Intelligenza Artificiale II

Oltre la logica classica

Marco Piastra

Oltre la logica classica?

• Per logica classica si intende:

La logica predicativa del primo ordine L_{PO} La logica proposizionale L_P (che è contenuta, in senso proprio, in L_{PO})

- Una logica non classica adotta regole diverse
- Perchè?

Per rappresentare altre forme di ragionamento

Non solo deduttivo ma anche *abduttivo* ed *induttivo* (*vedi oltre*) Forme speciali, legate ad obiettivi specifici, come logiche modali o temporali

Per esigenze applicative

Frammenti (sottoinsiemi) di L_{PO} , più efficacemente automatizzabili (p.es. Jess)

Regole diverse

a) Logica classica in sistemi logici diversi

Esempi:

assert e retract in Jess e in Prolog Closed-World Assumption (CWA) Negation As Failure (NAF) in Prolog

b) Altre estensioni (non monotone) della logica classica

Esempi:

Ragionamento plausibile

c) Ragionamento non deduttivo

Esempi:

Ragionamento *abduttivo* Ragionamento *induttivo*

Regole diverse

d) Rappresentazione di nozioni speciali

Esempi:

Logiche modali Logiche temporali

e) Estensione dei principi base della logica classica

Esempi:

Logiche multi-valenti
Fuzzy Logics
Logiche probabilistiche

Numerose correlazioni

I diversi sistemi logici, malgrado le apparenze, sono fortemente correlati

Un fattore comune

Tutti i sistemi logici che vedremo possono essere rappresentati in L_{PO}

Logiche e sistemi logici

In ambito teorico (p.es. in logica matematica) una logica è definita da:

- a) Linguaggio formale
- b) Semantica del linguaggio formale
- c) Relazioni \models (conseguenza) e \vdash (derivazione)
- In intelligenza artificiale

E` utile vedere un sistema logico come un agente ragionatore

- Basato su una logica di riferimento (p.es. L_{PO})
- Adotta una determinata strategia di calcolo (p.es. SLD depth-first)
- Può avere risorse limitate (di tempo o memoria)

Si ha quindi il concetto di derivabilità in un sistema logico

Notazione: $\Gamma \vdash_{\langle SysLog \rangle} \varphi$ dove $\langle SysLog \rangle$ indica un **sistema logico** particolare Esempi: \downarrow Strategia SLD *fair* (definita solo per le clausole di Horn)

$$\Gamma \vdash_{LPO} \varphi \neq \Gamma \vdash_{SLD fair} \varphi \neq \Gamma \vdash_{SLD} \varphi$$

 \uparrow Derivabilità generale in L_{PO} \uparrow Strategia SLD qualsiasi (e.g. depth-first)

In linea di principio, la strategia di calcolo di <SysLog> può essere qualsiasi cosa p.es. $\Gamma \vdash_{NN} \varphi$ una rete neurale che stabilisce se φ è (NN) derivabile da Γ

Ragionamento plausibile

In generale

Un ragionamento dove la **relazione** tra premesse e conseguenza è <u>razionalmente plausibile</u> ma non necessariamente <u>corretta</u> (in senso logico-classico)

Notazione:

 $\Gamma \models_{<SvsLog>} \varphi$ indica che φ è una derivazione plausibile (con premesse Γ) in un sistema <SvsLog>

Principi generali della relazione \(<_{SysLog>} :

$$\begin{array}{ll} \Gamma \hspace{0.2cm} \hspace{0.2cm} \hspace{0.2cm} \hspace{0.2cm} \hspace{0.2cm} \Gamma \hspace{0.2cm} \hspace{0.2cm}$$

Molto frequente in pratica:

L'orario ferroviario non riporta un treno per Milano alle 06:55, quindi si assume che tale treno non esista

In generale, un database contiene solo informazione positiva (p.es. i treni esistenti) L'informazione negativa è ricavata 'per difetto'

... anche Defeasible Reasoning

Inferenza non monotona

In generale, non vale la proprietà di monotonia

$$\Gamma \models_{\langle SysLog \rangle} \varphi \implies \Gamma \cup \Delta \models_{\langle SysLog \rangle} \varphi$$

L'arrivo di nuova informazione può infatti falsificare una precedente inferenza p.es. l'annuncio di un treno straordinario ...

Inferenza sistemica

Nel caso del *modus ponens*, si ha uno schema di inferenza particolare di valore generale $\varphi \to \psi, \varphi \vdash \psi$

E` sempre applicabile, non dipende dal contesto

Al contrario, in generale, le inferenze plausibili dipendono da un'intera teoria Γ Tipicamente, la teoria rappresenta un sistema completo di conoscenze (p.es. un database) Qualsiasi modifica di Γ , in generale, può cambiare la relazione $\Gamma \models_{<SysLog>} \varphi$

Closed-World Assumption (CWA)

```
\{\Gamma \not\models \alpha\} \not\models_{\mathit{CWA}} \neg \alpha \qquad (\alpha \text{ atomo base - } \textit{ground atom}) Esempio: \Pi \equiv \{\{\textit{Filosofo}(\textit{socrate})\}, \{\textit{Filosofo}(\textit{platone})\}, \{\textit{Mortale}(\textit{felix})\}\} I fatti del programma \Pi possono essere riscritti in L_{PO} come: \forall x \, ((x = \textit{socrate}) \rightarrow \textit{Filosofo}(x)) \\ \forall x \, ((x = \textit{platone}) \rightarrow \textit{Filosofo}(x)) \\ \forall x \, ((x = \textit{platone}) \rightarrow \textit{Mortale}(x)) \forall x \, ((x = \textit{felix}) \rightarrow \textit{Mortale}(x)) Notare la doppia implicazione \forall x \, ((x = \textit{socrate} \lor x = \textit{platone}) \leftrightarrow \textit{Filosofo}(x))
```

Inferenza plausibile

```
In questo caso:

\Pi \models_{CWA} \neg Mortale(socrate)

\Pi \models_{CWA} \neg Mortale(platone)

\Pi \models_{CWA} \neg Filosofo(felix)
```

CWA e regole

```
Esempio:
      \Pi \equiv \{\{Umano(x), \neg Filosofo(x)\}, \{Mortale(y), \neg Umano(y)\}, \}
               {Filosofo(socrate)}, {Filosofo(platone)}, {Mortale(felix)}}
   La riscrittura dei fatti del programma \Pi è identica al caso precedente:
      \forall x ((x = socrate) \rightarrow Filosofo(x))
      \forall x ((x = platone) \rightarrow Filosofo(x))
      \forall x ((x = felix) \rightarrow Mortale(x))
   Il completamento di \Pi deve tener conto delle regole:
      \forall x ((x = felix \lor x = socrate \lor x = platone) \leftrightarrow Mortale(x))
      \forall x ((x = socrate \lor x = platone) \leftrightarrow Filosofo(x))
      \forall x ((x = socrate \lor x = platone) \leftrightarrow Umano(x))
Inferenza plausibile
   In questo caso:
      \Pi \models_{CWA} \neg Umano(felix)
```

 $\Pi \models_{\mathit{CWA}} \neg \mathit{Filosofo(felix)}$

Relazione tra CWA, NAF e SLDNF

Closed-World Assumption (CWA)

 $\{\Gamma \not\models \alpha\} \not\models_{\mathit{CWA}} \neg \alpha \quad (\alpha \text{ atomo base - } \mathit{ground atom})$ Notare che $\Gamma \not\models \alpha$ non è decidibile in L_{PO} , quindi nemmeno la relazione $\not\models_{\mathit{CWA}}$

Negation as Failure (NAF)

$$\{\alpha \in FF(\Gamma)\} \models_{SLDNF \ fair} \neg \alpha$$

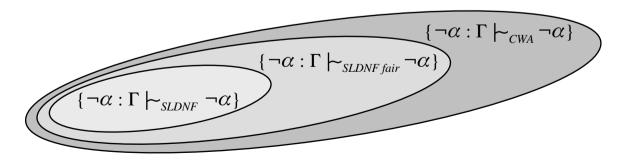
Se per α esiste un albero SLD finito di $\Gamma \cup \{\neg \alpha\}$ che fallisce, si assume $\neg \varphi$ (solo una procedura SLD $fair$, cioè completa, lo trova certamente)

SLDNF

$$\{\alpha \in FF_{SLD}(\Gamma)\} \models_{SLDNF} \neg \alpha$$

Se la prova di $\Gamma \cup \{\neg \alpha\}$ fallisce con una strategia SLD si assume $\neg \alpha$ (si intende una strategia SLD qualsiasi, non necessariamente $fair$)

Relazioni di inclusione tra insiemi di clausole derivabili



Forme specifiche

Le forme di inferenza plausibile CWA, NAF e SLDNF sono di carattere generale Altri sistemi logici adottano forme più specifiche, applicabili solo a casi particolari

Circumscription (McCarthy, 1980) $(\approx \text{la }CWA \text{ applicata a specifici predicati e non in generale})$ Esempio: $\Pi \equiv \{\{Filosofo(socrate)\}, \{Filosofo(platone)\}, \{Mortale(felix)\}\}$ Applicando la *circumscription* al predicato *Filosofo/*1 si ha il completamento: $\forall x ((x = socrate \lor x = platone) \leftrightarrow Filosofo(x))$ Da cui: $\Pi \vdash \neg Filosofo(felix)$ Tipicamente, si applica a predicati aggiuntivi, Abnormal/1 Esempio: $\Pi \equiv \{\{Umano(x), \forall Abnormal(x), \neg Filosofo(x)\}, \{Filosofo(socrate)\}, \{Filosofo(platone)\}, \}\}$ {Abnormal(felix)}, {Filosofo(felix)}} Da cui: $\Pi \vdash Umano(socrate)$ $\Pi \vdash Umano(platone)$ (In generale, la relazione tra circumscription $\operatorname{ma} \Pi \not\vdash Umano(felix)$ e NAF è molto più complessa)

Regole specifiche

■ *Default Logic* (Reiter, 1980)

Si usano regole specifiche dove le premesse (vere o solo plausibili) sono esplicitamente indicate

Dato Γ , se $\Gamma \models \alpha$ e $\Gamma \not\models \neg \beta_1$, $\Gamma \not\models \neg \beta_2$, ..., $\Gamma \not\models \neg \beta_n$ allora $\Gamma \not\models_D \gamma$ (si assume γ per *default*)

Vale a dire se α è vera (in Γ) e $\beta_1, \beta_2, \ldots, \beta_n$ sono *consistenti* (in Γ)

Esempi:

La *circumscription* di *Abnormall* si esprime come $true : \neg Abnormal(x)$ $\neg Abnormal(x)$

Dall'esempio precedente:

Filosofo(x): Umano(x) $\overline{Umano(x)}$ Umano(x)

da cui $\{Filosofo(felix)\}\ _D Umano(felix)$ Umano(x)

In alternativa: $Filosofo(x) \land \neg Gatto(x) : Umano(x)$

da cui {Filosofo(felix), Gatto(felix)} $\not\vdash_D Umano(felix)$ Umano(x)

Forme di inferenza (C. S. Peirce)

Schema di inferenza

- Inferenza deduttiva
 - a) i fagioli di questo sacco sono bianchi
 b) questi fagioli provengono da questo sacco
 - QUINDI
 - c) questi fagioli sono bianchi

modus $arphi o\psi$ ponens arphi

- Inferenza abduttiva
 - a) i fagioli di questo sacco sono bianchi
 - b) questi fagioli sono bianchi
 - c) questi fagioli provengono da questo sacco

$$\varphi \rightarrow \psi$$
 ψ
plausibile

- Inferenza induttiva
 - a) questi fagioli provengono da questo sacco
 - b) questi fagioli sono bianchi
 - c) i fagioli di questo sacco sono bianchi

$$\dfrac{arphi}{\dfrac{\psi}{arphi o\psi}}$$
 plausibile

Abduzioni come ipotesi esplicative

- La logica di base è la logica classica
 - E` invece diverso il tipo di ragionamento

e quindi il **tipo** di calcolo utilizzato

■ In generale, in un ragionamento abduttivo:

Un *modello* (o descrizione astratta)

rappresentato da una teoria K

Un insieme di osservazioni specifiche

rappresentate da un insieme di fbf Σ

In generale, $K \not\models \Sigma$

(dalla teoria generale K non conseguono le osservazioni plausibili)

Si cerca è un'ipotesi Δ tale per cui

$$K \cup \Delta \models \Sigma$$

intuitivamente, Δ descrive le *ipotesi* che **spiegano** Σ

Esempio

■ Modello (K)

 K_1 : batteriaScarica \rightarrow (¬funzionanoLuci \land ¬funzionaAutoradio \land ¬motorinoGira)

 K_2 : $motorinoGuasto \rightarrow \neg motorinoGira$

 K_3 : $\neg motorinoGira \rightarrow \neg macchinaParte$

 K_4 : $serbatoioVuoto \rightarrow (indicatoreAZero \land \neg macchinaParte)$

• Osservazioni (Σ)

 Σ_1 : ¬macchinaParte

■ Possibili ipotesi (∆)

 Δ_1 : batteriaScarica $(\{K_1, K_3\} \cup \{\Gamma_1\} \models \Sigma_1)$

 Δ_2 : *motorinoGuasto* $(\{K_2, K_3\} \cup \{\Gamma_2\} \models \Sigma_1)$

 Δ_3 : serbatoioVuoto $(\{K_4\} \cup \{\Gamma_3\} \models \Sigma_1)$

Ipotesi e vincoli

- Ipotesi plausibili
 - Le ipotesi Δ devono essere consistenti con la teoria e le osservazioni

 $K \cup \Delta \cup \Sigma$ deve essere soddisfacibile

Le ipotesi Δ devono spiegare tutte le osservazioni Σ

Alcune ipotesi, tuttavia, implicano anche altre osservazioni: $batteriaScarica \rightarrow (\neg funzionanoLuci \land \neg funzionaAutoradio \land \neg motorinoGira)$

Le ipotesi Δ devono essere *minimali*

Non deve esistere un $\Delta^* \subset \Delta$ tale per cui $K \cup \Delta^* \models \Sigma$

Le ipotesi devono limitarsi ai soli elementi indispensabili per spiegare Σ

Rilevanza

Notare che:

 $K \cup \{\neg macchinaParte\} \models \neg macchinaParte$

L'ipotesi è plausibile ma anche inutile: non ha valore esplicativo

Le ipotesi devono risalire ad elementi che abbiano un valore causale

La cui definizione spesso dipende dal tipo di ragionamento ...

Scelta tra ipotesi

Ipotesi multiple possono coesistere

Le due ipotesi {serbatoioVuoto} e {batteriaScarica} sono consistenti (possono coesistere) K \cup {serbatoioVuoto, batteriaScarica} $\models \neg macchinaParte$

Altre ipotesi possono essere alternative

Le due ipotesi {serbatoioVuoto, funzionaAutoradio} e {batteriaScarica} sono plausibili ma mutuamente esclusive

K ∪ {*serbatoioVuoto*, *funzionaAutoradio*, *batteriaScarica*} è inconsistente

Strategie di scelta

Spesso è utile ridurre il numero delle ipotesi (p.es. quando si cerca un rimedio)

Acquisizione di nuove osservazioni

Partendo dalle ipotesi {serbatoioVuoto}, {batteriaScarica} e {motorino Guasto} l'acquisizione dei valori di funzionaAutoradio, motorinoGira e indicatoreAZero permette di scegliere (purchè tali fatti siano osservabili)

Criteri particolari

Scelta basata sul costo delle osservazioni

Scelta basata sul rischio associato alle ipotesi

Abduzione e modelli

Il modello K rappresenta l'informazione che l'agente usa per spiegare le osservazioni

La scelta del tipo modello K è fondamentale per le applicazioni pratiche

Schema-based reasoning (SBR)

Il mondo è regolare: il comportamento atteso (p.es. dei sistemi) è descrivibile Le anomalie sono le differenze rispetto al comportamento atteso

Il modello contiene la descrizione del comportamento atteso Il processo di ragionamento consiste nella spiegazione delle anomalie

Case-based reasoning (CBR)

Il mondo è regolare: problemi simili hanno spiegazioni simili Problemi simili tendono a ripresentarsi nel tempo

Il modello contiene la descrizione di problemi e spiegazioni note Il processo di ragionamento consiste nell'adattamento per similitudine