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1. Introduction

We perceive and classify objects (images) based on their appearance and structure. To characterize objects we can use features that remain invariant to translation, rotation and small modification of the object’s aspect. In general there is considerable interest on studying curves in images. This has motivated many approaches and tools for analysis of curves. Here, we were interested on studying shapes based on Fourier analysis. 

Fourier analysis makes it possible to reconstruct and classify images. In this work we have considered the description and classification of shapes using elliptic Fourier analysis. In addition, we have studied the problems in classification due to occlusion.

We have followed the process of shape analysis shown in figure 1. 
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We start from a colour image that contains the object we are interest on characterise. First, the image goes through segmentation step; there exists several segmentation methods using regions or edges. Generally, these methods depend on the domain of the application. Some algorithms are based on threshoulding, gradient detection or colour analysis. In this work we perform a manual segmentation based on colour and contrast.

We implemented a curve extraction algorithm that obtains from a segmented image a set of points that represent coordinates of x and y axes. Our algorithm is based on computing the distance between edge elements. The output gives the coordinates of the pixels that form the shape. Coordinates define a pair of functions that are used in the Fourier expansion. Fourier coefficients were obtained by considering the different frequency components. We have a pair of coefficient for each frequency for each curve in the x and y axes. As such, a frequency component is represented by four numbers.

Once coefficients have been computed, we use the expansion for two purposes. First, we reconstruct the original curve as a summation of sinusoidal functions. This can be used to obtain a curve with different detail (i.e. filter) or to reconstruct the shape with a different rotation, position or scale. The second purpose of the Fourier analysis is to obtain a description of the curve. We implemented a description that is invariant to position, scale and rotation. This description is used to classify different shapes in images. 

The remainder of this report is organised as follows: Section 2 describes the discretisation method used to extract image curve. Section 3 explains the main idea of Fourier expansion. Section 4 shows how a curve can be reconstructed, Section 5 defines the invariant characteristics used in this work. Section 6 contains some results of classification, Section 7 explains some ideas that can be used to match a part of a curve to a complex shape. Finally, Section 8 presents our conclusion.

2. Curve extraction

All equations in shape analysis by Fourier theory are based on continuous curves. However, given the nature of the image, the curve should be described by a collection of points. Figure 2. gives an example of a discrete approximation of a curve. The discretisation has two important effects. Firstly, it limits the number of frequencies in the Fourier expansion. Secondly, it forces numerical approximation to the integral defining coefficients.  
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We performed a curve extraction algorithm that establishes a set of discrete points which represent the coordinates of x and y axes. The algorithm is based on computing the distance between edge elements. The output is a list of points with the coordinates of the pixels that form the shape. The algorithm starts by finding a point in the curve, which has only one neighbouring point. If such a point does not exist, then the curve is closed and any point can be selected as the starting point. After the starting point has been selected, the algorithm searches for the next point by calculating the distances of all the remaining points and selects the one with the smallest distance to the current point. This procedure continues until all the points of the curve have been put in the list. The algorithm is sensitive to noise in the input images, i.e. noise can lead to incorrect reconstruction of the curve. However, it is capable of obtaining the curve when we have a good segmentation.

3. Fourier expression 

A continuous curve c(t) is defined by two parametric components x(t) and y(t). Each component is independently expanded in Fourier series using the equations
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The coefficients of this expansion, ak and bk are known as Fourier coefficients. They control the mount of each frequency that contributes to make up the curve. One way to compute values for the descriptors is 
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Generally, the descriptors may be obtained by other equivalent equations. We implement these equations to obtain a given number of descriptors for our curve. Figure 3 shows the curves x(t) and y(t) that define the shape. For each curve we have two histograms that define the four coefficients in equation (1). This example only contains 10 frequencies.

[image: image27.png]


 

4. Reconstruction of the curve

Once the coefficients are known, they can be used to reconstruct the curve according to
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(3)

This equation adds more detail to the shape by increasing the frequency of the components. The summation is to infinity, but in practice just some coefficients are used to obtain the shape. The curve can be translated to a point (tx, ty) and rotated ( radians by considering the reconstruction given by        
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(4)

Figure 4 shows an example of the reconstruction obtained with our implementation. The three figures show the same shape, but it is approximated by an increasing number of frequencies.
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5. Invariance

The Fourier coefficients ak and bk from Section 3 change completely if we translate, rotate or scale the input shape. However, it is possible to define the Fourier descriptors in such a way, that they remain translation, rotation and scaling invariant. The simplest form of the invariant description of the Fourier descriptors is given by the following equation:
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(5)

Figure 5 shows an example of the description obtained according to these equations. This figure shows the shapes and the corresponding invariant Fourier descriptors for 10 coefficients. We can observe only a small change in descriptors due to discretisation errors.
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6. Classification

The invariant Fourier descriptors can be used to identify an input shape, independent on the position or size of the shape in the image. The requirement for the classification is to have a database of Fourier descriptors of the “interesting” shapes. Our implementation of the classification is illustrated in figure 6. The input for the classifier is a shape to be classified, the database containing invariant Fourier descriptors of shapes and the number of descriptors that should be considered for the classification. We implemented a simple classifier that calculates the sum of absolute differences of the corresponding Fourier descriptors of the input shape and each of the shapes contained in the database. The class of the shape is obtained by finding the smallest sum.
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We tested our classifier by giving it arbitrarily rotated and scaled shapes of different airplanes. Our database contained the Fourier descriptors of 14 different airplanes. In all 20 tests the classifier gave us the correct answer. This shows that Fourier descriptors can be used to distinguish shapes in images.

In the second sequence of tests, we deleted parts of the shapes of the airplanes in the input images (to simulate the occlusion problem). The classifier gave almost random answers – in 5 tests only 1 answer was correct. Since it is difficult to obtain curves representing the border of objects, this sensibility to occlusion can be an important limitation of using Fourier descriptors in applications.

7. Matching occluded curves using invariant descriptors

Our experiments with occluded shapes showed that a simple classifier is not sufficient for a reliable classification. In order to address the problem of occlusions in input shapes we introduced two new parameters α and β used for building the database. In the parametric description of a closed curve the parameter t in Equation 1 takes values between 0 and 2(. For open curves the parameter t takes values from α to β, where 0 ( α ( β ( 2(. Considering also intervals that include the arbitrary chosen 0 point on the curve we must extend this to 0 ( α ,β ( 2(, where we always deal with the interval [α ,β].

Instead of calculating Fourier descriptors for the whole (closed) shape, we calculate them for many different values of α and β and store them in the database. Since there is an infinite number of possible values of α and β, we also define a minimal length of the interval [α, β] as well as its resolution. For a proper classification of different objects one has to perform the described process on all given shapes.
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Figure 7. First 4 descriptors for all [α, β] intervals of one object represented in the database.

Note the symmetry caused by the symmetric shape of the airplane that was used to create this data.

After the building of the database has been done, the classification process is performed in the following way (as illustrated in Figure 7): the Fourier descriptors of the input shape are calculated for all the possible values of α and β (with the same constraints for α and β as for building the database. Instead of subdividing the input-shape into smaller intervals we scale it, simulating situations, that would appear, if it would be a subcurve [α ,β] of an intact shape. Since the descriptors are only dependent on the difference β – α, this does not require lot of  computation.

The set of [α ,β]-intervals is different for every shape represented in the database. The only way to avoid this would be a rescaling and resampling of the shapes, which in our consideration would have caused massive noise on the data we used for our experiments. It is necessary to recalculate the descriptors of the input-shape for every object in the database during the matching-phase.

Each set of descriptors of the input shape is compared with all the descriptors’ sets in the database. The most similar set of descriptors defines the answer of the classifier – the class of the input shape and which part of the complete shape it represents.
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We performed our experiments on data gained from only one airplane. Our goal was to detect the part of the object that is visible on the input-image.
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Figure 9. One of the matching results, with the corresponding plot of  the difference between  descriptorvectors (16 descriptors) of the inputcurve and the known curve. The matching point in     α ,β – space is indicated. Fourier descriptors are invariant against orientation, therefore they can’t give information about the side of a symmetric object, which is visible in the input.

We also experimented with different weighting functions, to avoid the preference towards bigger intervals, which became visible while matching with a distancefunction. In addition we tried to improve our results by replacing the distancefunction by correlation. In most cases correlation performed inferior. We believe that a carefully chosen distancefunction combined with weights or the consideration of relative values performs well. 

8. Conclusion

Fourier descriptors are a powerful way to describe and recognize shapes of all kinds. To perform efficient and accurate matching, experimentation on the set of objects, that should be recognized, is required, since the matchingfunction and the proper number of descriptors to use depend strongly on the given shapes. Further work is still necessary to deal with affine transformations of the shapes. 
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Figure 6. Classification method





Figure 2. Discrete approximation of a curve
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Figure 3. Computing of Fourier coefficients





Figure 4. Shape reconstruction.
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Figure 5: Invariant Fourier descriptors
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Figure 8. Classification method for open curves
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