

le/EX%20MONASTERO%20DI%20SAN%20FELICE.htm

• Ottavio Ballada, Mappa della città di pavia, (1617),

http://graficheincomune.comune.milano.it/GraficheInComune/immagine/P.V.+g.+5-26

• James D. Foley, Andries van Dam, Steven K. Feiner,John Hughes. “Computer Graphics: Principles

and Practice”, Addison-Wesley, 2nd edition: 2005. ISBN 978-0-201-84840-3

• Tomas Akenine-Möller, Eric Haines, and Naty Hoffman. “Real-Time Rendering”, Natick: A.K.

Peters Ltd., 3rd edition: 2008. ISBN 978-1-56881-424-7

• Peter Shirley, Steve Marschner. “Fundamentals of Computer Graphics”, A. K. Peters, Ltd, 3rd

edition: 2009. ISBN 978-1568814698.

• William Vaughan. “Digital Modeling”, New Riders Pub, 2011 ISBN 978-0321700896

• E. Catmull, J. Clark. "Recursively generated B-spline surfaces on arbitrary topological meshes", (1978).

• Edwin Earl Catmull. “A subdivision algorithm for computer display of curved surfaces”, (PhD thesis),

University of Utah, (1974).

• Ivan Edward Sutherland. "Sketchpad: A man-machine graphical communication system"

Massachusetts Institute of Technology, (January 1963).

• Henri Gouraud. “Computer Display of Curved Surfaces”, Doctoral Thesis (Thesis). University of

Utah, (1971).

• Bui Tuong Phong. “Illumination for computer generated pictures”, (1975).

• Arthur Appel. “Some techniques for shading machine renderings of solids”, IBM research center

N.Y., (1968).

• J. T. Whitted. “An improved illumination model for shaded display”, (1979).

• J. Turner Whitted. "A Ray-Tracing Pioneer Explains How He Stumbled into Global Illumination"

(2018), https://blogs.nvidia.com/blog/2018/08/01/ray-tracing-global-illumination-turner-whitted/

• A. Michael Noll. “Computer animation and the fourth dimension”, Bell Telephone Laboratories,

Incorporated, (1965).

• The Computer Graphics Book of Knowledge,

https://www.cs.cmu.edu/~ph/nyit/masson/history.htm#:~:text=Computer%20Graphics%20(CG)

%20was%20first,and%20Boeing%20in%20the%201950s,

• Wayne Carlson. “History of computer graphics and animation”,

https://ohiostate.pressbooks.pub/graphicshistory/chapter/14-3-tron/

• Pixar History Revisited - A Corrective, http://alvyray.com/Pixar/PixarHistoryRevisited.htm

• Our story | Pixar, https://www.pixar.com/our-story-pixar

• Ian Phillips, Ben Nigh. How Pixar's Movement Animation Became So Realistic, Movies Insider,

(2021), https://www.insider.com/from-toy-story-to-soul-evolution-of-pixar-character-

movement-2021-3

• Nick Romano. A Visual History of Motion-Capture Performances on Film, (2014),

https://screencrush.com/motion-capture-movies/

• Michael Burns. VFX: De-aging tech, Industry Trends, IBC, (2019) https://www.ibc.org/trends/vfx-

de-aging-tech/5188.article

• Ran Kidron. The History of Aging and De-Aging on Screen, (2020), https://artlist.io/blog/the-

history-of-aging-and-de-aging-on-screen/

• Devin Coldewey. “How ‘The Mandalorian’ and ILM invisibly reinvented film and TV production”,

(2020), https://techcrunch.com/2020/02/20/how-the-mandalorian-and-ilm-invisibly-reinvented-

film-and-tv-production/?guccounter=1

• Olena, Altumea. A Brief History of GPU, https://medium.com/altumea/a-brief-history-of-gpu-

47d98d6a0f8a

• Thomas Dreher. “History of Computer Art”, http://iasl.uni-muenchen.de/links/GCA_Indexe.html

• Vashi Nedomansky, ACE. “The ultimate history of CGI movies”, (2019),

https://vashivisuals.com/the-ultimate-history-of-cgi-movies/

• Ian Phillips, Ben Nigh. 10 movies that changed CGI this decade, (2019),

https://www.insider.com/movies-that-changed-cgi-decade-2019-12

• Gibson, Ian, and Jorge Bártolo, Paulo. “History of Stereolithography”, Stereolithography: Materials,

Processes, and Applications. (2011)

• Richard Trenholm. “Visual effects company MPC reveals modern movie magic”, (2018),

https://www.cnet.com/news/visual-effects-company-mpc-reveals-modern-movie-magic/

