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Abstract

While identical twins identification is a well known
challenge in face recognition, it seems that no work has
explored automatic ear recognition for identical twin
identification. Ear image recognition has been stud-
ied for years, but lannarelli (1989) appears to be the
only work mentioning the twin identification (performed
manually). We here explore the possibility of automatic
twin identification from their ear images based on a
psychological model for face recognition in humans,
known as Exception Report Model (ERM). We test our
approach on 39 pairs of identical twins (78 subjects),
with several levels of resolution, occlusion, noise, left
vs. right ear, and feature optimization which verifies the
robustness of the introduced features.

1 Introduction

The incidence of twins has progressively increased
in the past decades. Twins birth rate has risen to 32.2
per 1000 birth with an average 3% growth per year
since 1990 [8]. Since the increase of twins, identi-
cal twins are becoming more common, which in turn,
is urging biometric identification systems to accurately
distinguish between twin siblings. The significant sim-
ilarity between identical twins is known to be a great
challenge for face recognition systems and the perfor-
mances of current 2D face recognition systems on twins
have been recently questioned [12]. Several researchers
have shown encouraging results in automatic recogni-
tion systems that using other features such as finger-
print, palmprint, iris, speech, and combinations of some
of the above biometrics [12].

In this work we focus on identification of identical
twins based on ear images. Ear images have several ad-
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vantages over many other features. The ear shape does
not change significantly after adulthood, its surface has
a relatively uniform color distribution, it is invariant to
expression, and ear images are more robust to illumi-
nation and head pose changes than features like faces
[2]. The early studies mostly addressed the question
of uniqueness of ears. The most well-known pioneer
seems to be lannarelli (1989), in which he performed
manual identification over 10,000 ears and found no
indistinguishable ears. This work along with previous
works such as Hirschi (1970), Rother (1976), Hunger
and Hammer (1987), and more recent works such as
Van der Lugt (1998) mostly indicate that the variability
between ears is large enough to assume ears as unique
identification features.

On the basis of the above studies, automatic ear
recognition techniques have been introduced, mostly
employing methods used in other biometric fields.
Eigen-ears [11] could provide high accuracy in recog-
nition in closely controlled conditions, otherwise, hav-
ing dramatic performance reduction. In order to handle
rotation and illumination changes in ear images, Abate
et al. [1] introduced a method based on Generic Fourier
Descriptors. Yan also presented a complete system [14]
including automated segmentation of the ear in a pro-
file view image and 3D shape matching for recognition
under constrained conditions with specialized cameras.
Bustard and Nixon [3] recently proposed an ear regis-
tration method that utilized SIFT features followed by a
homography transformation, to cope with the occlusion
and pose changes. The transformed images are then
masked and matched using Euclidean distance. De-
spite high performance, their semi-automatic ear mask-
ing procedure occasionally fails to match correctly to
the ear area. Although several aspects of ear recogni-
tion have been explored, there seems to be no work on
automatic twins identification using ear images.

We propose our approach based on a psychological
model, originally suggested for face perception in hu-
mans, known as Exception Report Model (ERM) [13].
The ERM consists of two main suggestions: (1) the pos-
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Figure 1. The block diagram of our algorithm.

sibility of accurate face recognition by focusing more
on abnormal features and less on normal features (ERM
possibility), and (2) the optimality of the use of only
about 10% of the features (only abnormal features) for
rapid and accurate recognition (ERM optimality). The
ERM has been used in some automatic face recogni-
tion methods such as [5, 9], but not for ear recognition.
Our proposed system consists of two parts, namely, ear
image normalization, and feature weighting and verifi-
cation. Our continuation in the first part is to normal-
ize and use both shape and appearance of the ear for
recognition. Our contribution in the second part is to
weight points in the ear shape and appearance based on
their level of abnormality. We finally train a K-Nearest
Neighbor classifier to verify whether two given ear im-
ages belong to the same subject.

We evaluate the performance of our algorithm on a
dataset of 39 pairs of identical twins (ERM possibility)
against 5 resolution levels, 4 occlusions levels, and 4
noise levels, as well as left ear vs. right ear training-
testing sets. We also test the ERM optimality for left
and right ears. Performances of our algorithm in these
experiments suggest the applicability of ERM to a wider
range of automated visual tasks than only faces.

2 Ear Image Normalization

In first part of our algorithm, ear normalization (see
Fig. 1), given a gallery ear image (GEar), we crop the
ear out of the profile view, and then normalize the rota-
tion, scale, and illumination, based on a reference ear
image (REar). Normalization in previous works has
been performed based on both manually sparse point
registration, both manually [6, 4] and automatically, us-
ing methods such as SIFT feature matching [3] and
graph matching [2]. However, when all ears images are
transformed into a single reference image coordinates,
the 3D structure of the ear (i.e. ear shape) is lost and
merely the intensity values (i.e. ear appearance) is re-
mained. In contrast, we calculate and store the dense
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correspondence between each GEar and the REar using
SIFTFlow. We not only use this dense flow for the scale
and rotation normalization, but also treat the flow itself
as the relative shape information of each GEar.

We normalize the GEar images in five steps. In the
first step we loosely crop a window of 300 x 300 pix-
els out of the profile view (originally 1728 x 1152 pix-
els), around the ear-hole, detected using a simple im-
age correlation (Fig. 1, crop symbol). The cropping is
only to reduce the search window of the SIFTFlow al-
gorithm in the next step. In the second step we apply
the SIFTFlow to calculate accurate dense flow field be-
tween the cropped window and the REar (Fig. 1, flow
field). Then in the third step we warp the GEar im-
age to the REar image coordinates based on the flow
field, thus normalizing its scale and rotation (Fig. 1,
warping). As we are only interested in the pixels corre-
sponding to the ear, in the fourth step we mask out the
non-ear pixels in both the flow field and the warped ear
using a single pre-defined binary image, manually de-
fined for the REar image (Fig. 1, masking). Finally, in
the fifth step we normalize the illumination of warped
image using Contrast-limited adaptive histogram equal-
ization (CLAHE) [15] (Fig. 1, illumination). At the
end of this part of our algorithm, we have normalized
ear shape (i.e. the masked flow field) and ear appear-
ance (i.e. the masked, illumination normalized warped
image), shown in Fig. 1.

3 Feature Weighting and Verification

In the second part of our algorithm, feature weight-
ing and verification, we apply the ERM concept to
weight each point. The ERM suggests that the impor-
tance of a feature has a direct relationship with the ab-
normality of that feature and the further a point is from
its related mean value, the more abnormal it is. Thus,
we first estimate a normal probability density function
(PDF) for each shape and appearance point, based on
the distribution of their values in the entire dataset.
Then we define the abnormality strength (weight) of
point k, as the distance of that point from the mean,
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Figure 2. Results of sibling verification across different resolution, noise, and occlusion levels

normalized by the sigma, in the corresponding PDFs:
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where Wspape, i 18 the shape weight; w;y: 1, 1S the inten-
sity weight; xj and y; are the X and Y coordinates;
inty is intensity value of point k; and (Uz i, 0 k)
(ty ks Oy.1 ), and (4, &, 05 1) are mean and sigma values
of the corresponding X coordinate, Y coordinate, and
intensity PDFs. Finally, we form the feature vector by
concatenating weighted shape and appearance points, to
represent a GEar image (see Fig. 1):

FeatureVector; = qu;mpe x S||WE, x I
Wsha,pe [wshupe,lv Wshape,2y -+ wshape,n}
Wint = [Wint, 1, Wint,2, - - - Wint,n]

where FeatureVector; is the concatenated vectors
representing GEar image ¢, S is the ear shape values,
and [ is the ear intensity values.

Given a pair of weighted feature vectors, we now
train a KNN classifier, using Mahalanobis distance, to
verify whether the vectors representing the two ears, be-
long to the same subject. Our choice of a simple classi-
fier such as KNN is to observe discriminative power of
the proposed abnormal features in ear recognition.

4 Experiments

We evaluate the performance of our algorithm in ver-
ification of ear images from 39 pairs of twins (78 sub-
jects). Our Twin dataset is the largest publicly avail-
able image dataset of twins, obtained in the Sixth Mo-
jiang International Twins Festival, China, 2010, con-
taining Chinese, Canadian and Russian subjects, each
having 2 to 4 real and 20 synthesized images. Real
images are captured from profile view, containing the
head and shoulder, with some translation and 3D rota-
tion. Synthesized images are obtained from real images
by adding random noise, translation, 3D rotation, and
realistic motion blur (Xu & Jia 2010).
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In our tests, the task is given a pair of ear images,
we verify whether both ears belong to the same subject
(siblings are treated as different subjects). We tested
five experiments on totally 5000 pairs (1792 positive
pairs 36%, and 3208 negative pairs 64%). We tested
five resolutions (300 x 300, 150 x 150, 75 x 75, 37 x 37,
and 18 x 18 pixels), four noise levels (Gaussian noise
with 4 = 0and o = 0, 0.1, 0.3, and 0.5), four occlusion
levels (simulated 0%, 10%, 30%, and 50%, in right-to-
left and top-to-bottom directions). We also tested dif-
ferent ear side training-testing sets (two cases of train-
ing and testing on the same side (right or left), and two
cases of training and testing on different sides). Finally,
motivated by the optimality claim of the ERM, we test
accuracy of our algorithm by applying feature optimiza-
tion on the point abnormality strength (when only points
with at least a minimum abnormality strength, dist, is
used), pruning the points as follows:

Wint,k Zf Wint,k > dist

Wing, i (dist) = {0

o.w.

5 The Results and Discussion

We compare accuracy results of our algorithm com-
pared with ear recognition in [3] (B&N) in Fig. 2 and 3,
and Table 1. Our algorithm performs up to 92% on the
Twins dataset, constantly better than B&N. Results also
show robustness of our algorithm regarding resolution,
noise, and occlusion. Fig. 2 indicates that even with
noise o = 0.5, our accuracy is almost the same as the
B&N without noise. This may be because of the SIFT-
Flow dense point registration, but it also indicates that
the abnormal features are robust against noise.

Comparing occlusion variation accuracy results in
Fig. 2 with other tests, it seems that our algorithm
is robust towards resolution and noise than the occlu-
sion. This can be because of the loss of strong features
(trained in the non-occluded images) in the occlusion
variations, while these features, although weakened, are
still present in the resolution and noise. In addition, as
the accuracy drops more rapidly in the top-to-bottom
occlusion curve, it seems that strong features are lo-
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Figure 3. Results of feature optimization.

cated more at the top of the ears in our dataset, rather
than right of the ears.

Results of training and testing on same or different
side ears, presented in Table 1, show that the left and
right ears in our subjects do not share much of their ab-
normal features. This means that one cannot train only
on one side ears and hope to accurately recognize ears
from both sides.

Finally, the feature optimization results are presented
in Fig. 3 that agrees with the Exception Report Model
(ERM) optimality claim that using only about 10% of
the features, the brain can accurately and rapidly recog-
nize faces. Similarly, Fig. 3 shows that even using only
features with distance more than 1.7¢ from the p (al-
most only the top 5%), we can still achieve more than
90% accuracy.

6 Conclusions

We are the first to address the problem of automatic
twin ear verification by using both shape and appear-
ance of ears, and motivated by Exception Report Model
(ERM), a psychological framework for the perception
of faces by the brain [13], which has shown good re-
sults in face recognition before (see e.g. [7, 9]). We
showed that, similar to face recognition, by focusing on
abnormal (exceptional) features of the ear shape and ap-
pearance, we can accurately identify twins (up to 92%).
In our experiments on 39 pairs of twins with different
age, gender, and ethnicity, we showed the robustness
of our algorithm against variations of resolution, noise,
and occlusion. These experiments also showed the ab-
normality features are not the same in the right and left
ears. Finally feature optimization showed that with only
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the top 5% features we can achieve a fast and accurate
recognition.

In conclusion, our results suggest that ears are not
only a powerful identification feature for regular sub-
jects, but also for identical twins, where many other
approaches e.g. face recognition have failed [10]. In
addition to addressing the twin identification from ear
images, our work in this paper suggests that the ERM,
although originally suggested for face recognition, may
be applicable to a wider range object recognition prob-
lems, which may also help simulating new frameworks
in human visual system studies.
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