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ABSTRACT

This chapter presents an overview of the major interpretations of prob-
ability followed by an outline of the objective Bayesian interpretation and
a discussion of the key challenges it faces.
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INTRODUCTION

The concept of probability motivates two key questions.

First, how is probability to be defined? Probability was axiomatised in the
first half of the 20th century;' this axiomatisation has by now become well
entrenched, and in fact the only leeway these days is with regard to the type
of domain on which probability functions are defined. Part I introduces three
types of domain: variables (§2), events (§3), and sentences (§4).

Second, how is probability to be applied? In order to know how probability
can be applied we need to know what probability means: how probabilities can
be measured and how probabilistic predictions say something about the world.
Part II discusses the predominant interpretations of probability: the frequency
(86), propensity (§7), chance (§§8, 10), and Bayesian interpretations (§9).

In Part III, we shall focus on one interpretation of probability, objective
Bayesianism, and look more closely at some of the challenges that this interpre-
tation faces.

PArT 1
FRAMEWORKS FOR PROBABILITY

62
VARIABLES

The most basic framework for probability involves defining a probability func-
tion relative to a finite set V of variables, each of which takes finitely many
possible values. I shall write v@QV to indicate that v is an assignment of values
to V.

A probability function on V is a function p that maps each assignment v@QV
to a non-negative real number and which satisfies additivity:

Z p(v) = 1.

v@QV

This restriction forces each probability p(v) to lie in the unit interval [0, 1].
The marginal probability function on U € V induced by probability function
p on V is a probability function ¢ on U which satisfies:

)= Y pv)

v@QV,v~u

for each u@QU, and where v ~ u means that v is consistent with u, i.e. v and
v assigns the same values to U n'V = U. The marginal probability function ¢
on U is uniquely determined by p. Marginal probability functions are usually
thought of as extensions of p and denoted by the same letter p. Thus p can
be construed as a function that maps each u@QU < V to a non-negative real
number. p can be further extended to assign numbers to conjunctions tu of
assignments where tQT € V,u@QU < V: if t ~ u then tu is an assignment to

I (Kolmogorov, 1933)



T u U and p(tu) is the marginal probability awarded to tu@(T v U); if £ # u
then p(tu) is taken to be 0.

A conditional probability function induced by p is a function r from pairs of
assignments of subsets of V' to non-negative real numbers which satisfies (for
each tQT € V,w@QU C V):

r(tlu)p(u) = p(tu),

Y r(tu) =1,

tQT
Note that r(t|u) is not uniquely determined by p when p(u) = 0. If p(u) # 0
and the first condition holds, then the second condition, »", o, 7(t|u) = 1, also
holds. Again, r is often thought of as an extension of p and is usually denoted
by the same letter p.

Consider an example. Take V' = {A, B} is a domain of variables, where A
signifies age of vehicle taking possible values less than 3 years, 3-10 years and
greater than 10 years, and B signifies breakdown in the last year taking possible
values yes and no. An assignment bQB is of the form B = yes or B = no. The
assignments a@A are most naturally written A < 3,3 < A <10 and A > 10.
According to the above definition a probability function p on V assigns a non-
negative real number to each assignment of the form ab where a@A and bQB,
and these numbers must sum to 1. For instance,

p(A < 3-B = yes)=0.05

p(A<3-B=mno)=0.1
p(3<A<K10- B = yes) = 0.2
p(3<A<10-B =no)=0.2
p(A>10- B = yes) = 0.35
p(A>10-B = no) =0.1.
This function p can be extended to assignments of subsets of V, yielding p(A >
10) = p(A > 10- B = yes) +p(A > 10- B = no) = 0.35+0.1 = 0.45 for example,
and to conjunctions of assignments in which case inconsistent assignments are
awarded probability 0, e.g. p(B = yes-B = no) = 0. The function p can then be
extended to yield conditional probabilities and in this example the probability

of a breakdown conditional on age greater than 10 years, p(B = yes|A > 10), is
p(A>10- B = yes)/p(A > 10) = 0.35/0.45 ~ 0.78.

63
EVENTS

While the definition of probability over assignments to variables is straightfor-
ward, simplicity is gained at the expense of generality. By moving from variables
to abstract events we can capture generality. The main definition proceeds as
follows.?

2?Billingsley (1979) provides a good introduction to the theory behind this approach.



Abstract events are construed as subsets of an outcome space €2, which rep-
resents the possible outcomes of an experiment or observation. For example, if
the age of a vehicle were observed, the outcome space might be Q = {0, 1,2, ...},
and {0,1,2} € Q represents the event that the vehicle’s age is less than three
years.

An event space F is a set of subsets of Q2. F is a field if it contains € and is
closed under the formation of complements and finite unions; it is a o-field if it
is also closed under the formation of countable unions.

A probability function is a function p from a field F to the non-negative real
numbers that satisfies countable additivity:

o if By, Es, ... € F partition Q (i.e. E;nE; = & fori # j and |J;—, E; = Q)
then Y~ p(E;) = 1.

In particular, p(2) = 1. The triple (2, F,p) is called a probability space.

The variable framework is captured by letting {2 contain all assignments to
V and taking F to be the set of all subsets of €2, which corresponds to the set
of disjunctions of assignments to V. Given variable A € V, the function that
maps v@QV to the value that v assigns to A is called a simple random variable
in the event framework.

84
SENTENCES

Logicians tend to define probability over logical languages.® The simplest such
framework is based around the propositional calculus, as follows.

A propositional variable is a variable which takes two possible values, true or
false. A set L of propositional variables is called a propositional language. The
sentences S, of L include the propositional variables, together with the negation
=0 of each sentence 6 € Sy, (which is true iff 6 is false) and each implication of
the form 8 — ¢ for 0,¢ € S, (which is true iff 6 is false or both 6 and ¢ are
true). The conjunction 6 A ¢ is defined to be —(f — —¢) and is true iff both
0 and ¢ are true; the disjunction 6 v ¢ is defined to be =6 — ¢ and is true
iff either 0 or ¢ are true. An assignment [ of values to L models sentence 6 ,
written | = 0, if 0 is true under [. A sentence 0 is a tautology, written = 6,
if it is true whatever the values of the propositional variables in 0, i.e. if each
assignment to L models 6.

A probability function is then a function p from a set Sy, of sentences to the
non-negative real numbers that satisfies additivity:

o if 64,...,0, € S, satisfy = —=(0; A 8;) for i # j and =601 v --- v 6, then
S p(0i) = 1.

If the language L is finite then the sentence framework can be mapped to the
variable framework. V = L is a finite set of variables each of which takes finitely
many values. A sentence 6 € Sy can be identified with the set of assignments v
of values to V' which model 8. p thus maps sets of assignments, and in particular
individual assignments, to real numbers. p is additive because of additivity on
sentences. Hence p induces a probability function over assignments to V.

3See Paris (1994).



The sentence framework can also be mapped to the event framework. Let €2
contain all assignments to L, and let F be the field of sets of the form {l : I |= 6}
for 0 € S;.* By defining p({l : | = 6}) = p(#) we get a probability function.’

PART 11
INTERPRETATIONS OF PROBABILITY

§5
INTERPRETATIONS AND DISTINCTIONS

The definitions of probability given in Part I are purely formal. In order to
apply the formal concept of probability we need to know how probability is to
be interpreted. The standard interpretations of probability will be presented in
the next few sections.® These interpretations can be categorised according to
the stances they take on three key distinctions:

SINGLE-CASE / REPEATABLE A variable is single-case (or token-level) if it can
only be assigned a value once. It is repeatable (or repeatably instantiatable
or type-level) if it can be assigned values more than once. For example,
variable A standing for age of car with registration AB01 CDE on January
1st 2005 is single-case because it can only ever take one value (assuming
the car in question exists). If however A stands for age of vehicles selected
at random in London in 2005 then A is repeatable: it gets reassigned a
value each time a new vehicle is selected.”

MENTAL / PHYSICAL Probabilities are mental (or epistemological® or personal-
ist) if they are interpreted as features of an agent’s mental state, otherwise
they are physical (or aleatory®).

SUBJECTIVE / OBJECTIVE Probabilities are subjective (or agent-relative) if two
agents with the same background knowledge can disagree as to a probabil-
ity value and yet neither of them be wrong. Otherwise they are objective.'?

There are four main interpretations of probability: the frequency theory
(86), the propensity theory (§7), chance (§8) and Bayesianism (§9).

4These sets are called cylinder sets when L is infinite—see Billingsley (1979, p. 27).

5This depends on the fact that every probability function on the field of cylinders which
is finitely additive (i.e. which satisfies ;- ; p(E;) = 1 for partition F1,..., Ey, of Q) is also
countably additive. See Billingsley (1979, Theorem 2.3).

6For a more detailed exposition of the interpretations see Gillies (2000).

7‘Single-case variable’ is clearly an oxymoron because the value of a single-case variable
does not vary. The value of a single-case variable may not be known, however, and one can
still think of the variable as taking a range of possible values.

8 (Gillies, 2000)

9(Hacking, 1975)

10Warning: some authors, such as Popper (1983, §3.3) and Gillies (2000, p. 20), use the term
‘objective’ for what I call ‘physical’. However their terminology has the awkward consequence
that the interpretation of probability commonly known as ‘objective Bayesianism’ (described
in Part IIT) does not get classed as ‘objective’.
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FREQUENCY

The frequency interpretation of probability was propounded by Venn!! and Re-
ichenbach'? and developed in detail by Richard von Mises.'® Von Mises’ theory
can be formulated in our framework as follows. Given a set V of repeatable vari-
ables one can repeatedly determine the values of the variables in V' and write
down the observations as assignments to V. For example, one could repeatedly
select cars and determine their age and whether they broke down in the last
year, writing down A < 3-B = no,A<3:-B = yes, A > 10- B = yes, and so
on. Under the assumption that this process of measurement can be repeated ad
infinitum, we generate an infinite sequence of assignments V = (v1,va,v3,...)
called a collective.

Let |v|}5 be the number of times assignment v occurs in the first n places of
V, and let freqy,(v) be the frequency of v in the first n places of V, i.e.

ol

fregy(v)

Von Mises noted two things. First, these frequencies tend to stabilise as the
number n of observations increases. Von Mises hypothesised that

Ax10M OF CONVERGENCE freqy;(v) tends to a fixed limit as n — oo, denoted
by fregy(v).

Second, gambling systems tend to be ineffective. A gambling system can be
thought of as function for selecting places in the sequence of observations on
which to bet, on the basis of past observations. Thus a place selection is a
function f(vi,...,vy) € 0,1, such that if f(v1,...,v,) = 0 then no bet is to be
placed on the n + 1-st observation and if f(vy,...,v,) = 1 then a bet is to be
placed on the n + 1-st observation. So betting according to a place selection
gives rise to a sub-collective V; of V consisting of the places of V on which bets
are placed. In practice we can only use a place selection function if it is simple
enough for us to compute its values: if we cannot decide whether f(vy,...,v,) is
0 or 1 then it is of no use as a gambling system. According to Church’s thesis a
function is computable if it belongs to the class of functions known as recursive
functions. Accordingly we define a gambling system to be a recursive place
selection. A gambling system is said to be effective if we are able to make money
in the long run when we place bets according to the gambling system. Assuming
that stakes are set according to frequencies of V), a gambling system f can only
be effective if the frequencies of Vy differ to those of V: if freqy, (v) > freqy (v)
then betting on v will be profitable in the long run; if freqy, (v) < freg,,(v) then
betting against v will be profitable. We can then explicate von Mises’ second
observation as follows:

AX10M OF RANDOMNESS Gambling systems are ineffective: if V; is determined
by a recursive place selection f, then for each v, freg,, f(v) = freqy(v).

11 (Venn, 1866)

12 (Reichenbach, 1935)

13 (von Mises, 1928, 1964)
14 (Church, 1936)



Given a collective ¥ we can then define—following von Mises—the probability
of v to be the frequency of v in V:

p(v) =ar freqy(v).

Clearly freqy(v) = 0. Moreover Y oy v}, = n so Y qy freqy(v) = 1 and,
taking limits, Y o freqy(v) = 1. Thus p is indeed a well-defined probability
function.

Suppose we have a statement involving probability function p on V. If we
also have a collective V on V then we can interpret the statement to be say-
ing something about the frequencies of V, and as being true or false according
to whether the corresponding statement about frequencies is true or false re-
spectively. This is the frequency interpretation of probability. The variables
in question are repeatable, not single-case, and the interpretation is physical,
relative to a collective of potential observations, not to the mental state of an
agent. The interpretation is objective, not subjective, in the sense that once the
collective is fixed then so too are the probabilities: if two agents disagree as to
what the probabilities are, then at most one of the agents is right.

87
PROPENSITY

Karl Popper initially adopted a version of von Mises’ frequency interpretation,'®

but later, with the ultimate goal of formulating an interpretation of probabil-
ity applicable to single-case variables, developed what is called the propensity
interpretation of probability.'® The propensity theory can be thought of as the
frequency theory together with the following law:'7

AxioM OF INDEPENDENCE If collectives V; and V5 on V' are generated by the
same repeatable experiment (or repeatable conditions) then for all assign-
ments v to V, freqy, (v) = fregqy, (v).

In other words frequency, and hence probability, attaches to repeatable exper-
iment rather than a collective, in the sense that frequencies do not vary with
collectives generated by the same repeatable experiment. The repeatable exper-
iment is said to have a propensity for generating the corresponding frequency
distribution.

In fact, despite Popper’s intentions, the propensity theory interprets proba-
bility defined over repeatable variables, not single-case variables. If for example
V' consists of repeatable variables A and B, where A stands for age of vehicles
selected at random in London in 2005 and B stands for breakdown in the last
year of vehicles selected at random in London in 2005, then V determines a
repeatable experiment, namely the selection of vehicles at random in London
in 2005, and thus there is a natural propensity interpretation. Suppose on the

15 (Popper, 1934, Chapter VIIT)

16 (Popper, 1959; Popper, 1983, Part II)

7Popper (1983, pp. 290 and 355). It is important to stress that the axioms of this section
and the last had a different status for Popper than they did for von Mises. Von Mises used
the frequency axioms as part of an operationalist definition of probability, but Popper was
not an operationalist. See Gillies (2000, Chapter 7) on this point. Gillies also argues in favour
of a propensity interpretation.



other hand that V contains single-case variables A and B, standing for age of
car with registration AB01 CDE on January 1st 2005 and breakdown in last year
of car with registration AB01 CDE on January 1st 2005. Then V defines an ex-
periment, namely the selection of car ABO1 CDE on January 1st 2005, but this
experiment is not repeatable and does not generate a collective—it is a single
case. The car in question might be selected by several different repeatable ex-
periments, but these repeatable experiments need not yield the same frequency
for an assignment v, and thus the probability of v is not determined by V. (This
is known as the reference class problem: we do not know from the specification
of the single case how to uniquely determine a repeatable experiment which will
fix probabilities.) In sum the propensity theory is, like the frequency theory, an
objective, physical interpretation of probability over repeatable variables.

§8
CHANCE

The question remains as to whether one can develop a viable objective interpre-
tation of probability over single-case variables—such a concept of probability is
often called chance.'® We saw that frequencies are defined relative to a collec-
tive and propensities are defined relative to a repeatable experiment; however
a single-case variable does not determine a unique collective or repeatable ex-
periment and so neither approach allows us to attach probabilities directly to
single-case variables. What then does fix the chances of a single-case variable?
The view finally adopted by Popper was that the ‘whole physical situation’ de-
termines probabilities.!? The physical situation might be thought of as ‘the
complete situation of the universe (or the light-cone) at the time’,?° the com-
plete history of the world up till the time in question,?! or ‘a complete set of
(nomically and/or causally) relevant conditions ... which happens to be instan-
tiated in that world at that time’.?> Thus the chance, on January 1st 2005, of
car with registration AB01 CDE breaking down in the subsequent year, is fixed
by the state of the universe at that date, or its entire history up till that date, or
all the relevant conditions instantiated at that date. However the chance-fixing
‘complete situation’ is delineated, these three approaches associate a unique
chance-fixer with a given single-case variable. (In contrast, the frequency /
propensity theories do not associate a unique collective / repeatable experiment
with a given single-case variable.) Hence we can interpret the probability of an
assignment to the single-case variable as the chance of the assignment holding,
as determined by its chance-fixer.

Further explanation is required as to how one can measure probabilities
under the chance interpretation. Popper’s line is this: if the chance-fixer is a set
of relevant conditions, and these conditions are repeatable then the conditions
determine a propensity and that can be used to measure the chance.?® Thus

18Note that some authors use ‘propensity’ to cover a physical chance interpretation as well
as the propensity interpretation discussed above.

19 (Popper, 1990, p. 17)

20(Miller, 1994, p. 186)

21Lewis (1980, p. 99). See §§10, 20.

22 (Fetzer, 1982, p. 195)

23(Popper, 1990, p. 17)



if the set of conditions relevant to car AB01 CDE breaking down that hold on
January 1st 2005 also hold for other cars at other times, then the chance of AB0O1
CDE breaking down in the next year can be equated with the frequency with
which cars satisfying the same set of conditions break down in the subsequent
year. The difficulty with this view is that it is hard to determine all the chance-
fixing relevant conditions, and there is no guarantee that enough individuals will
satisfy this set of conditions for the corresponding frequency to be estimable.

89
BAYESIANISM

The Bayesian interpretation of probability also deals with probability functions
defined over single-case variables. But in this case the interpretation is mental
rather than physical: probabilities are interpreted as an agent’s rational degrees
of belief.2* Thus for an agent, p(B = yes) = ¢ if and only if the agent believes
that B = yes to degree ¢ and this ascription of degree of belief is rational in
the sense outlined below. An agent’s degrees of belief are construed as a guide
to her actions: she believes B = yes to degree ¢ if and only if she is prepared
to place a bet of ¢S on B = yes, with return S if B = yes turns out to be
true. Here S is an unknown stake, which may be positive or negative, and ¢ is
called a betting quotient. An agent’s belief function is the function that maps
an assignment to the agent’s degree of belief in that assignment.

An agent’s betting quotients are called coherent if one cannot chose stakes
for her bets that force her to lose money whatever happens. (Such a set of stakes
is called a Dutch book.) Tt is not hard to see that a coherent belief function is
a probability function. First ¢ >0, for otherwise one can set S to be negative
and the agent will lose whatever happens: she will lose ¢S > 0 if the assignment
on which she is betting turns out to be false and will lose (¢ — 1)S > 0 if it
turns out to be true. Moreover Y o ¢» = 1, where g, is the betting quotient
on assignment v, for otherwise if 3" ¢, > 1 we can set each S, = S > 0 and the
agent will lose (3", ¢, —1)S > 0 (since exactly one of the v will turn out true),
and if )" ¢, < 1 we can set each S, = S < 0 to ensure positive loss.

Coherence is taken to be a necessary condition for rationality. For an agent’s
degrees of belief to be rational they must be coherent, and hence they must be
probabilities. Subjective Bayesianism is the view that coherence is also suffi-
cient for rationality, so that an agent’s belief function is rational if and only
if it is a probability function. This interpretation of probability is subjective
because it depends on the agent as to whether p(v) = ¢. Different agents can
choose different probabilities for v and their belief functions will be equally ra-
tional. Objective Bayesianism, discussed in detail in Part III, imposes further
rationality constraints on degrees of belief—mnot just coherence. The aim of ob-
jective Bayesianism is to constrain degree of belief in such a way that only one
value for p(v) will be deemed rational on the basis of an agent’s background
knowledge. Thus objective Bayesian probability varies as background knowl-
edge varies but two agents with the same background knowledge must adopt
the same probabilities as their rational degrees of belief.

24This interpretation was developed in Ramsey (1926) and de Finetti (1937). See Howson
and Urbach (1989) and Earman (1992) for recent expositions.

10



Note that many Bayesians claim that an agent should update her degrees of
belief by Bayesian conditionalisation: her new degrees of belief should be her old
degrees of belief conditional on new knowledge, p:11(v) = p:(v|u) where u repre-
sents the knowledge that the agent has learned between time ¢ and time t+1. In
cases where p;(v|u) is harder to quantify than p;(u|v) and p;(v) this conditional
probability may be calculated using Bayes’ theorem: p(v|u) = p(u|v)p(v)/p(u),
which holds for any probability function p. ‘Bayesianism’ is variously used to
refer to the Bayesian interpretation of probability, the endorsement of Bayesian
conditionalisation or the use of Bayes’ theorem.

§10
CHANCE AS ULTIMATE BELIEF

The question still remains as to whether one can develop a viable notion of
chance, i.e. an objective single-case interpretation of probability. While the
Bayesian interpretations are single-case, they either define probability relative
to the whimsy of an agent (subjective Bayesianism) or relative to an agent’s
background knowledge (objective Bayesianism). Is there a probability of my
car breaking down in the next year, where this probability does not depend on
me or my knowledge?

Bayesians typically have two ways of tackling this question.

Subjective Bayesians tend to argue that although degrees of belief may ini-
tially vary widely from agent to agent, if agents update their degrees of belief by
Bayesian conditionalisation then their degrees of belief will converge in the long
run: chances are these long run degrees of belief. Bruno de Finetti developed
such an argument to explain the apparent existence of physical probabilities.??
He showed that prior degrees of beliefs converge to frequencies under the as-
sumption of exchangeability: given an infinite sequence of single-case variables
Ajq, As, ... which take the same possible values, an agent’s degrees of belief are
exchangeable if the degree of belief p(v) she gives to assignment v to a finite
subset of variables depends only on the values in v and not the variables in

v—for example p(aladal) = p(adalal) since both assignments assign two 1s
and one 0. Suppose the actual observed assignments are a1, as, ... and let V be

the collective of such values (which can be thought of as arising from a single
repeatable variable A). De Finetti showed that p(an|ai - an—1) — fregy(a)
as n —> o0, where a is the assignment to A of the value that occurs in a,. The
chance of a,, is then identified with freqy,(a). The trouble with de Finetti’s ac-
count is that since degrees of belief are subjective there is no reason to suppose
exchangeability holds. Moreover, a single-case variable A,, can occur in several
sequences of variables, each with a different frequency distribution (the reference
class problem again), in which case the chance distribution of A,, is ill-defined.
Haim Gaifman and Marc Snir took a slightly different approach, showing that
as long as agents give probability 0 to the same assignments and the evidence
that they observe is unrestricted, then their degrees of belief must converge.?S
Again, the problem here is that there is no reason to suppose that agents will
give probability 0 to the same assignments. One might try to provide such

25(de Finetti, 1937; Gillies, 2000, pp. 69-83)
26(Gaifman and Snir, 1982, §2)

11



a guarantee by bolstering subjective Bayesianism with a rationality constraint
that says that agents must be undogmatic, i.e. they must only give probabil-
ity 0 to logically impossible assignments. But this is not a feasible strategy in
general, since this constraint is inconsistent with the constraint that degrees of
belief be probabilities: in the more general event or sentence frameworks the
laws of probability force some logical possibilities to be given probability 0.27
Objective Bayesians have another recourse open to them: objective Bayesian
probability is fixed by an agent’s background knowledge, and one can argue
that chances are those degrees of belief fixed by some suitable all-encompassing
background knowledge. Thus the problem of producing a well-defined notion of
chance is reducible to that of developing an objective Bayesian interpretation of
probability. I shall call this the ultimate belief notion of chance to distinguish it
from physical notions such as Popper’s (§8), and discuss this approach in §20.

§11
APPLYING PROBABILITY

In sum, there are four key interpretations of probability: frequency and propen-
sity interpret probability over repeatable variables while chance and Bayesianism
deal with single-case variables; frequency and propensity are physical interpre-
tations while Bayesianism is mental and chance can be either mental or physical;
all the interpretations are objective apart from Bayesianism which can be sub-
jective or objective.

Having chosen an interpretation of probability, one can use the probability
calculus to draw conclusions about the world. Typically, having made an ob-
servation u@QU < V, one determines the conditional probability p(t|u) to tell us
something about QT < (V\U): a frequency, propensity, chance or degree of
belief.

PArT 111
OBJECTIVE BAYESIANISM

§12
SUBJECTIVE AND OBJECTIVE BAYESIANISM

In Part Il we saw that probabilities can either be interpreted physically—as
frequencies, propensities or physical chances—or they can be interpreted men-
tally, with Bayesians arguing that an agent’s degrees of belief ought to satisfy
the axioms of probability. Many Bayesians are strict subjectivists, holding that
there are no rational constraints on degrees of belief other than the requirement
that they be probabilities.?® Thus subjective Bayesians maintain that one may
give probability O—or indeed any value between 0 and 1—to a coin toss yielding
heads, even if one knows that the coin is symmetrical and has yielded heads in
roughly half of all its previous tosses. The chief criticism of strict subjectivism is
that practical applications of probability tend to demand objectivity; in science

27See Gaifman and Snir (1982, Theorem 3.7), for example.
28(de Finetti, 1937)

12



some beliefs are considered more rational than others on the basis of available
evidence. This motivates an alternative position, objective Bayesianism, which
posits further constraints on degrees of belief, and which would only deem the
agent to be rational in this case if she gave a probability of a half to the toss
yielding heads.??

Objective Bayesianism holds that the probability of u is the degree to which
an agent ought to believe u and that this degree is objectively determined by
the agent’s background knowledge. Versions of this view were put forward by
Jakob Bernoulli,? Laplace3! and Keynes.?? More recently Jaynes claimed that
an agent’s probabilities ought to satisfy constraints imposed by background
knowledge but otherwise ought to be as non-committal as possible. Moreover,
Jaynes argued, this principle could be explicated using Shannon’s information
theory:33 the agent’s probability function should be that probability function,
from all those that satisfy constraints imposed by background knowledge, that
maximises entropy.?* This has become known as the mazimum entropy principle
and has been taken to be the foundation of the objective Bayesian interpretation
of probability by its proponents.3®

In the next section, I shall sketch my own version of objective Bayesianism.
This version is discussed in detail in chapter 4 of Williamson (2005a). In sub-
sequent sections we shall examine a range of important challenges that face the
objective Bayesian interpretation of probability.

§13
OBJECTIVE BAYESIANISM OUTLINED

While Bayesianism requires that degrees of belief respect the axioms of proba-
bility, objective Bayesianism imposes two further norms:

EMPIRICAL An agent’s knowledge of the world should constrain her degrees of
belief. Thus if one knows that a coin is symmetrical and has yielded heads
roughly half the time, then one’s degree of belief that it will yield heads
on the next throw should be roughly 1.

LoGICAL An agent’s degrees of belief should also be fixed by her lack of knowl-
edge of the world. If the agent knows nothing about an experiment except
that it has two possible outcomes, then she should award degree of belief
% to each outcome.

Jakob Bernoulli pointed out that where they conflict, the empirical norm should
override the logical norm:

three ships set sail from port; after some time it is announced that
one of them suffered shipwreck; which one is guessed to be the one
that was destroyed? If I considered merely the number of ships, I

29(Jaynes, 1988)

30 (Bernoulli, 1713)

31 (Laplace, 1814)

32 (Keynes, 1921)

33(Shannon, 1948)

34(Jaynes, 1957)

35(Rosenkrantz, 1977; Jaynes, 2003)
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would conclude that the misfortune could have happened to each of
them with equal chance; but because I remember that one of them
had been eaten away by rot and old age more than the others, had
been badly equipped with masts and sails, and had been commanded
by a new and inexperienced captain, I consider that this ship, more
probably than the others, was the one to perish.3¢

One can prioritise the empirical norm over the logical norm by insisting that:

EMPIRICAL An agent’s degrees of belief, represented by probability function pg,
should satisfy any constraints imposed by her background knowledge (.

LogGicAL The agent’s belief function pg should otherwise be as non-committal
as possible.

The empirical norm can be explicated as follows. Background knowledge
[ might contain a number of considerations that bear on a degree of belief:
the symmetry of a penny might incline one to degree of belief % in heads, past
performance (say 47 heads in a hundred past tosses) may incline one to degree
of belief 0.47, the mint may report an estimate of the frequency of heads on
its pennies to be 0.45, and so on. These considerations may be thought of as
conflicting reports as to the probability of heads. Intuitively, any individual re-
port, say 0.47, is compatible with the evidence, and indeed intermediary degrees
of belief such as 0.48 seem reasonable. On the other hand, a degree of belief
that falls outside the range of reports, say 0.9, does not seem warranted by the
evidence. Thus background knowledge constrains degree of belief to lie in the
smallest closed interval that contains all the reports.

As mentioned in §12; the logical norm is explicated using the maximum en-
tropy principle: entropy is a measure of the lack of commitment of a probability
function, so p, should be the probability function, out of all those that satisfy
constraints imposed by (3, that has maximum entropy. Justifications of the
maximum entropy principle are well known—see Jaynes (2003), Paris (1994) or
Paris and Vencovskd (2001) for example.

We can thus put the two norms on a more formal footing. Given a domain
V' of finitely many variables, each of which takes finitely many values, an agent
with background knowledge 3 should adopt as her belief function the probability
function pg on V' determined as follows:

EMPIRICAL pg should satisfy any constraints imposed by her background knowl-
edge 3: pg should lie in the smallest closed convex set Pg of probability
functions containing those probability functions that are compatible with
the reports in 3.57

LocicAL pg should otherwise be as non-committal as possible: it should be a
member of Pg that maximises entropy H(p) = — Y qy p(v) logp(v).

It turns out that there is a unique entropy maximiser on a closed convex set of
probability functions: the degrees of belief pg that an agent should adopt are
uniquely determined by her background knowledge (3. Thus there is no room
for subjective choice of degrees of belief.

36 (Bernoulli, 1713, §IV.II)
37See Williamson (2005a, §5.3) for more detailed discussion of this norm.
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§14
CHALLENGES

Objective Bayesianism has not been widely accepted, however, largely because
there are a number of perceived problems with the interpretation. Several of
these problems have in fact already been resolved, but other challenges remain.
In the remainder of the chapter we shall explore the key challenges and assess
the prospects of objective Bayesianism.

In §15 we shall see that one challenge is to motivate the adoption of a log-
ical norm. Objective Bayesianism has also been criticised for being language
dependent (§16) and for being impractical from a computational point of view
(§17). Handling qualitative background knowledge poses a significant challenge
(§18), as does extending objective Bayesianism to infinite event or sentence
frameworks (§19). The question of whether objective Bayesianism can be used
to provide an interpretation of objective chance is explored in §20, while §21
considers the application of objective Bayesianism to providing semantics for
probability logic.

Jaynes points out that the maximum entropy principle is a powerful tool but
warns:

Of course, it is as true in probability theory as in carpentry that
introduction of more powerful tools brings with it the obligation
to exercise a higher level of understanding and judgement in using
them. If you give a carpenter a fancy new power tool, he may use
it to turn out more precise work in greater quantity; or he may just
cut off his thumb with it. It depends on the carpenter.3®

§15
MOTIVATION

The first key question concerns the motivation behind objective Bayesianism.
Recall that in §12 objective Bayesianism was motivated by the need for ob-
jective probabilities in science. Many Bayesians accept this desideratum and
indeed accept the empirical norm (so that degrees of belief are constrained by
knowledge of frequencies, symmetries etc.) but do not go as far as admitting a
logical norm. The ensuing position, according to which degrees of belief reflect
background knowledge but need not be maximally non-committal, is sometimes
called empirically-based subjective probability. It yields degrees of belief that are
more objective (i.e. more highly constrained) than those of strictly subjective
Bayesianism, yet not as objective as those of objective Bayesianism—there is
generally still some room for subjective choice of degrees of belief. The key
question is thus: what grounds are there for going beyond empirically-based
subjective probability and adopting objective Bayesianism?

Current justifications of the logical norm fail to address this question. Jaynes’
original justification of the maximum entropy principle ran like this: given that
degrees of belief ought to be maximally non-committal, Shannon’s information
theory shows us that they are entropy-maximising probabilities.?® This type of

38(Jaynes, 1979, pp. 40-41 of the original 1978 lecture)
39(Jaynes, 1957)
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justification assumes from the outset that some kind of logical norm is desired.
On the other hand, axiomatic derivations of the maximum entropy principle
take the following form: given that we need a procedure for determining de-
grees of belief from background knowledge, and given various desiderata that
such a procedure should satisfy, that procedure must be entropy maximisa-
tion.*® This type of justification takes objectivity of rational degrees of belief
for granted. Thus the challenge is to augment current justifications, perhaps by
motivating non-committal degrees of belief or by motivating the strong objec-
tivity of objective Bayesianism as opposed to the partial objectivity yielded by
empirically-based subjective probability.

One possible approach is to argue that empirically-based subjective proba-
bility is mot objective enough for many applications of probability. Many ap-
plications of probability follow a Bayesian statistical methodology: produce a
prior probability function p;, collect some evidence u, and draw predictions us-
ing the posterior probability function p;41(v) = pt(v|u). Now the prior function
is determined before empirical evidence is available; this is matter of subjective
choice for empirically-based subjectivists. However, the ensuing conclusions and
predictions may be sensitive to this initial choice, rendering them subjective too.
Yet such relativism is anathema in science: a disagreement between agents about
a hypothesis should be arbitrated by evidence; it should be a fact of the matter,
not mere whim, as to whether the evidence confirms the hypothesis.

That argument is rather inconclusive however. The proponent of empirically-
based subjective probability can counter that scientists have simply over-estimat-
ed the extent of objectivity in science, and that subjectivity needs to be made
explicit. Even if one grants a need for objectivity, one could argue that it is
a pragmatic need: it just makes science simpler. The objective Bayesian must
accept that it can not be empirical warrant that motivates the selection of a
particular belief function from all those compatible with background knowledge,
since all such belief functions are equally warranted by available empirical evi-
dence. In the absence of any non-empirical justification for choosing a particular
belief function, such a function can only be considered objective in a conven-
tional sense. One can drive on the right or the left side of the road; but we must
all do the same thing; by convention we choose the left. That does not mean
that the left is objectively correct or most warranted—either side will do.

A second line of argument offers explicitly pragmatic reasons for selecting a
particular belief function. If probabilities are subjective then measuring proba-
bilities must involve elicitation of degrees of belief from agents. As developers
of expert systems in Al have found, elicitation and the associated consistency-
checking are prohibitively time-consuming tasks (the inability of elicitation to
keep pace with the demand for expert systems is known as Feigenbaum’s bottle-
neck). If a subjective approach is to be routinely applied throughout science it
is clear that a similar bottleneck will be reached. On the other hand, if degrees
of belief are objectively determined by background knowledge then elicitation is
not required—degrees of belief are calculated by maximising entropy. Objective
Bayesianism is thus to be preferred for reasons of efficiency.

Indeed many Bayesian statisticians now (often tacitly) appeal to non-comm-
ittal objective priors rather than embark on a laborious process of introspection,
elicitation or analysis of sensitivity of posterior to choice of prior.

40(Paris and Vencovska, 1990; Paris, 1994; Paris and Vencovska, 2001)
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A third motivating argument appeals to caution. In many applications of
probability the risks attached to bold predictions that turn out wrong are high.
For instance, a patient’s symptoms may narrow her condition down to meningi-
tis or ’flu, but there may be no empirical evidence—such as information about
relative prevalence—to decide between the two. In this case, the risks associ-
ated with meningitis are so much higher than those associated with 'flu, that
a non-committal belief function seems more appropriate as a basis for action
than a belief function that gives the probability of meningitis to be zero, even
though both are compatible with available information. (With a non-committal
belief function one will not dismiss the possibility of meningitis, but if one gives
meningitis probability zero one will disregard it.) High-risk applications thus
favour cautious conclusions, non-committal degrees of belief and an objective
Bayesian approach.

T argue in Williamson (2005b) that the appeal to caution is the most decisive
motivation for objective Bayesianism, although pragmatic considerations play a
role too.

§16
LANGUAGE DEPENDENCE

The maximum entropy principle has been criticised for being language or rep-
resentation dependent: it has been argued that the principle awards the same
event different probabilities depending on the way in which the problem domain
is formulated.

John Maynard Keynes surveyed several purported examples of language de-
pendence in his discussion of Laplace’s Principle of Indifference.*’ This latter
principle advocates assigning the same probability to each of a number of pos-
sible outcomes in the absence of any knowledge which favours one outcome
over the others. (Keynes added the condition that the possible outcomes must
be indivisible.4?) The maximum entropy principle makes the same recommen-
dation in the absence of background knowledge and so inherits any language
dependence of the Principle of Indifference.

A typical example of language dependence proceeds as follows.*3 Suppose an
agent’s language can be represented by the propositional language L = {c} with
just one propositional variable ¢ which asserts that a particular book is colourful.
The agent has no background knowledge and so by the Principle of Indifference
(or equally by the maximum entropy principle) assigns p(c) = p(—c) = 1/2. But
now consider a second language L’ = {r, b, g} where r signifies that the book is
red, b that it is blue and g that it is green. An agent with no knowledge will give
p(+r A +b A +g) = 1/8. Now —c is equivalent to =1 A =b A =g, yet the former is
given probability % while the latter is given probability é. Thus the probability
assignments of the Principle of Indifference and the maximum entropy principle
depend on choice of language.

Paris and Vencovska (1997) offer the following resolution. They argue that
the maximum entropy principle has been misapplied in this type of example: if

41 (Keynes, 1921)
42(Keynes, 1921, §4.21)
43(Halpern and Koller, 1995, §1)
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an agent refines the propositional variable ¢ into r v b v g one should consider not
L' but L” = {¢,7,b, g} and make the agent’s knowledge, namely ¢ <> r v b v g,
explicit. If we do that then the probability function on L” with maximum
entropy, out of all those that satisfy the background knowledge (i.e. which assign
plc & rvbvyg) =1), will yield a value p(—c) = 1/2. This is just the same
value as that given by the maximum entropy principle on L with no background
knowledge. Thus there is no inconsistency.

This resolution is all well and good if we are concerned with a single agent
who refines her language. But the original problem may be construed rather
differently. If two agents have languages L and L’ respectively, and no back-
ground knowledge, then they assign two different probabilities to what we know
(but they don’t know) is the same proposition. There is no getting round it:
probabilities generated by the maximum entropy principle depend on language
as well as background knowledge.

Interestingly, language dependence in this latter multilateral sense is not
confined to the maximum entropy principle. As Halpern and Koller (1995)
and Paris and Vencovska (1997) point out, there is no non-trivial principle for
selecting rational degrees of belief which is language-independent in the multi-
lateral sense. More precisely, suppose we want a principle that selects a set Og
of probability functions that are optimally rational on the basis of an agent’s
background knowledge . If Og € Pg, i.e. if every optimally rational probability
function must satisfy constraints imposed by 3, and if Qg ignores irrelevant in-
formation inasmuch as Qg (0) = Og(f) whenever ’ involves no propositional
variables in sentence 6, then the only candidate for Qg that is multilaterally lan-
guage independent is Og = P3.** Only empirically-based subjective probability
is multilaterally language independent.

So much the better for empirically-based subjective probability and so much
the worse for objective Bayesianism, one might think. But such an inference
is too quick. It takes the desirability of multilateral language independence
for granted. I argue in Williamson (2005a, Chapter 12) that an agent’s choice
of language embodies knowledge about the world:*> knowledge about natural
kinds, knowledge about which variables are relevant to which, and perhaps even
knowledge about which partitions are amenable to the Principle of Indifference.
For example, having dozens of words for snow in one’s language says something
about the environment in which one lives. Granted that language itself is a kind
of background knowledge, and granted that an agent’s degrees of belief should
depend on her background knowledge, language independence becomes a rather
dubious desideratum.

Note that while Howson (2001, p. 139) criticises the Principle of Indiffer-
ence on account of its language dependence, the example he cites can be used
to support the case against language independence as a desideratum. Howson
considers two first-order languages with equality: L1 has just a unary predicate
() while Lo has unary @ together with two constants a and b. The explicit
background knowledge (3 is just ‘there are exactly 2 individuals’, while sentence
0 is ‘something has the property QQ’. L; has three models of 3, which contain
0, 1 and 2 instances of @ respectively, so p(d) = 2/3. In Ly individuals can be

44(Halpern and Koller, 1995, Theorem 3.10)

45Halpern and Koller (1995, §4) also suggest this tack, although they do not give their
reasons. Interestingly, though, they do show in §5 that relaxing the notion of language inde-
pendence leads naturally to an entropy-based approach.
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distinguished by constants and thus there are eight models of 5 (if constants
can name the same individual), six of which satisfy 6 so p(f) = 3/4 # 2/3.
While this is a good example of language dependence, the question remains
whether language dependence is a problem here. As Howson himself hints, Ly
might be an appropriate language for talking about bosons, which are indis-
tinguishable, while Ly is more suited to talk about classical particles, which
are distinguishable and thus able to be named by constants. Hence choice of
language Lo over L, indicates distinguishability, while conversely choice of Ly
over Lo indicates indistinguishability. In this example, then, choice of language
betokens implicit background knowledge. Of course all but the the most ar-
dent subjectivists agree that an agent’s degrees of belief ought to be influenced
by her background knowledge. Therefore language independence becomes an
inappropriate desideratum.

In sum, while the Principle of Indifference and the maximum entropy princi-
ple have both been dismissed on the grounds of language dependence, it seems
clear that some dependence on language is to be expected if degrees of belief are
to adequately reflect implicit as well as explicit background knowledge. So much
the better for objective Bayesianism, and so much the worse for empirically-
based subjective probability which is language-invariant.

§17
COMPUTATION

There are important concerns regarding the application of objective Bayes-
ianism. One would like to apply objective Bayesianism in artificial intelligence:
when designing an artificial agent it would be very useful to have normative
rules which prescribe how the agent’s beliefs should change as it gathers infor-
mation about its domain. However, there has seemed little prospect of fulfilling
this hope, for the following reason. Maximising entropy involves finding the
parameters p(v) that maximise the entropy expression, but the number of such
parameters is exponential in the number of variables in the domain, thus the
size of the entropy maximisation problem quickly gets out of hand as the size
of the domain increases. Indeed Pearl (1988, p. 468) has influentially criticised
maximum entropy methods on account of their computational difficulties.

The computational problem poses a serious challenge for objective Bayesian-
ism. However, recent techniques for more efficient entropy maximisation have
largely addressed this issue. While no technique offers efficient entropy maximi-
sation in all circumstances (entropy maximisation is an NP-complete problem),
techniques exist that offer efficiency in a wide range of natural circumstances.
I shall sketch my own approach here—this is developed in detail in Williamson
(2005a, §§5.5-5.7).46

Given a domain V' of variables and some background knowledge (3 involv-
ing V' which consists of a set of constraints on the agent’s belief function p,
one wants to find the probability function p, out of all those that satisfy the
constraints in (3, that maximises entropy. This can be achieved via the fol-
lowing procedure. First form an undirected graph on vertices V by linking

46Maximum entropy methods have recently been applied to natural language processing,
and other techniques for entropy maximisation have been tailored to that context—see Della
Pietra et al. (1997) for example.
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Figure 1: Example constraint graph.

O D

Figure 2: Example directed constraint graph.

pairs of variables that occur in the same constraint with an edge. For exam-
ple, if V. = {A;, A, A3, Ay, A5} and (B contains a constraint involving A; and
As (e.g. p(az]a;) = 0.9), a constraint involving As, A3 and A4, a constraint
involving A3 and As and a constraint involving just A4, then the corresponding
undirected constraint graph appears in Fig. 1. The undirected constraint graph
has the following crucial property: if a set Z of variables separates X € V from
Y € V in the graph then the maximum entropy function p will render X and
Y probabilistically independent conditional on Z.

Next transform the undirected constraint graph into a directed constraint
graph, Fig. 2 in the case of our example.*” The independence property ensures
that the directed constraint graph can be used as a graph in a Bayesian net
representation of the maximum entropy function p. A Bayesian net offers the
opportunity of a more efficient representation of a probability function p: in
order to determine p, one only needs to determine the parameters p(a;|par;),
i.e. the probability distribution of each variable conditional on its parents, rather
than the parameters p(v), i.e. the joint probability distribution over all the
variables. Depending on the structure of the directed graph, there may be far
fewer parameters in the Bayesian net representation. In the case of our example,
if we suppose that each variable has two possible values then the Bayesian net
representation requires 11 parameters rather than the 32 parameters p(v) for
each assignment v of values to V. For problems involving more variables the
potential savings are very significant.

Roughly speaking, efficiency savings are greatest when each variable has few
parents in the directed constraint graph, and this occurs when each constraint in
[ involves relatively few variables. Note that when dealing with large domains it
tends to be the case that while one might make a large number of observations,
each observation involves relatively few variables. For example, one might use
hospital data as empirical observations pertaining to a large number of health-
related variables, each department of the hospital contributing some statistics;
while there might be a large number of such statistics, each statistic is likely to
involve relatively few variables, namely those variables that are relevant to the
department in question; such observations would yield a sparse constraint graph

47The algorithm for this transformation is given in Williamson (2005a, §5.7).
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and an efficient Bayesian net representation. Hence this method for reducing the
complexity of entropy maximisation offers efficiency savings that are achievable
in a wide range of natural situations.

§18
QUALITATIVE KNOWLEDGE

The maximum entropy principle has been criticised for yielding the wrong re-
sults when the agent’s background knowledge contains qualitative causal infor-
mation.*® Daniel Hunter gives the following example:

The puzzle is this: Suppose that you are told that three individu-
als, Albert, Bill and Clyde, have been invited to a party. You know
nothing about the propensity of any of these individuals to go to the
party nor about any possible correlations among their actions. Using
the obvious abbreviations, consider the eight-point space consisting
of the events ABC, ABC, ABC, etc. (conjunction of events is in-
dicated by concatenation). With no constraints whatsoever on this
space, MAXENT yields equal probabilities for the elements of this
space. Thus Prob(A) = Prob(B) = 0.5 and Prob(AB) = 0.25, s0 A
and B are independent. It is reasonable that A and B turn out to be
independent, since there is no information that would cause one to
revise one’s probability for A upon learning what B does. However,
suppose that the following information is presented: Clyde will call
the host before the party to find out whether Al or Bill or both have
accepted the invitation, and his decision to go to the party will be
based on what he learns. Al and Bill, however, will have no informa-
tion about whether or not Clyde will go to the party. Suppose, fur-
ther, that we are told the probability that Clyde will go conditional
on each combination of Al and Bill’s going or not going. For the
sake of specificity, suppose that these conditional probabilities are . . .
[P(C|AB) = 0.1, P(C|AB) = 0.5, P(C|AB) = 0.5, P(C|AB) = 0.8].
When MAXENT is given these constraints ... A and B are no longer

independent! But this seems wrong: the information about Clyde
should not make A’s and B’s actions dependent.*’

But this counter-intuitive conclusion is attributable to a misapplication of
the maximum entropy principle. The conditional probabilities are allowed to
constrain the entropy maximisation process but the knowledge that Al's and
Bill’s decisions are causes of Clyde’s decision is simply ignored. This failure
to consider the qualitative causal background knowledge leads to the counter-
intuitive conclusion.

Keynes himself had stressed the importance of taking qualitative knowledge
into account and the difficulties that ensue if qualitative information is ignored:

Bernoulli’s second axiom, that in reckoning a probability we must
take everything into account, is easily forgotten in these cases of

48 (Pearl, 1988, p. 468; Hunter, 1989)
49(Hunter, 1989, p. 91)
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statistical probabilities. The statistical result is so attractive in its
definiteness that it leads us to forget the more vague though more
important considerations which may be, in a given particular case,
within our knowledge.*°

Indeed, in the party example, the temptation is to consider only the definite
probabilities and to ignore the important causal knowledge.

The party example and Keynes’ advice highlight an important challenge
for objective Bayesianism. In order that objective Bayesianism can be ap-
plied, all knowledge—qualitative as well as quantitative—must be taken into
account. However, objective Bayesianism as outlined in §13 depends on back-
ground knowledge taking quantitative form: background knowledge must be
explicated as a set of quantitative constraints on degrees of belief in order to
narrow down a set of probability functions that satisfy those constraints. Thus
the general challenge for objective Bayesianism is to show how qualitative knowl-
edge can be converted into precise quantitative constraints on degrees of belief.

To some extent this challenge has already been met. In the case where
qualitative knowledge takes the form of causal constraints, as in Hunter’s party
example above, I advocate a solution which exploits the following asymmetry of
causality. Learning of a common cause of two events may warrant a change in
the degrees of belief awarded to them: one may reason that if one event occurs,
then this may well be because the common cause has occurred, in which case
the other event is more likely—the two events become more dependent than
previously thought. On the other hand, learning of a common effect would not
warrant a change in degrees of belief: while the occurrence of one event may
make the common effect more likely, this has no bearing on the other cause. This
asymmetry motivates what I call the Causal Irrelevance Principle: if the agent’s
language contains a variable A that is known not to be a cause of any of the other
variables, then her degrees of belief concerning these other variables should be
the same as the degrees of belief she should adopt were she not to have A in her
language (as long as any quantitative knowledge involving A is compatible with
those degrees of belief). The Causal Irrelevance Principle allows one to transfer
qualitative causal knowledge into quantitative constraints on degrees of belief—
if domain V' = U u {A} then we have constraints of the form p‘L/U =pY, ie. the
agent’s belief function defined on V', when restricted to U, should be the same
as the belief function defined just on U. By applying the Causal Irrelevance
Principle, qualitative causal knowledge as well as quantitative information can
be used to constrain the entropy maximisation process. It is not hard to see that
use of the principle avoids counter-intuitive conclusions like those in Hunter’s
example: knowledge that Clyde’s decision is a common effect of Al’s and Bill’s
decision ensures that Al's and Bill’s actions are probabilistically independent,
as seems intuitively plausible. See Williamson (2005a, §5.8) for a more detailed
analysis of this proposal.

Thus the challenge of handling qualitative knowledge has been met in the
case of causal knowledge. Moreover, by treating logical influence analogously
to causal influence one can handle qualitative logical knowledge using the same
strategy (Williamson, 2005a, Chapter 11). But the challenge has not yet been
met in other cases of qualitative knowledge. In particular, I claimed in §16 that
choice of language implies knowledge about the domain. Clearly work remains

50(Keynes, 1921, p. 322)
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to be done to render such knowledge explicit and quantitative, so that it can
play a role in the entropy maximisation process.

There is another scenario in which the challenge has not yet been fully met.
Some critics of the maximum entropy principle argue that objective Bayesianism
renders learning from experience impossible, as follows. The maximum entropy
principle will, in the absence of background knowledge linking them, render out-
comes probabilistically independent. Thus observing outcomes will not change
degrees of belief in unobserved outcomes if there is no background knowledge
linking them: observing a million black ravens will not shift the probability of
the next raven being black from % (which is the most non-committal value given
only that there are two outcomes, black or not black). So, the argument con-
cludes, there is no learning from experience. The problem with this argument is
that we do have background knowledge that connects the outcomes—the qual-
itative knowledge that the outcomes all concern ravens—but this knowledge is
mistakenly being ignored in the application of the maximum entropy principle.
Qualitative knowledge should be taken into account so that learning from expe-
rience becomes possible—but how? Carnap (1952, 1971) addressed the problem,
as have Paris and Vencovska (2003) more recently; however this line of work
deals with rather simple frameworks (restricting attention to monadic predi-
cates, for example) and even within the context of such frameworks it is clear
that much remains to be done.

§19
INFINITE DOMAINS

The maximum entropy principle is most naturally defined on a finite domain—
for example, a space of finitely many variables each of which takes finitely many
values, as in §2. The question thus arises as to whether one can extend the ap-
plicability of objective Bayesianism to infinite domains. In the variable frame-
work, one might be interested in domains with infinitely many variables, or
domains of variables with an infinite range. Alternatively, one might want to
apply objective Bayesianism to full generality of the mathematical framework
of §3, or to infinite logical languages (§4). This challenge has been confronted,
but at the expense of objectivity, as we shall now see.

There are two lines of work here, one of which proceeds as follows. Paris
and Vencovskd (2003) treat problems involving countable logical languages as
limiting cases of finite problems. Consider a countably infinite domain V' =
{A1, Ay, ...} of variables taking finitely many values, and schematic background
knowledge 8 which may pertain to infinitely many variables. If V,, = {A41,..., A,}
and (3, is that part of # that involves only variables in V,,, then pg: (u) can be
found by maximising entropy as usual (here uQU < V,,). Interestingly (see Paris
and Vencovska (2003)) the limit lim,,_ . p‘ﬁ/: (u) exists, so one can define pg (u)
to be this limit. Paris and Vencovska (2003) show that this approach can be
applied to very simple predicate languages and conjecture that it is applicable
more generally to predicate logic.

In the transition from the finite to the infinite, the question arises as to
whether countable additivity (introduced in §3) holds. Paris and Vencovska
(2003) make no demand that this axiom hold. Indeed it seems that the type
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of schematic background knowledge that they consider can not be used to ex-
press the knowledge that an infinite set of outcomes forms a partition. Thus
the question of countable additivity can not be formulated in their framework.
In fact, even if one were to extend the framework to formulate the question,
the strategy of taking limits would be unlikely to yield probabilities satisfy-
ing countable additivity. If the only background knowledge is that E1,..., E,
partition the outcome space, maximising entropy will give each event the same
probability 1/n. Taking limits will assign members of an infinite partition prob-
ability lim,—, 1/n = 0. But then Y/ | p(E;) = 0 # 1, contradicting countable
additivity.

However, not only is countable additivity important from the point of view
of mathematical convenience, but according to the standard betting foundations
for Bayesian interpretations of probability introduced in §9, countable additivity
must hold: an agent whose betting quotients are not countably additive can be
Dutch booked.®* Once we accept countable additivity, we are forced either to
concede that the strategy of taking limits has only limited applicability, or to
reject the method altogether in favour of some alternative, as yet unformulated,
strategy. Moreover, as argued in Williamson (1999), we are forced to accept a
certain amount of subjectivity: a countably additive distribution of probabilities
over a countably infinite partition must award some member of the partition
more probability than some other member; but if background knowledge does
not favour any member over any other then it is just a matter of subjective
choice as to how one skews the distribution.

The other line of work deals with uncountably infinite domains. Jaynes
(1968, §6) presents essentially the following procedure. First find a non-negative
real function m(z) that represents the invariances of the problem in question: if
0 offers nothing to favour x over y then m(xz) = m(y). Next, find a probability
function p satisfying [ that is closest to the invariance function m, in the sense
that it minimises cross-entropy distance d( p7 = [ p(z)logp(z /m(:c)dx. It is
this function that one ought to take as one’s behef function pg.52

This approach generalises entropy maximisation on discrete domains. In the
case of finite domains m can be taken to be a probability function, found by max-
imising entropy, and so the probability function p that is closest to it is just m
itself. For instance, if the domain is of size n and there is no background knowl-
edge, the invariance function m can be taken as the function that gives value
1/n to each member of the domain; this is a probability function so pg = m.
In the case of countably infinite domains m may not be a probability function:
if B is empty then as discussed above m must award the same value, k say, to
each member of the domain; however, such a function can not be a probability
function since countable additivity fails; therefore one must choose a probabil-
ity function closest to m. Here we minimise d(p, m) = Y p(x)logp(z)/m(x) =
Y p(x)logp(x) —logk Y p(xz) = Y p(x)logp(x) — logk; this is minimised just
when the entropy — p(z) log p(x) is maximised.

By drawing this parallel with the discrete case we can see where problems
arise: even if the constraints 8 on p are closed and convex, there may be no
probability function closest to m or there may be more than one probability

51(Williamson, 1999)

520bjective Bayesian statisticians have developed a whole host of techniques for obtaining
invariance functions and uninformative probability functions—see e.g. Kass and Wasserman
(1996). Berger and Pericchi (2001) discuss the use of such priors in statistics.
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function closest to m. This latter case, non-uniqueness, means subjectivity: the
agent can exercise arbitrary choice as which distribution of degrees of belief to
select. Subjectivity can also enter at the first stage, choice of m, since there
may be cases in which several different functions represent the invariances of a
problem.?3

But does such subjectivity really matter? Perhaps not. Although objective
Bayesianism strives for objectivity, it can hardly be blamed where little is to be
found. If there is nothing to decide between two assignments of degrees of belief,
then subjectivity simply does not matter. Under such a view, all the Bayesian
positions—strict subjectivism, empirically-based subjective probability and ob-
jective Bayesianism—accept the fact that selection of degrees of belief can be a
matter of arbitrary choice, they just draw the line in different places as to the
extent of subjectivity. Strict subjectivists allow most choice, drawing the line at
infringements of the axioms of probability.?® Proponents of empirically-based
subjective probability occupy a half-way house, allowing extensive choice but
insisting that knowledge of frequencies as well as axioms of probabilities con-
strain degrees of belief. Objective Bayesians go furthest by also using logical
constraints to narrow down the class of acceptable degrees of belief.

Moreover, arguably the infinite is just a tool to help us reason about the
large but finite and discrete universe in which we live.?> Just as we create
infinite continuous geometries to reason about finite discrete space, we create
continuous probability spaces to reason about discrete situations. In which case
if subjectivity infects the infinite then we can only conclude that the infinite
may not be as effective a tool as we would like for probabilistic reasoning. Such
relativity merely urges caution when idealising to the infinite; it does not tell
against objective Bayesianism.

§20
FuLLy OBJECTIVE PROBABILITY

We see then that objectivity is a matter of degree and that while subjectivity
may infect some problems, objective Bayesianism yields a high degree of objec-
tivity. We have been focussing on what we might call epistemic objectivity, the
extent to which an agent’s degrees of belief are determined by her background
knowledge. In applications of probability a high degree of epistemic objectivity
is an important desideratum: disagreements as to probabilities can be attributed
to differences in background knowledge; by agreeing on background knowledge
consensus can be reached on probabilities.

While epistemic objectivity requires uniqueness relative to background knowl-
edge, there are stronger grades of objectivity. In particular, the strongest grade
of objectivity, full objectivity, i.e. uniqueness simpliciter, arouses philosophical
interest. Are probabilities uniquely determined, independently of background
knowledge? If two agents disagree as to probabilities must at least one of them

53See Gillies (2000, pp. 37-49); Jaynes (1968, §§6-8) and Jaynes (1973). The determination
of invariant measures has become an important topic in statistics—see Berger and Pericchi
(2001).

54Qubjectivists usually slip in a few further constraints: e.g. known truths must be given
probability 1, and degrees of belief should be updated by Bayesian conditionalisation.

55 (Hilbert, 1925)
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be wrong, even if they disagree as to background knowledge? Intuitively many
probabilities are fully objective: there seems to be a fact of the matter as to
the probability that an atom of cobalt-60 will decay in 5 years, and there seems
to be a fact of the matter as to the chance that a particular roulette wheel will
yield a black on the next spin. (A qualification is needed. Chances can not be
quite fully objective inasmuch as they depend on time. There might now be
a probability just under 0.5 of cobalt-60 atom decaying in the next five years;
after the event, if it has decayed its chance of decaying in that time-frame is 1.
Thus chances need to be indexed by time.)

As indicated in §10, objective Bayesianism has the wherewithal to meet the
challenge of accounting for intuitions about full objectivity. By considering some
ultimate background knowledge B* one can define fully objective probability
p* = pg+ in terms of the degrees of belief one ought to adopt if one were to
have this ultimate background knowledge. This is the wltimate belief notion of
chance.

What should be included in 5*? Clearly it should include all information
relevant to the domain at time t. To be on the safe side we can take 8* to
include all facts about the universe that are determined by time ¢t—the entire
history of the universe up to and including time ¢. (Remember: this challenge
is of philosophical rather than practical interest).

While the ultimate belief notion of chance is relatively straightforward to
state, much needs to be done to show that this type of approach is viable. One
needs to show that this notion can capture our intuitions about chance. More-
over, one needs to show that that account is coherent—in particular one might
have concerns about circularity: if probabilistic beliefs are beliefs about proba-
bility, yet probability is defined in terms of probabilistic beliefs, then probability
appears to be defined in terms of itself.

However, this apparent circularity dissolves when we examine the premisses
of this circularity argument more closely. Indeed at most one premiss can be
true. In our framework, ‘probability is defined in terms of probabilistic beliefs’
is true if we substitute ‘fully objective single-case probability’ or ‘chance’ for
‘probability’ and ‘degrees of belief’ for ‘probabilistic beliefs’: chance is defined
in terms of degrees of belief. But then the first premiss is false. Degrees of
belief are not beliefs about chance, they are partial beliefs about elements of a
domain—rvariables, events or sentences. According to this reading ‘probabilistic’
modifies ‘belief’, isolating a type of belief; it does not specify the object of belief.
On the other hand, if the first premiss is to be true and ‘probabilistic beliefs’
are construed as beliefs about probability, then the second premiss is false since
chance is not here defined in terms of beliefs about probability. Thus neither
reading permits the conclusion that probability is defined in terms of itself.

Note that Bayesian statisticians often consider probability distributions over
probability parameters. These can be interpreted as degrees of belief about
chances, where chances are special degrees of belief. But there is no circularity
here either. This is because the degrees of belief about chances are of a higher
order than the chances themselves. Consider for instance a degree of belief that
a particular coin toss will yield heads. The present chance of the coin toss
yielding heads can be defined using such degrees of belief. One can then go
on to formulate the higher-order degree of belief that the chance of heads is
0.5. But this degree of belief is not used in the (lower order) definition of the
chance itself, so there is no circularity. (One can go on to define higher and
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higher order chances and degrees of belief—regress, rather than circularity, is
the obvious problem.)

One can make a stronger case for circularity though. One can read the
empirical norm of §13 as saying that degrees of belief ought to be set to chances
where they are known.?® Under such a reading the concept of rational degree
of belief appeals to the notion of chance, yet in this section chances are being
construed as special degrees of belief; circularity again. Here circularity is not
an artifice of ambiguity of terms like ‘probabilistic beliefs’. However, as before,
circularity does disappear under closer investigation. One way out is to claim
that there are two notions of chance in play: a physical notion which is used
in the empirical norm, and an ultimate belief notion which is defined in terms
of degrees of belief. But this strategy would not appeal to those who find a
physical notion of chance metaphysically dubious. An alternative strategy is
to argue that any notion of chance in the formulation of an empirical norm is
simply eliminable. One can substitute references to chance with references to
the indicators of chance instead. Intuitively, symmetry considerations, physical
laws and observed frequencies all provide some evidence as to chances; one can
simply say that an agent’s degrees of belief should be appropriately constrained
by her knowledge of symmetries, laws and frequencies. While this may lead to
a rather more complicated formulation of the empirical norm, it is truer to the
epistemological route to degrees of belief—the agent has direct knowledge of the
indicators of chances rather than the chances themselves. Further, it shows how
these indicators of chances can actually provide evidence for chances: knowledge
of frequencies constrains degrees of belief, and chances are just special degrees
of belief. Finally, this strategy eliminates circularity, since it shows how degrees
of belief can be defined independently of chances. It does however, pose the
challenge of explicating exactly how frequencies, symmetries and so on constrain
degrees of belief—a challenge that (as we saw in §18) is not easy to meet.

The ultimate belief notion of chance is not quite fully objective: it is indexed
by time. Moreover, if we want a notion of chance defined over infinite domains
then, as the arguments of §19 show, subjectivity can creep in, for example
in cases—if such cases ever arise—in which the entire history of the universe
fails to differentiate between the members of an infinite partition. This mental,
ultimate belief notion of chance is arguably more objective than the influential
physical notion of chance put forward by David Lewis however.?” Lewis accepts
a version of the empirical norm which he calls the Principal Principle: knowledge
of chances ought to constrain degrees of belief. However Lewis does not go on to
advocate the ultimate belief notion of chance presented here: ‘chance is [not] the
credence warranted by our total available evidence . .. if our total evidence came
from misleadingly unrepresentative samples, that wouldn’t affect chance in any
way.”®® (Unrepresentative samples do not seem to me to be a real problem for
the ultimate belief approach, because the entire history of the universe up to the
time in question is likely to contain more information pertinent to an event than
simply a small sample frequency—plenty of large samples of relevant events, and
plenty of relevant qualitative information, for instance.) Lewis instead takes
chances to be products of the best system of laws, the best way of systematising
the universe. The problem is that the criteria for comparing systems of laws—a

56See Williamson (2005a, §5.3).
57 (Lewis, 1980, 1994)
58 (Lewis, 1994, p. 475)
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balance between simplicity and strength-—seem to be subjective. What counts
a simple for a rocket scientist may be complicated for a robot and vice versa.?®
This is not a problem that besets the ultimate belief account: as Lewis accepts,
there does seem to be a fact of the matter as to how evidence should inform
degrees of belief. Thus an ultimate belief notion of chance, despite being a
mental rather than physical notion, suffers less from subjectivity than Lewis’
theory.

Note that Lewis’ approach also suffers from a type of circularity known as
undermining. Because chances for Lewis are analysed in terms of laws, they
depend not only on the past and present state of the universe, but also on the
future of the universe: ‘present chances are given by probabilistic laws, plus
present conditions to which those laws are applicable, and ... those laws obtain
in virtue of the fit of candidate systems to the whole of history.”®® Of course,
non-actual futures (i.e. series of events which differ from the way in which the
universe will actually turn out) must have positive chance now, for otherwise
the notion of chance would be redundant. Thus there is now a positive chance
of events turning out in the future in such a way that present chances turn
out differently. But this yields a paradox: present chances can not turn out
differently to what they actually are. Lewis (1994) has to modify the Principal
Principle to avoid a formal contradiction, but this move does not resolve the
intuitive paradox. In contrast, under the ultimate belief account present chances
depend on just the past and the present state of the universe, not the future, so
present chances can not undermine themselves.

621
PRrROBABILITY LOGIC

There are increasing demands from researchers in artificial intelligence for for-
malisms for normative reasoning that combine probability and logic. Purely
probabilistic techniques work quite well in many areas but fail to exploit logical
relationships that obtain in particular problems. Thus for example probabilis-
tic techniques are applied widely in natural language processing,®! with some
success, yet largely without exploiting logical sentence structure. On the other
hand purely logical techniques take problem structure into account without be-
ing able to handle the many uncertainties inherent in practical problem solving.
Thus automated proof systems for mathematical reasoning®® depend heavily on
implementing logics but often fail to prioritise searches that are most likely to
be successful. It is natural to suppose that systems which combine probability
and logic will yield improved results. Formalisms that combine probability and
logic would also be applicable to many new problems in bioinformatics,%? from
inducing protein folding from noisy relational data to forecasting toxicity from
uncertain knowledge of deterministic chemical reactions in cell metabolism.

59In response Lewis (1994, p. 479) just plays the optimism card: ‘if nature is kind to us,
the problem needn’t arise.’

60 (Lewis, 1994, p. 482)

61(Manning and Schiitze, 1999)

62(Quaife, 1992; Schumann, 2001)

63(Durbin et al., 1999)
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In a probability logic, or progic for short, probability is combined with logic
in one or more of the following two ways:

EXTERNAL probabilities are defined on logical sentences rather than events,
INTERNAL logical sentences incorporate statements about probabilities.

In an external progic, logical implications take the form:

01:21,....0, =0y

Here 601,...,0,,¢ € S|, are sentences of a logical language L which does not con-
tain probabilities and 1, ..., x,,y € [0, 1] are the probabilities themselves. For
example if L = {A;, Ag, A3, Ay, A5} is a propositional language on propositional
variables Ay, ..., As, we might be interested in whether

A1 AN _'A2 : .9,(_'A4 \2 Ag) —>A2 : .2,A5 \4 A3 : .3,A4 2.7 |=A5 - A1 4
In an internal progic, logical implications take the form:

0o b0 =6

where 01,...,0,,¢ € S, are sentences of a logical language L, which contains
probabilities. L, might be a first-order language with equality containing a
(probability) function p, predicates R, S, T and constants sorted into individuals
a;, events e; and real numbers x; € [0, 1], and we might want to know whether

p(e1) = z1 v R(as), —p(e2) = x1 — T(a5) = R(as)

Note that an internal progic might have several probability functions each with
a difference interpretation.

In a mized progic, the probabilities may appear both internally and exter-
nally. A logical implication takes the form

O1:21,....0, =0y

where 61,...,0,,¢ € S, are sentences of a logical language L, which contains
probabilities.

There are two main questions to be dealt with when providing semantics for
a progic: how are the probabilities to be interpreted? what is the meaning of
the implication operator =?

The standard semantics remains neutral about the interpretation of the
probabilities and deals with implication thus:

EXTERNAL 05 : x1,...,0, : , = ¢ : y holds if and only if every probability
function p that satisfies the left-hand side (i.e., p(61) = z1,...,p(0n) = )
also satisfies the right-hand side (i.e. p(¢) = y).

INTERNAL 61,...,0, = ¢ if and only if every L,-model of the left-hand side
in which p is interpreted as a probability function is also a model of the
right-hand side.
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The difficulty with the standard semantics for an external progic is that of
underdetermination. Given some premiss sentences 61, ...,60, and their proba-
bilities x1, ..., x, we often want to know what probability y to give to a conclu-
sion sentence ¢ of interest. However, the standard semantics may give no answer
to this question: often 6y : z1,...,60, : x, = ¢ : y for any y € [0,1], because
probability functions that satisfy the left-hand side disagree as to the probabil-
ity they award to ¢ on the right-hand side. The premisses underdetermine the
conclusion. Consequently an alternative semantics is often preferred.

According to the objective Bayesian semantics for an external progic on a
finite propositional language L = {Ay,..., An}, 01 : x1,...,0, c 2 E ¢y if
and only if an agent whose knowledge is summed up by the constraints on the
left-hand side (i.e. who ought to believe 6; to degree x1,...,0, to degree z,,)
ought to believe ¢ to degree y. As long as the constraints 61 : x1,...,0, : ©, are
consistent, there will be a unique function p that maximises entropy and a unique
y € [0,1] such that p(¢) = y, so there is no problem of underdetermination.

I shall briefly sketch just three of the principal proposals in this area.%*

Colin Howson put forward his account of the relationship between probabil-
ity and logic in Howson (2001, 2003). Howson interprets probability as follows:
‘the agent’s probability is the odds, or the betting quotient, they currently be-
lieve fair, with the sense of ‘fair’ that there is no calculable advantage to either
side of a bet at those odds.”®® The connection with logic is forged by introduc-
ing the concept of consistency of betting quotients: a set of betting quotients is
consistent if it can be extended to a single-valued function on all the proposi-
tions of a given logical language L which satisfies certain regularity properties.
Howson then shows that an assignment of betting quotients is consistent if and
only if it is satisfiable by a probability function.%¢6 Having developed a notion
of consistency, Howson shows that this leads naturally to an external progic
with the standard semantics: consequence is defined in terms of satisfiability by
probability functions, as outlined above.5”

In Halpern (2003) Joseph Halpern studies the standard semantics for in-
ternal progics. In the propositional case, L is a propositional language ex-
tended by permitting linear combinations of probabilities Y, a;p;(¢;) > b
where ay,...,a,,0 € R and pq,...,p, are probability functions each of which
represents the degrees of belief of an agent and which are defined over sen-
tences ¢ of L.%8 This language allows nesting of probabilities: for example
p1(—(p2(0) > 1/3)) > 1/2 represents ‘with degree more than a half, agent 1
believes that agent 2’s degree of belief in 6 is less than or equal to %.’ Note
though that the language can not represent probabilistic independencies, which
are expressed using multiplication rather than linear combination of probabil-
ities, such as p1(0 A ¢) = p1(0)p1(¢). Halpern provides a possible-worlds se-
mantics for the resulting logic: given a space of possible worlds, a probability
measure [i,, ; over this space for each possible world and agent, and a valuation
function ; for each possible world, p;(¢) > 1/2 is true at a world w if the
measure fi,,1 of the set of possible words at which 1 is true is greater than
half, pi1({w' : mw () = 1}) > 1/2. Consequence is defined straightforwardly

64Williamson (2002) presents a more comprehensive survey.
65(Howson, 2001, 143)

66 (Howson, 2001, Theorem 1)

67(Howson, 2001, 150)

68(Halpern, 2003, §7.3)
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in terms of satisfiability by worlds.

Halpern later extends the above propositional language to a first-order lan-
guage and introduces frequency terms ||¢)|| y, interpreted as ‘the frequency with
which 1 holds when variables in X are repeatedly selected at random.’® Lin-
ear combinations of frequencies are permitted, as well as linear combinations
of degrees of belief. When providing the semantics for this language, one must
provide an interpretation for frequency terms, a probability measure over the
domain of the language.

In Paris (1994) Jeff Paris discusses external progics in detail, in conjunction
with the objective Bayesian semantics. In the propositional case, Paris pro-
poses a number of common sense desiderata which ought to be satisfied by any
method for picking out a most rational belief function for the objective Bayesian
semantics, and goes on to show that the maximum entropy principle is the only
method that satisfies these desiderata.”® Later Paris shows how an external
progic can be defined over the sentences of a first order logic—such a function is
determined by its values over quantifier-free sentences.”’ Paris then introduces
the problem of learning from experience: what value should an agent give to
p(R(an+1)|+R(a1) A --- A +R(ay)), that is, to what extent should she believe
a new instance of R, given n observed instances?”? As mentioned in §§18, 19,
Paris and Vencovskd (2003) suggest that the maximum entropy principle may
be extended to the first-order case to address this problem.

In the case of the standard semantics it is natural to look for a traditional
proof theory to accompany the semantics:

EXTERNAL Given 64,...0, € Sp,z1,...,2, € [0,1], find a mechanism for
churning out all ¢ : y such that 61 : z1,...,0, 1z, =@ y.

INTERNAL Given 61, ...0, € St , find a mechanism for churning out all ¢ € Sz,
such that 60y,...,60, = ¢.

In a sense this is straightforward: the premisses imply the conclusion just if
the conclusion follows from the premisses and the axioms of probability by de-
ductive logic. Fagin et al. (1990) produced a traditional proof theory for the
standard probabilistic semantics, for an internal propositional progic. As with
propositional logic, deciding satisfiability is NP-complete. Halpern (1990) dis-
cusses a progic which allows reasoning about both degrees of belief and frequen-
cies. In general, no complete axiomatisation is possible, though axiom systems
are provided in cases where complete axiomatisation is possible. Abadi and
Halpern (1994) consider first-order degree of belief and frequency logics sepa-
rately, and show that they are highly undecidable. Halpern (2003) presents a
general overview of this line of work.

Paris and Vencovskd (1990) made a start at a traditional proof theory for
a type of objective Bayesian progic, but express some scepticism as to whether
the goal of a traditional proof system can be achieved.

A traditional proof theory, though interesting, is often not what is required
in applications of an external progic. To reiterate, given some premiss sentences

69 (Halpern, 2003, §10.3)

70(Paris, 1994, Theorem 7.9; Paris and Vencovska, 2001)
71 (Paris, 1994, Chapter 11; Gaifman, 1964)

72 (Paris, 1994, Chapter 12)
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01, ...,0, and their probabilities x1, ..., z, we often want to know what proba-
bility ¥ to give to a conclusion sentence ¢ of interest—not to churn out all ¢ : y
that follow from the premisses. Objective Bayesianism provides semantics for
this problem, and it is an important question as to whether there is a calculus
that accompanies this semantics:

OBprOGIC Givenby,...,0,,x1,...,2,,¢, find ysuch that 6y : z1,...,0, : 2, E

o y.

It is known that even finding an approximate solution to this problem is NP-
complete.”™ Hence the best one can do is to find an algorithm that is scalable
in a range of natural problems, rather than tractable in every case. My own
approach, presented in Williamson (2005a), deals with the propositional case but
does not take the form of a traditional logical proof theory, involving axioms and
rules of inference. Instead the proposal is to apply the computational methods
of §17 to find a Bayesian net representation of the p that satisfies constraints
p(01) = x1,...,p(0,) = z, and maximises entropy, and then to use the net to
calculate p(¢). The advantage of using Bayesian nets is that if sufficiently sparse,
they allow the efficient representation of a probability function and efficient
methods for calculating marginal probabilities of that function. In this context,
the net is sparse and the method scalable in cases where each sentence involves
few propositional variables in comparison with the size of the language.

Consider an example. Suppose we have a propositional language L =
{A1, Ag, A3, Ay, A5} and we want to find y such that

Ay A Ay 9, (—Ay v As) > Agt 2, A5 v A 1 3, A TEAs > Aty
According to our semantics we must find p that maximises
H=- ZP(iAl A+AsA+As A+ A A+ A5) logp(£ A1 AL As A+ A3 A+ AL A+ A5)
subject to the constraints,
p(A1 A —Ag) = 9, p((—As v A3) = Ag) = .2,p(A5 v As) = .3, p(Ay) =.7

One could find p by directly using numerical optimisation techniques or La-
grange multiplier methods. However, this approach would not be feasible on
large languages—already we would need to optimise with respect to 2° parame-
ters p(+ A1 A £As A £A3 A £A4 A £A5).

Instead take the approach of §17:

STEP 1 Construct an undirected constraint graph, Fig. 1, by linking variables
that occur in the same constraint.

As mentioned, the constraint graph satisfies a key property, namely sep-
aration in the constraint graph implies conditional independence for the en-
tropy maximising probability function p. Thus A, separates As from A; so
Ay A, A5 | As, (p renders Ay probabilistically independent of As conditional
on AQ)

STEP 2 Transform this into a directed constraint graph, Fig. 2.

73 (Paris, 1994, Theorem 10.6)
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Now D-separation, a directed version of separation,” implies conditional

independence for p. Having found a directed acyclic graph which satisfies this
property we can construct a Bayesian net by augmenting the graph with con-
ditional probability distributions:

STEP 3 Form a Bayesian network by determining parameters p(A;|par;) that
maximise entropy.

Here par; are the states of parents of A;. Thus we need to determine
p(A1), p(Az|+A1), p(As|+As), p(As|+As A £A5), p(As]|+As). This can be done
by reparameterising the entropy equation in terms of these conditional proba-
bilities and then using Lagrange multiplier methods or numerical optimisation
techniques. This representation of p will be efficient if the graph is sparse, that
is, if each constraint sentence 6; involves few propositional variables in compar-
ison with the size of the language.

STEP 4 Simplify ¢ into a disjunction of mutually exclusive conjunctions \/ o;
(e.g. disjunctive normal form) and calculate p(¢) = Y p(o;) by using stan-
dard Bayesian net algorithms to determine the marginals p(o;).

In our example,

p(As i Al) = D _'A5 \Y% Al)

= p(=A5]A1)p(A1) + p(As5]|A1)p(A1) + p(—As|—A1)p(— A1)
= p(A1) +p(—As|=A1) (1 — p(Ar))

We thus require only two Bayesian net calculations to determine p(A4;) and
p(—As|—A1). These calculations can be performed efficiently if the graph is
sparse and ¢ involves few propositional variables relative to the size of the
domain.

A major challenge for the objective Bayesian approach is to see whether
potentially efficient procedures can be developed for first-order predicate logic.

§22
CONCLUSION

If probability is to be applied it must be interpreted. Typically we are interested
in single-case probabilities—e.g. the probability that I will live to the age of 80,
the probability that my car will break down today, the probability that quantum
mechanics is true. The Bayesian interpretation tells us what such probabilities
mean: they are rational degrees of belief.

Subjective Bayesianism has the advantage that it is easy to justify—the
Dutch book argument is all that is needed. But subjective Bayesianism does
not successfully capture our intuition that many probabilities are objective.

If we move to objective Bayesianism what we gain in terms of objectivity, we
pay for in terms of hard graft to address the challenges outlined above. (For this
reason, many Bayesians are subjectivist in principle but tacitly objectivist in

7 (Pearl, 1988, §3.3)
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practice.) These are just challenges though; none seem to present insurmount-
able problems. They map out an interesting and important research programme
rather than reasons to abandon any hope of objectivity.”®
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