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Abstract

In this work, we investigate the applicability of the
Kinect depth camera as a robot mounted measurement
unit. In contrast to traditional head mounted robot sen-
sors, Kinect is small, cheap and delivers robust depth
measurements on a variety of scenes. In the course of
applying it on a robot arm, we solve a number of prob-
lems: we reduce the sensor working distance to a few
centimeters, replace the Laser projector unit by a fo-
cusable projector, and calibrate this sensor unit. We
further exploit the motion capabilities of the robot arm
to integrate multiple depth maps with 30 Hz in a volu-
metric fusion approach. We show how this method con-
siderably improves completeness of the scanned mod-
els, even under severe reflections and difficult surface
properties. We employ our approach in a classical bin-
picking setting, where the robot scans the object during
its approaching motion, and picks it afterwards.

1 Introduction

The problem of automated robotic picking from a
random pile of objects is still an unsolved problem. Left
aside the grasp point calculation and gripping, espe-
cially the problem of obtaining robust 3D information
is crucial. In industrial settings, the sensing problem
is traditionally solved by means of laser-based profile
scanners, or time-multiplexed structured light systems.
A few approaches rely on pure image information and
formulate the problem as a recognition task, or a model
fitting task. Recently, advances have been made in the
discipline of area-based depth sensing. Time-of-Flight
sensors generate dense depth information based on run-
time measurement, and also projector-camera systems
evolved to real-time capable sensing devices.
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Figure 1. Hardware setup

Especially developments for the computer gaming
market triggered new devices which are available at a
much lower cost than traditional, industry grade units.
Here, especially the Kinect System, manufactured by
Primesense and distributed by Microsoft, showed to
provide extremely robust depth measurements at a very
modest price. While many research disciplines like aug-
mented reality, mobile robotics, and close range pho-
togrammetry, adopted the new device and showed im-
pressive results, research was less active in industrial
robotics. The main reason probably is the lack of flexi-
bility in depth range and accuracy. While the Kinect is
designed to provide robust depth measurements over a
range from 0.5m to 8m, and an accuracy in the range of
10mm, most industrial sensing problems require higher
accuracy at a closer range.

In this paper we use a Kinect Depth sensor and mod-
ify it to work at a distance of 200mm, at an accuracy of
0.1mm for a single scan. The resulting system is cheap
and lightweight, and delivers depth measurements at
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30Hz. As a robot tool, it is applicable in diverse prob-
lem domains, e.g. grasping, bin picking or collision
avoidance. We demonstrate the potential of our robot
mounted RGBD camera by performing 3D reconstruc-
tions of bins containing random piles of objects. Due to
the robustness of the obtained depth measurements, we
are able to quickly perform volumetric fusion of depth
measurements during the robot approaches the object to
finally obtain a dense depth map.

2 Related Work
The problem of random bin picking is subject to ex-

tensive research. One of the very first approaches by
Horn and Ikeuchi [2] dates back to 1983, where objects
were identified using a Shape from Shading method.
Later methods utilize depth cameras to obtain a surface
reconstruction of the filled bin. Kristensen et al. [4] pro-
posed a bin-picking application for robotic work cell us-
ing a solid state range camera mounted above the bin.
Most recent approaches are based on dense depth mea-
surements obtained from a head mounted depth sensor
(e.g. [1]). 3D models of the goods to pick allow an
alignment with the dense depth map. Utilizing the pro-
cessing power of a modern GPU, Park et al. [5] show a
real time recognition and pose estimation on range im-
ages. These approaches rely on an accurate and dense
depth map obtained by expensive and highly specialized
depth sensors.

In contrast to the existing methods, we apply a very
lightweight, cheap and robust depth sensor and mount it
directly to the robot hand. During the approach move-
ment, the sensor is able to robustly scan a bin and pro-
vide dense depth information. The proposed depth ac-
quisition method can be seen as a plug-in replacement
for existing depth measurement systems.

3 Depth Map Creation
The typical working range of a robot mounted depth

measurement device should be in the range of 10cm to
50cm to capture the majority of goods which are manip-
ulated by a robot. This contradicts the usage of gaming
depth cameras, because these are typically designed for
detecting and tracking people in an indoor environment.
We therefore modify the original depth sensor by apply-
ing a different lens to the camera, a micro-projector in-
stead of the original laser, and modify the baseline to re-
duce the working distance and increase depth accuracy
[6]. In the following section we discuss the hardware
modifications made, in conjunction with a robot-based
and fully automatic calibration method. We further ex-
ploit the extreme robustness of resulting depth measure-
ments in a depth fusion framework, which allows us to

scan larger parts of the bin during the robot approach
and finally obtain a dense volumetric representation.

3.1 Sensor Hardware

The Kinect sensor relies on the projection of a
static, pseudo-random dot grid pattern. A temperature-
stabilized Laser diode generates a holographic projec-
tion through a diffractive optical element (DOE). This
creates a depth of field which is far beyond what is
possible with traditional optics, ranging from approx-
imately 50cm in the short range to a maximal working
distance of roughly 10m.

As a general disadvantage of this approach, the pro-
jected image cannot be refocused or zoomed, because
this would destroy the pattern coherence. We therefore
replace the Laser by a pico-projection unit. These units
are cheap, small and lightweight. They rely on tradi-
tional optical projection, and can therefore be refocused
and potentially also zoomed. It may be overly complex
to employ a video beamer for the static projection of a
dot pattern. In practice however, it is advantageous to
be able to switch the pattern on and off, to project cali-
bration patterns, and to project intensity-modulated dot
grids [6].

Our hardware modifications are as follows: on the
camera side, we added a standard C-mount lens. We re-
moved the IR bandpass filter, mainly for practical rea-
sons, but the system can also be realized in the near-
infrared spectrum of light with a different projector.
The baseline of the projector-camera system is approx-
imately 5cm. With a working distance of 20cm, this
results in a stereo angle of 15deg. The projector itself is
a Texas Instruments DLP unit, which weighs 86g. An
embedded PC (Beagleboard) performs the pattern pro-
jection. Camera, projector, Kinect processor and Bea-
gle board are hand-mounted. A USB cable and an Eth-
ernet cable connect the hand to a static PC, on which
robot control and depth map fusion are performed. The
robot mounted setup weighs 750g in total, where most
of the weight stems from the high-quality camera lens,
which is not absolutely necessary. The modified Kinect
delivers depth maps at a rate of 30Hz, and observes a
volume of 6 × 4cm2, at a focused depth range of 2cm.
Theoretically, a robot approaching the bin at 0.3m/s
would receive a depth map every traveled centimeter,
which is sufficient to perform depth map fusion and
collision detection. Figure 1 shows the hardware setup
used.

3.2 Calibration

Clearly, the hardware modification of the Kinect sen-
sor destroys its geometric calibration. To obtain a valid
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depth map, the following parameters need to be recov-
ered: epipolar geometry between camera and projector,
a pixel-wise metric scale, and a tool-hand calibration.

Our sensor comprises a special case of a projector-
camera system, with slightly different calibration re-
quirements. We start with a monocular calibration of
the camera using the method of [9], to obtain lens dis-
tortion and poses relative to a fixed reference target. In a
next step, we seek to determine the homography Hrec

P ,
which relates the default projector pattern to a rectified
configuration with the camera view, such that the pat-
tern is detectable and usable by the Kinect processor.
We perform this calibration through a Hardware-in-the-
loop optimization of the unknown homography Hrec

P :

argmin
Hrec

P

‖Fimg(H
rec
P ∗ xi

P)− xi
C‖, (1)

where xi
P are points in in projector image space, and

xi
C is the desired, rectangular point grid in camera im-

age space. FunctionFimg(x) maps points from the pro-
jector to the camera image, and depends on scene struc-
ture. We realize the point mapping by physically pro-
jecting a grid of feature points onto a plane, acquiring
it with the camera and determining feature locations in
the image. The resulting reprojection cost (1) is mini-
mized iteratively by using the Levenberg-Marquardt al-
gorithm.

In the second step, we use the known camera poses
from intrinsic calibration, and the corresponding robot
hand poses, to perform tool-hand calibration according
to [7].

At this point, as the Kinect processor still delivers
a depth map scaled with its internal, hard coded geo-
metric parameters, we identify a per-pixel linear scal-
ing to generate a metric correct depth map. This step
is based on a set of known camera poses above a refer-
ence plane πref , which are easily generated through the
known tool-hand calibration. At each camera pose with
projection matrix P, a ground-truth depth map is gen-
erated by intersecting the camera projection rays with
πref :

d̂i = P3

[
P
πref

]−1


xi
yi
1
0

 (2)

with P3 the third row of P and ||P3,1...3|| = 1. Con-
sequently for each pixel location (x, y) a vector of
true depths D̂ = (d̂0(x, y), ..., d̂n(x, y)) and estimated
depths D = (d0(x, y), ..., dn(x, y)) is available. The
linear relation between these is again established in a
least squares sense by solving

[
DT 1

] [ a(x, y)
b(x, y)

]
= D̂T . (3)

A correct depth map is finally retrieved by mapping
an incoming depth value according to d̂ = ad+ b.

3.3 Depth Fusion

The modified Kinect depth measurement system de-
livers extremely robust results. It effectively eliminates
the need to deal with gross outliers. On the other hand,
depth maps may become sparse, if the object surfaces
are extremely dark, or the geometric level of detail is be-
low the projected pattern resolution. To produce dense
3D measurements even under adverse conditions, we
employ a volumetric depth fusion method, which is re-
lated to the work of Izadi et al. [3]. We initialize a
volumetric occupancy grid at a desired resolution, e.g.
0.25mm per voxel. For a given camera pose and depth
measurement, we cast a ray back into the volume, and
accumulate the number of hits or misses for each voxel
the ray passes.

The final, fused depth map can be simply recon-
structed by casting rays perpendicular to the z plane of
the world coordinate system. For each ray, we keep the
voxel center with the highest accumulated vote and en-
code its z coordinate in the depth map. In this way, an
arbitrary number of depth maps can be fused. Please
note that the depth maps could also be fused by a more
sophisticated fusion technique (e.g. [8]). However, our
experiments showed that the simple winner-takes-all
strategy produces depth maps with sufficient density
and accuracy. Figure 2 shows the comparison of a single
depth map and a fused depth map from 30 depth images,
taken while approaching the object. As can be clearly
seen, the modified Kinect has a limited depth-of-field
which is exceeded by the object to be measured. By
combining depth maps taken from different ground lev-
els, a dense depth map, suitable for further processing,
can be created.

4 Experiments
In this Section we show how the incremental fusion

of depth map increases the completeness of the result-
ing depth map. In the experiment we obtain a depth map
of a region of 150× 80mm2. A bin (55× 120× 35mm)
containing various objects, is placed in this region of
interest. Depth measurements from the sensor are itera-
tively combined according to Section 3.3 with a resolu-
tion of 0.25mm. Table 4 shows the number of entries in
the depth map for an increasing number of input depth
maps. As can be seen, a single measurement results in
depth maps with many empty entries. However, after
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(a) (b) (c)

Figure 2. Example of depth map fusion.
Two raw depth maps (a-b) and a fused re-
sult is shown. White in (a-b) depicts re-
gions for which no depth measurement
could be obtained.

Table 1. Completeness of the obtained
depth maps.

Object Completeness[%]
1 frame 20 frames 50 frames

keys 19.69 75.53 88.67
pillbox 14.97 56.06 86.31
puzzle 20.59 61.38 86.31
lego 15.19 74.89 89.61

approximately 50 fused frames the depth maps show a
completeness of 85-90% independent of the object type.

On a PC with a 2.66 GHz Core i7 processor, the in-
sertion of a single depth map takes 20 ms which allows
to create the depth maps while approaching the object.
The creation of the final depth map takes 6ms.

Figure 3(b) shows an example depth map obtained
in the previous experiment. The real object with a part
of the projected pattern can be seen in Fig. 3(a). Please
note how the fine details of the gear could be recovered.

5 Conclusion
In this work we have shown how to modify and cal-

ibrate a consumer grade depth sensor to serve in in-
dustrial applications. By exploiting the robustness and
price advantage, triggered by its original application in
the gaming industry, the modified sensor delivers dense
depth maps with 30 Hz with an accuracy which is ade-
quate for most pick and place tasks for a fraction of the
price of a conventional depth sensor. Through the fu-
sion of multiple depth maps during robot motion, the ef-
fective measurement range and measurement complete-
ness can be extended in real-time. The system will al-
low the cheap solution of pick-and-place tasks and pose

(a) (b)

Figure 3. High quality depth map (b) of
an untextured plastic part (a) obtained by
fusing 50 single depth measurements.

estimation problems, and enable a broader application
of vision systems in industrial settings.
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