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Abstract

An overview of evolutionary algorithms is presented covering genetic algorithms,
evolution strategies, genetic programming and evolutionary programming. The schema
theorem is reviewed and critiqued. Gray codes, bit representations and real-valued
representations are discussed for parameter optimization problems. Parallel Island
models are also reviewed, and the evaluation of evolutionary algorithms is discussed.
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1 Introduction

Evolutionary Algorithms have become popular tools for search, optimization, machine learn-
ing and for solving design problems. These algorithms use simulated evolution to search for
solutions to complex problems. There are many different types of evolutionary algorithms.
Historically, genetic algorithms and evolution strategies are two of the most basic forms of
evolutionary algorithms. Genetic algorithms were developed in the United States under the
leadership of John Holland and his students. This tradition puts a great deal of emphasis
on selection, recombination and mutation acting on a genotype that is decoded and eval-
uated for fitness. Recombination is emphasized over mutation. Evolution strategies were
developed in Germany under the leadership of Ingo Rechenberg and Hans-Paul Schwefel and
their students. Evolution strategies tend to use more direct representations [3]. Mutation
is emphasized over recombination. Both genetic algorithms and evolution strategies have
been used for optimization. But genetic algorithms have long been viewed as multipurpose
tools with applications in search, optimization, design and machine learning [24, 18|, while
most of the work in evolution strategies has focused on optimization [39, 40, 2]. In the last
decade, these two fields have influenced each other and many new algorithms freely borrow
ideas from both traditions.

In the last ten years, genetic programming has also become an important new subarea
of evolutionary algorithms [30, 27]. Genetic programming has been explicitly developed as
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an evolutionary methodology for automatic programming and machine learning. Design
applications have also proven to be important. Another subarea of evolutionary computing
is evolutionary programming. Evolutionary programming has its roots in the 1960’s [16]
but was inactive for many years until being reborn in the 1990’s [14] in a new form that is
extremely similar to evolution strategies.

Each of these paradigms has its own strengths and weaknesses. One goal of this overview
is to highlight each model so that users can better decide which methods are best suited for
particular types of applications. There are also some general high level concepts that are
basic to evolutionary algorithms that might be applied in conjunction with any of the various
paradigms. The use of a parallel evolutionary algorithm can often boost performance. The
1sland model in particular has low cost in terms of software development and can have a
significant impact on performance. This overview also addresses the question as to when
it is reasonable to use an evolutionary algorithm, and suggests other methods to utilize in
order to evaluate the effectiveness of an evolutionary algorithm.

2 Genetic Algorithms

Genetic algorithms remain the most recognized form of evolutionary algorithms. John Hol-
land and his students worked on the development of these algorithms in the 1960’s, 70’s and
80’s. In the mid-1980’s these algorithms started to reach other research communities—such
as the machine learning and operations research communities. It is probably no coincidence
that the explosion of research in genetic algorithms came soon after the explosion of research
in articial neural networks. Both areas of research draw inspiration from biological systems
as a computational and motivational model. In the current paper, a high level overview is
given with the goal of providing some practical guidance to users as well an overview of more
recent results. (For another tutorial on genetic algorithms see [51].)

Genetic algorithms emphasize the use of a “genotype” that is decoded and evaluated.
These genotypes are often simple data structures. Often, the chromosomes are bit strings
which can be recombined in a simplied form of “sexual reproduction” and can be mutated
by simple bit flips. These algorithms can be described as function optimizers. This does
not mean that they yield globally optimal solutions. Instead, Holland (in the introduction
to the 1992 edition of his 1975 book [25]) and DeJong [9] have both emphasized that these
algorithms find competitive solutions, but both also suggest that it is probably best to view
genetic algorithms as a search process rather than strictly as an optimization process. As
such, competition as implemented by “selection of the fittest” is a key aspect of genetic
search.

An example application provides a useful vehicle for explaining certain aspects of these
algorithms. Assume one wishes to optimize some process, such as paper production with the
goal of maximizing quality. Assume we have 3 parameters we can control in the production
process, such as temperature, pressure and some mixture parameter that controls the use
of recycled paper versus pulp. (The goal is not to make these parameters overly realistic,
but rather to illustrate a generic parameter optimization problem.) This can be viewed as a
black box optimization problem where inputs from the domain of the function are fed into



the black box and a value from the co-domain of the function is produced as an output.

One could represent the 3 parameters using three real valued parameters, such as
< 32.56,18.21,9.83 >
or the 3 parameters could be represented as bit strings, such as
< 000111010100,110100101101,001001101011 > .

Of course, this automatically raises the question as to what precision should be used, and
what should be the mapping between bit strings and real values. Picking the right pre-
cision can potentially be important. Historically, genetic algorithms have typically been
implemented using low precision, such as 10 bits per parameter.

Recombination is central to genetic algorithms. Consider the string 1101001100101101
and another binary string, yxyyxyxxyyyxyxxy, in which the values 0 and 1 are denoted by x
and y. Using a single randomly chosen crossover point, a 1-point recombination might occur
as follows.

11010 \/ 01100101101
yXyyx /\ yXXyyyxXyxxy

Swapping the fragments between the two parents produces the following two offspring.
11010yxxyyyxyxxy and yxyyx01100101101

Note that parameter boundaries are ignored.

After recombination, we can apply a mutation operator. For each bit in the population,
mutate with some low probability p,,. Typically the mutation rate is applied with less than
1% probability.

In addition to mutation and recombination operators, the other key component to a
genetic algorithm (or any other evolutionary algorithm) is the selection mechanism. For
a genetic algorithm, it is instructive to view the mechanism by which a standard genetic
algorithm moves from one generation to the next as a two stage process.

Selection is applied to the current population to create an intermediate population, as
shown in Figure 1. Then recombination and mutation are applied to the intermediate pop-
ulation to create the next population. The process of going from the current population to
the next population constitutes one generation in the execution of a genetic algorithm.

We will first consider the construction of the intermediate population from the current
population. In the first generation the current population is also the initial population.
In the canonical genetic algorithm, fitness is defined by f;/f, where f; is the evaluation
associated with string ¢ and f is the average evaluation of all the strings in the population.
This is known as fitness proportional reproduction.

The value f; may be the direct output of an evaluation function, or it may be scaled
in some way. After calculating f;/f for all the strings in the current population, selection
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Figure 1: One generation is broken down into a selection phase and recombination phase.
This figure shows strings being assigned into adjacent slots during selection. In fact, they
can be assigned slots randomly in order to shuffle the intermediate population. Mutation (not
shown) can be applied after crossover.

is carried out. In the canonical genetic algorithm the probability that strings in the cur-
rent population are copied (i.e., duplicated) and placed in the intermediate generation is
proportional to their fitness.

For a maximization problem, if f;/f is used as a measure of fitness for string i, then strings
where f;/f is greater than 1.0 have above average fitness and strings where f;/f is less than
1.0 have below average fitness. We would like to allocate more chances to reproduce to those
strings that are above average. One way to do this is to directly duplicate those strings that
are above average; break f; into an integer part, x;, and a remainder, ;. Place z; duplicates of
string 7 directly into the intermediate population and place 1 additional copy with probability
r;. This is efficiently implemented using Stochastic Universal Sampling. Assume that the
population is laid out in random order as a number line where each individual is assigned
space on the number line in proportion to fitness. Now generate a random number between
zero and 1 denoted by k. Next, consider the position of the number ¢ + &k for all integers ¢
from 1 to N where N is the population size. Each number 7 + k£ will fall on the number line
in some space corresponding to a member of the population. The position of the N numbers
1+ k for = 1 to N in effect selects the members of the intermediate population. This is
illustrated in Figure 2.
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Figure 2: Stochashtic Universal Sampling. The fitnesses of the population can be seen as
being laid out on a number line in random order a shown at the bottom of the figure. A
single random value, 0 < k < 1, shifts the uniformly spaced “pointers” which now selects the
member of the next intermediate population.

This same mechanism can viewed as a roulette wheel. The roulette wheel has N equally
spaced pointers. The choice of k£ in effect spins the roulette wheel and the position of the
evenly space pointers, thereby simultaneously picking all N members of the intermediate
population. The resulting selection is unbiased [4].

After selection has been executed, the construction of the intermediate population is
complete. The next generation of the population is created from from the intermediate pop-
ulation. Crossover is applied to randomly paired strings with a probability denoted p.. The
offsprings created by “recombination” go into the next generation (in a sense replacing the
parents). If no recombination occurs, the parents can pass directly into the next generation.
However, as a last step mutation is applied.

After the process of selection, recombination and mutation is complete, the next genera-
tion of the population can be evaluated. The process of evaluation, selection, recombination
and mutation forms one generation in the execution of a genetic algorithm.

There can be a couple of problems with fitness proportional reproduction. First selection
can be too strong in the first few generations: too many duplicates are sometimes allocated
to very good individuals found early in the search. Second, as individuals in the population
improve over time, there tends to be less variation in fitness, with more individuals being close
to the population average. As the population average fitness increases, the fitness variance
decreases and the corresponding uniformity in fitness values causes selective pressure to go
down. In this case, the search begins to stagnate.

The selection mechanism can also be based on a rank-based mechanism. Assume the
population is sorted by fitness. A linear ranking mechanism with bias Z (where 1 < Z < 2)
allocates a fitness bias of Z to the top ranked individual, 2 — Z to the bottom ranked
individual, and a fitness bias of 1.0 to the median individual. Note that the difference in
selection bias between the best and worst member of the population is constant, independent,
of how many generations have passed. This has the effect of making selective pressure more
constant and controlled. Code for linear ranking is given by Whitley [50].

Another fast but noisy way to implement ranking is Tournament Selection [19, 17] To
construct the intermediate population, select two strings at random and place the best in the
intermediate population. In expectation, every string is sampled twice. The best string wins
both tournaments and gets 2 copies in the intermediate population. The median string wins
one and loses one and gets 1 copy in the intermediate population. The worse strings loses
both tournaments and does not reproduce. In expectation, this produces a linear ranking



with a bias of 2.0 toward the best individual. If the winner of the tournament is placed in
the intermediate population with probability 0.5 < p < 1.0, then the bias is less than 2.0.
If a tournament size larger than 2 is used and the winner is choosen deterministic, then the
bias is greater than 2.0.

2.1 Schemata and Hyperplanes.

In his 1975 book, Adaptation in Natural and Artificial Systems [24], Holland develops the
concepts of schemata and hyperplane sampling to explain how a genetic algorithm can yield
a robust search by implicitly sampling hyperplane partitions of a search space. Since 1975,
the concepts of schemata and hyperplane sampling have become the central concepts in what
at times seems like a religious war. The idea that genetic algorithms search by hyperplane
sample is now controversial, but the debate over this issue continues to generate more heat
(and smoke) than light.

A bit string matches a particular schemata if that bit string can be constructed from
the schemata by replacing the “*” symbol with the appropriate bit value. Thus, a 10-bit
schema such as 1**¥***¥*** deofines a subset that contains half the points in the search space,
namely, all the strings that begin with a 1 bit in the search space. In general, all bit strings
that match a particular schemata are contained in the hyperplane partition represented by
that particular schemata. The string of all * symbols corresponds to the space itself and is
not counted as a partition of the space. There are 3% possible schemata since there are L
positions in the bit string and each position can be a 0,1, or * symbol.

The notion of a population based search is critical to genetic algorithms. A population
of sample points provides information about numerous hyperplanes; furthermore, low order
hyperplanes should be sampled by numerous points in the population. Holland introduced
the concept of intrinsic or implicit parallelism to describe a situation where many hyperplanes
are sampled when a population of strings is evaluated; it has been argued that far more
hyperplanes are sampled than the number of strings contained in the population.

Holland’s theory suggests that schemata representing competing hyperplanes increase or
decrease their representation in the population according to the relative fitness of the strings
that lie in those hyperplane partitions. By doing this, more trials are allocated to regions of
the search space that have been shown to contain above average solutions.

2.2 An Illustration of Hyperplane Sampling

Holland [24] suggested the following view of hyperplane sampling. In Figure 3 a function
over a single variable is plotted as a one-dimensional space. The function is to be maximized.
Assume the encoding uses 8 bits. The hyperplane 0******* gpangs the first half of the space
and 1****%*% gpans the second half of the space. Since the strings in the 0******* partition
are on average better than those in the 1******* partition, we would like the search to be
proportionally biased toward this partition. In the middle graph of Figure 3 the portion
of the space corresponding to **1***** jg shaded, which also highlights the intersection
of Q¥HkxHkk and **FEHE pamely, 0*1%*** Finally, in the bottom graph, 0*10%***** ig



highlighted.

One of the points of Figure 3 is that the sampling of hyperplane partitions is not really
affected by local minima. At the same time, increasing the sampling rate of partitions that
are above average compared to other competing partitions does not guarantee convergence
to a global optimum. The global optimum could be a relatively isolated peak, for example.
Nevertheless, good solutions that are globally competitive are often found. The notion that
hyperplane sampling is a useful way to guide search should be viewed as a heuristic. In
general, even having perfect knowledge of schema averages up to some fixed order provides
little guarantee as to the quality of the resulting search. This is discussed in more detail in
Section 3.

2.3 The Schema Theorem

Holland [24] developed the schema theorem to provide a lower bound on the change in the
sampling rate for a single hyperplane from generation ¢ to generation t+1. By developing the
theorem as a lower bound, Holland was able to make the schema theorem hold independently
for every schema/hyperplane. At the same time, as a lower bound, the schema theorem is
inexact. This weakness is just one of many reasons that the concept of “hyperplane sampling”
is controversial.

Let P(H,t) be the proportion of the population that samples hyperplane H at time t.
Let P(H,t + intermediate) be the proportion of the population that samples hyperplane
H after fitness proportionate selection but before crossover or mutation. Let f(H,t) be the
average fitness of the strings sampling hyperplane H at time ¢ and denote the population
average by f. (Note that f should also have a time index, but this is often not denoted
explicitly. This is important because the average fitness of the population is not constant.)

Ht
P(H,t + intermediate) = P(H, 1) I _ )

f

Thus, ignoring crossover and mutation, the sampling rate of hyperplanes changes accord-
ing to their average fitness. Put another way, selection “focuses” the search in what appears
to be promising regions. Some of the controversy related to “hyperplane sampling” begins
immediately with this characterization of selection. The equation accurately describes the
focusing effects of selection; the concern, however, is that this effect is not limited to the 3*
hyperplanes that Holland considered to be relevant. Selection acts exactly the same way on
any aribtrarily choosen subset of the search space. Thus it acts in exactly the same way on
the 22*) members of the power set over the set of all strings.

Laying this issue aside for a moment, it is possible to write an exact version of the
schema theorem that considers selection, crossover and mutation. What we want to compute
is P(H,t + 1), the proportion of the population that samples hyperplane H at the next
generation as indexed by ¢+ 1. We first just consider selection and crossover.

f(l;{’ ) +p. |M(H, t)f(}{’ t) (1 —losses) + gains

P(H,t+1) = (1—p.)M(H,1) 7




F(X)

0 K/2 K
Variable X

F(X) M

0
0 K/8 K/4 K/2 K
Variable X
1
0
0 K/8 K/4 K/2 K
Variable X
QFx*  * bl S 0*10*..*
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where p, is the probability of doing crossover. When crossover does not occur (which hap-
pens with probability (1 — p.), then only selection changes the sampling rate. However,
when crossover does occur (with probability p.) then we have to consider how crossover can
destroy hyperplane samples (denoted by losses) and how crossover can create new samples
of hyperplanes (denoted by gains).

For example, assume we are interested in the schema 11*****_If a string such as 1110101
were recombined between the first two bits with a string such as 1000000 or 0100000, no
disruption would occur in hyperplane 11***** since one of the offspring would still reside in
this partition. Also, if 1000000 and 0100000 were recombined exactly between the first and
second bit, a new independent offspring would sample 11*****; this is the sources of gains
that is referred to in the above calculation. To simplify things, gains are ignored and the
conservative assumption is made that crossover falling in the significant portion of a schema
always leads to disruption. Thus,

P(H,t+1)> (1-p.)P(H, t)f(}{’ t) +p. | P(H, t)f(}{’ ) (1 — disruptions)]| .

f f

The defining length of a schemata is based on the distance between the first and last bits
in the schema with value either 0 or 1 (i.e., not a * symbol). Given that each position in
a schema can be 0, 1 or *, then scanning left to right, if I, is the index of the position of
the rightmost occurrence of either a 0 or 1 and I, is the index of the leftmost occurrence of
either a 0 or 1, then the defining length is merely I, — I,,. The defining length of a schema
representing a hyperplane H is denoted here by A(H). If 1-point crossover is used, then
disruption is bounded by:

and including this terms yields:

A R )

P(H,t+1) > P(H1) = e

We now have a useful version of the schema theorem (although it does not yet consider
mutation); but it is not the only version in the literature. For example, this version assumes
that selection for the first parent string is fitness based and the second parent is chosen
randomly. But we have also examined a form of the simple genetic algorithm where both
parents are chosen based on fitness. This can be added to the schema theorem by merely
indicating the alternative parent is chosen from the intermediate population after selection
[38].

P(H,t+1)> P(H,t) f(l;{’ ) 1 —pc%(l — P(H,t)

f(H, 1
7

Finally, mutation is included. Let o(H) be a function that returns the order of the
hyperplane H. The order of H exactly corresponds to a count of the number of bits in the
schema representing H that have value 0 or 1. Let the mutation probability be p,, where

)

9



mutation always flips the bit. Thus the probability that mutation does not affect the schema
representing H is (1 —p,,)°#). This leads to the following expression of the schema theorem.

TUD 1y 2 pr g

f L—1 TULOY (1 = pypyed

P(H,t+1) > P(H,t) 7

3 Some Criticisms of the Schema Theorem

There are many different criticisms of the schema theorem. First of all, it is an inequality,
and it only applies for one generation into the future. So while the bound provided by the
schema theorem absolutely holds for one generation into the future, it says nothing about
how trials will be allocated in future generations.

It is also true that the schema theorem does hold true independently for all possible
hyperplanes for 1 generation. However, over over multiple generations these dependencies
are extremely important. For example, in some search space of size 2% suppose that the
schemata 11***#¥€% and *Q0***** are both “above average” in the current generation and
the schema theorem indicates that both have increasing representation. But trials allocated
to schemata 11#¥#946% and *00***** are in conflict (because they disagree about the value
of the second bit). Over time, both regions cannot receive increasing trials. These schema
are inconsistent about what bit value is preferred in the second position.

Whitley et al. [48, 23] have shown that problems can have varying degrees of consistency.
For problems that display higher consistency, the “most fit” schemata tend to agree about
what the values of particular bits should be. And problems can be highly inconsistent, so
that the most fit individuals display a large degree of conflict in terms of what bit values
are preferred in different positions. It seems reasonable to assume that a genetic algorithm
should do better on problems that display greater consistency, since inconsistency means
that the search is being guided by conflicting information.

One criticism of pragmatic significance is that users of the standard or canonical genetic
algorithm often use small populations. The number of bits that value 0 or 1 is referred to
as the order of a schema. Thus, **1***** is an order-1 schema, ***0***1 is an order-2
schema and *1**0*1* is an order-3 schema. Many users employ a population size of 100 or
smaller. In a population of size 100, we would expect 50 samples of any order-1 schema,
25 samples of any order-2 schema, 12.5 samples of any order-3 schema, and exponentially
decaying numbers of samples to higher order schema. Thus, if we suppose that the genetic
algorithm is implicitly attempting to allocate trials to different regions of the search space
based on schema averages, a small population (for example, 100) is inadequate unless we
only care about relatively low order schemata. So even if hyperplane sampling is a robust
form of heuristic search, the user destroys this potential by using small population sizes.

What if we had perfect schema information? What if we could compute schema informa-
tion exactly in polynomial time? Rana et al. [37] have shown that schema information up to
any fixed order can be computed in polynomial time for some NP-Complete problems. This
includes MAXSAT problems and NK-Landscapes. This is very surprising. One theoretical
consequence of this is the following:
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If P # NP then, in the general case, exactly knowing the static schema fitness
averages up to some fixed order cannot provide information that can be used
to infer the location of a global optimum, or even an above average solution, in
polynomial time. (For proofs see: [22, 21]).

This seems like a very negative result. But it is dangerous to over-interpret either positive
or negative results. In practice, random MAXSAT problems are characterized by highly
inconsistent schema information—so that there is really little or no information that can be
exploited to guide the search [22]. And in practice, genetic algorithms perform very poorly
on MAXSAT problems [37]. On the other hand, genetic algorithms are known to work well
in many other domains. Again, the notion of using schema information to guide search is at
best a heuristic.

There are many other criticisms of the schema theorem. Historically, too much has been
claimed about schema and hyperplane processing that is not backed up by solid proofs. A
kind of folklore grew up around the schema theorem in the 1970’s and 1980’s. There is
no longer any evidence to support the claim that genetic algorithms allocate trials in an
“optimal way” and it is certainly not the case that the genetic algorithm is guaranteed
to yield optimal or even near optimal solutions. In fact, there are good counter examples
to these claims. On the other hand, some researchers have attacked the entire notion of
schema processing as invalid or false. Yet the schema theorem itself is clearly true; and,
experimentally, in problems where there are clearly defined regions that are above average,
the genetic algorithm does quickly allocate more trials to such regions—as long as they are
relatively large regions. There is still a great deal of work to be done to understand the role
that hyperplane sampling plays in genetic search.

4 Evolution Strategies

About the same time Holland and his students were developing “genetic algorithms” in the
late 1960’s and early 1970’s in the United States, Ingo Rechenberg and Hans-Paul Schwefel
and others were working in Germany developing ewvolution strategies. Historically, these
algorithms developed more or less independently and in very different directions. Evolution
strategies are generally applied to real-valued representations of optimization problems, and
tend to emphasize mutation over crossover. The algorithms are also often used with much
smaller population sizes (e.g. 1 to 20 members of the population) than genetic algorithms.

The theory behind evolution strategies also developed in different and independent di-
rections. There is no notion of schema processing associated with evolution strategies. The
evolution strategies community was also more aggressive in exploring variations on the basic
evolutionary algorithm and developed a notation to describe various population sizes and
different ways of manipulating parents and offspring.

The two basic types of evolution strategies are known as the (u, A\)-ES and the (u + \)-
ES. The symbol pu refers to the size of the parent population. The symbol A refers to the
number of offspring that are produced in a single generation before selection is applied. In
a (u, A)-ES the offspring replace the parents. In a (u + A)-ES selection picks from both the

11



offspring and the parents to create the next generation. These variations on selection were
explored in depth much earlier by the evolution strategies community than by the genetic
algorithms community.

In practice, early evolution strategies were often simple. This is due in part because
they executed on early simple computers—or were implemented on paper without the use
of computers. Thus a (1+1)-ES has a single parent structure. The parent is modified
to produce an offspring. And since this is a “4” strategy, selection picks the best of the
parent and offspring to become the new parent. Clearly, this algorithm can be viewed as
a hill-climber making some kind of random change and only accepting improving moves.
Rechenberg also introduced the idea of using a (u + 1)-ES where a population of parents
generates a single offspring; this might involve some kind of recombination. Since this is a
“+” strategy, the worst member of the combined parent and offspring population is deleted.
(Thus, the offspring survives only if it is better than one of the parents.)

In the (x4 A)-ES it is common that A > u, and in fact, the number of offspring (\) can
be much larger than the number of parents (u). In this case, some form of selection is used
to prune back the population to only p parents. This is reminiscent of biological species
where many offspring are produced, but few survive to reproduce.

Another way in which evolution strategies differ from most genetic algorithms is that
evolution strategies have long exploited self-adaptive mechanisms. The algorithms often
include strategy parameters that are used to adapt the search to exploit the local topology
of the search space.

Evolution strategies typically use a real-valued representation. Recombination is some-
times used, but mutation is generally the more emphasized operator. Because the repre-
sentation is real-valued, what form should the mutation take? It is typically implemented
as some distribution around the individual being mutated. A Gaussian distribution can be
used with zero mean; the standard deviation must be specified. Given N parameters, the
same standard deviation could be used for each Gaussian mutation operation, or a different
standard deviation could be used by each of the N parameters. In practice, a log-normal
distribution is now more commonly used in place of a Gaussian distribution.

One simple way in which the evolution strategy can be self-adaptive is to encode “strategy
parameters” directly onto the “chromosome”.

For example, a 3-parameter problem might have the encoding
< x1,%2,%3,01,09,03 >

where z; is a parameter value and o; is the standard deviation used to mutate that particular
parameter. We will refer to z; as an “object parameter.” It is also possible to include a
“rotation parameter” for each pair of parameters. Including a vector/matrix of the rotation
parameters could expand the encoding as follows.

< Z1,%2,%3,01,02,03, 051’2, 051’3, 042’3 >

where ¢ ; is a rotation angle used to change the orientation of the mutation.

Note that there is one strategy parameter o; for every object parameter x;. But there
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Figure 4: Adaptive forms of mutation used by an Evolution Strategy.

is a rotation parameter «; ; for all possible pairs of object parameters. If there are n object
parameters, then there are n o strategy parameters and n(n — 1)/2 « strategy parameters.

Figure 4 illustrates two cases of mutation. In each case, there are three members of
the population, represented as hyperellipsoids. There are 2 parameters associated with each
individual /chromosome. The fitness function is represented by contour lines representing
equal evaluation. The leftmost graph shows individuals where there is a standard deviation
associated with each parameter. In the rightmost graph, there is also a rotation associated
with each individual; in this case, since there is only one pair of parameters, there is only
one rotation to consider.

In vector notation, then, a chromosome can be denoted by

=

<X, 0,a>.

The question to be addressed is how mutation should be used to update the chromosome. The
following description is based on Thomas Béack’s book FEwolutionary Algorithms in Theory
and Practice [2] and readers should refer to this work for more details.

Let N(0,1) be a function returning a normally distributed one-dimensional random vari-
able with zero mean and standard deviation one. Let N;(0, 1) denote the same function, but
with a new sample being drawn for each 7. The symbols 7, 7" and [ represent constants that
control step sizes. Mutation then acts on a chromosome

< Z,0,a>

to yield a new chromosome

= =

<7, ¢ d >
where Vi € 1,...,n,Vj € 1,..,n(n—1)/2:
o; = o;exp(t'N(0,1) + 7N;(0, 1))
o; = a; + BN;(0,1)
7 =7+ N(0,C@,a))

where N (0, C) denotes a function that returns a random vector distribution that is normally
distributed with zero mean and covariance matrix C~!. The “rotations” along with the
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variances are used to implement the covariance matrix. The variances form the diagonal of
the covariance matrix (c; = o?).

The rotation angles are limited to the range [r, —7]|. Rotations are implemented using
sine and cosine functions. If mutation moves rotation outside of this range, it is circularly
remapped back onto the the range [m, —].

Bick [2] and Schwefel [39] suggest the following values for the constants.
-1
T X ( 2\/ﬁ>

o (v
B~ 0.0873

Note that the strategy variable o serves to determine the step size of the mutation that
acts on the object parameters. The step size, o, can also become very small. For this reason,
a threshold is used so that ¢ is not allow to be smaller than ¢, .

In practice, it is possible for ¢ to be driven down to the threshold ¢, and to stay there.
Given a relatively smooth evaluation function, shorter jumps are perhaps more likely to
yield values similar to the fitness associated with the current set of object values. This is
especially true as search continues and it becomes harder to find improving moves. Assuming
the evolution strategy is a (u + A)-ES, saving the improved solution also means saving the
strategies value that produced that improved move. If there is a bias, such that shorter hops
a more likely to yield an improvement that a longer hop, then ¢ will be driven toward the
minimum possible value. Mathias et al. [31] suggest using some form of “restart” mechanism
to open the search up again.

Also, just because a particular strategy variable results in a very good move, it does not
automatically imply that the strategy variable is a good one. But with a (x4 A)-ES selection
acts on the object variables and not on the strategy variables. Thus, a good individual with
poor strategy variables can stay in the popoulation. So a (u, A)-ES selection mechanism
where children replace parents can sometimes be more effective than a (u + A)-ES selection
mechanism.

One of the well-known theoretical results of evolution strategies is the 1/5 success rule:
on average, one out of five mutations should yield an improvement in order to achieve the
best convergence rate. There are, of course, very special conditions under which such a
result holds. First, the algorithm for which these theoretical results have been developed is
a simple (1+1)-ES. Second, the results hold for two relatively simple functions, a function
with a simple linear form and a function with a simple quadratic form. Again, in practice,
the 1/5 success rule may imply shorter and shorter hops as one moves infinitely closer to a
(potentially nonglobal) optimum.

Recombination is sometimes used in evolution strategies, but there has been less empirical
and theoretical work looking at the use of recombination. Since real-valued representations
are used, how should recombination be done? Averaging of two or more parents is one strat-
egy. Eiben and Béck [1] present an empirical study of the use of multiparent recombination
operators in evolution strategies.

14



For many benchmark parameter optimization test problems a (i + A)-evolution strategy
yields better results than a canonical genetic algorithm. This is particularly true if the ob-
jective function is relatively smooth. On the other hand, the canonical genetic algorithm is a
(11, A) evolutionary algorithm, with offspring replacing parents, so perhaps such a comparison
is unfair. There are (u + A) evolutionary algorithms such as Genitor and CHC (described
in Section 5) that are much more competitive with (u + \) evolution strategies. Evolution
strategies are often used with population sizes as small as 5 to 20 individuals. This is also
very different from canonical genetic algorithms.

4.1 Evolutionary Programming

The term evolutionary programming dates back to early work in the 1960’s by L. Fogel [16].
In this work, evolutionary methods were applied to the evolution of finite state machines.
Mutation operators were used to alternate finite state machines that were being evolved for
specific tasks.

Evolutionary programming was dormant for many years, but the term was resurrected in
the early 1990s. The new evolutionary programming, as reintroduced by D. Fogel, [15, 14, 13],
is for all practical purposes, nearly identical to an evolution strategy. Mutation is done in a
fashion that is more or less identical to that used in evolution strategies. A slightly different
selection process (a form of Tournament Selection) is used than that normally used with
evolution strategies, but this difference is not critical. Given that evolution strategies go back
to the 1970’s and predate the modern evolutionary programming methods by approximately
20 years, there appears to be no reason to see evolutionary programming as anything other
than a minor variation on the well-established evolution strategy paradigm. Historically,
however, evolution strategies were not well known outside of Germany until the early 1990’s
and evolutionary programming has now been widely promoted as one branch of Evolutionary
Computation.

There are a couple of conceptual ideas that are closely associated with evolutionary pro-
gramming. First, evolutionary programming does not use recombination and there is a gen-
eral philosophical stance that recombination is unnecessary in evolutionary programming—
and in evolutionary computation in general! The second idea is related to the first. Evolu-
tionary programming is viewed as working in the phenotype space whereas genetic algorithms
are seen as working in the genotype space. A philosophical tenant of evolutionary program-
ming is that operators should act as directly as possible in the phenotype space to change
the behavior of a system. Genetic algorithms, on the other hand, make changes to some
encoding of a problem must be decoded and operationalized in order for behaviors to be ob-
served and evaluated. Sometimes this (partially philosophical) distinction is clear in practice
and sometimes it is not.
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5 Two Other Evolutionary Algorithms

5.1 Genitor

Genitor [47, 50] was the first of what has been termed “steady-state” genetic algorithms
[43]. The distinction between steady-state genetic algorithms and regular generational ge-
netic algorithms was also foreshadowed by the evolution strategy community. The Genitor
algorithm, for example, can also be seen as an example of a (u + 1)-ES in terms of its selec-
tion mechanism. Reproduction occurs one individual at a time. Two parents are selected for
reproduction and produce an offspring that is immediately placed back into the population.
Otherwise, the algorithm retains the flavor of a genetic algorithm. The worst individual in
the population is deleted.

Another major difference between Genitor and other forms of genetic algorithms is that
fitness is assigned according to rank rather than by fitness proportionate reproduction. The
population is maintained in a sorted data structure. Fitness is pre-assigned according to the
position of the individual in the sorted population. This also allows one to prevent duplicates
from being introduced into the population. This selection schema also means that the best
N-1 solutions are always preserved in a population of size N. Goldberg and Deb [17] have
shown that by replacing the worst member of the population, Genitor can generate much
higher selective pressure than the canonical genetic algorithm.

In practice, steady-state genetic algorithms such as Genitor are often better optimizers
than the canonical generational genetic algorithm. But this is somewhat of a comparison
between apples and oranges, since the canonical generational genetic algorithm should be
classified as a (i, A) evolutionary algorithm.

5.2 CHC

The CHC [12, 11] algorithm was created by Larry Eshelman with the explicit idea of borrow-
ing from both the genetic algorithm and the evolution strategy community. CHC explicitly
borrows the (u+ A) strategy of evolution strategies. After recombination, the N best unique
individuals are drawn from the parent population and offspring population to create the next
generation. This also implies that duplicates are removed from the population. This form of
selection is also referred to as truncation selection. From the genetic algorithm community
CHC builds on the idea that recombination should be the dominant search operator. A bit
representation is typically used for parameter optimization problems. In fact, CHC goes so
far as to use only recombination in the main search algorithm. However, it uses restarts that
employs what Eshelman refers to as cataclysmic mutation.

Since truncation selection is used, parents can be paired randomly for recombination.
However, the CHC algorithm also employs a heterogeneous recombination restriction as a
method of “incest prevention” [12]. This is accomplished by only mating those string pairs
which differ from each other by some number of bits (i.e., a mating threshold). The initial
threshold is set at L/4, where L is the length of the string. If a generation occurs in which
no offspring are inserted into the new population, then the threshold is reduced by 1.
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The crossover operator in CHC performs uniform crossover; bits are randomly and in-
dependently exchanged, but exactly half of the bits that differ are swapped. This operator,
called HUX (Half Uniform Crossover) ensures that offspring are equidistant between the two
parents. This serves as a diversity preserving mechanism. If an offspring is closer to one
parent or the other, it is more similar to that parent. If both the offspring and the similar
parent make it into the next generation, this reduces diversity.

No mutation is applied during the regular search phase of the CHC algorithm. When
no offspring can be inserted into the population of a succeeding generation and the mating
threshold has reached a value of 0, CHC infuses new diversity into the population via a form
of restart. Cataclysmic mutation uses the best individual in the population as a template to
re-initialize the population. The new population includes one copy of the template string;
the remainder of the population is generated by mutating some percentage of bits (e.g., 35%)
in the template string.

Bringing this all together, CHC stands for Cross generational elitist selection, Hetero-
geneous recombination (by incest prevention) and Cataclysmic mutation, which is used to
restart the search when the population starts to converge.

The rationale behind CHC is to have a very aggressive search (by using tuncation selection
which guarantees the survival of the best strings) and to offset the aggressiveness of the
search by using highly disruptive operators such as uniform crossover. Because of these
mechanisms, CHC is able to use a relatively small population size. It generally works well
with a population size of 50. Eshelman and Schaffer have reported quite good results using
CHC on a wide variety of test problems [12, 11]. Other empirical experiments (c.f. [32,
46]) have shown that it is one of the most effective evolutionary algorithms for parameter
optimization. Given the small population size, it seems unreasonable to think of an algorithm
such as CHC as a “hyperplane sampling” genetic algorithm. It can be viewed as an agressive
population based hill-climber.

6 Binary, Gray and Real-Coded Representations

One of the long-standing debates in the field of evolutionary algorithms involves the use
of binary versus real-valued encodings for parameter optimization problems. The genetic
algorithms community has largely emphasized bit representations. The main argument for
bit encodings is that this representation decomposes the problem into the largest number
of smallest possible building blocks and that a genetic algorithm works by processing these
building blocks. This viewpoint, which was widely accepted ten years ago, is now considered
to be controversial. On the other hand, the evolution strategies community [39, 40, 2] and
more recently the evolutionary programming community [13] have emphasized the use of
real-valued encodings. Application oriented researchers were also among the first in the
genetic algorithms community to experiment with real-valued encodings [8, 26].

A related issue that has long been debated in the evolutionary algorithms community
is the relative merit of Gray codes versus Standard Binary representations for parameter
optimization problems. Generally, “Gray code” refers to Standard Binary Reflected Gray
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GRAY BCD

1111 1110 1010 1011 1111 1110 1010 1011
10 11 12 13 15 14 10 11
1101 1100 1000 1001 1101 1100 1000 1001
9 8 15 14 13 12 8 9
0101 0100 0000 0001 0101 0100 0000 0001
6 7 0 1 5 4 0 1
0111 0110 0010 0011 0111 0110 0010 0011
5 4 3 2 7 6 2 3

Figure 5: Adjacency in 4-bit Hamming space for Gray and standard Binary encodings. The
Binary representation destroys half of the connectivity of the original function.

code [6]; but there are exponentially many possible Gray codes. A Gray code is a bit encoding
where adjacent integers are also Hamming distance 1 neighbors in Hamming space.

Over all possible discrete functions that can be mapped onto bit strings, the space of all
Gray codes and the space of all Binary representations are identical—this is another example
of what has come to be known as a kind of “No Free Lunch” result [53, 36].

The empirical evidence suggests, however, that Gray codes are generally superior to
Binary encodings. It has long been known that Gray codes remove Hamming Cliffs, where
adjacent integers are represented by complementary bit strings: e.g., 7 and 8 encoded as
0111 and 1000. Whitley et al. [49] first made the rather simple observation that every Gray
code must preserve the connectivity of the original real-valued functions. This is illustrated
in Figure 5.

A consequence of the connectivity of the Gray code representation is that for ewvery
parameter optimization problem, the number of optima in the Gray coded space must be
less than or equal to the number of optima in the original real-valued function. Binary
encodings offer no such guarantees. Binary encodings destroy half of the connectivity of
the original real-valued function; thus, given a large basin of attraction with a globally
competitive local optimum, many of the (non-locally optimal) points near the optimum of
that basin become new local optima under a Binary representation.

Whitley [45] has recently proven that Binary encodings work better than Gray codes on
“worst case” problems; but this also means that Gray codes are better (on average) on all
other problems. A “worst case” problem is a discrete function where half of all points in
the search space are local optima. It is also simple to prove that for functions with a single
optimum, Gray codes induce fewer optima than Binary codes. The theoretical and empirical
evidence strongly indicates that for real-valued functions with a bounded number of optima,
Gray codes are better than Binary in the sense that Gray codes induce fewer optima.

As for the debate over whether Gray bit encodings are better or worse than real-coded
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representations, the evidence is very unclear. In some cases real-valued encodings are better.
Sometimes one also has to be careful to compare encodings using similar precision (e.g., 32
bits each). In other cases, a lower precision Gray code out-performs a real-valued encoding.
There are no clear theoretical or empiricial answers to this question.

7 Genetic Programming

Genetic programming is very different from any of the algorithms reviewed so far. Genetic
programming is not a parameter optimization method, but rather a form of automated
programming. There have certainly been other applications of evolutionary algorithms that
foreshadowed genetic programming. L. Fogel’s early attempts to evolve finite state machines
can be seen as a kind of programming (hence evolutionary programming has its roots in
a form of programming). And in the 1980’s, genetic algorithms were applied to evolving
rule based systems such as classifier systems [18]. Steve Smith developed one of the first
systems applying genetic search to variable length rule based systems in 1980 [41]. But
genetic programming represents a major change in paradigm.

To start to understand genetic programming, it is perhaps best to look at a restricted
example. Assume we are given the following function approximation task, where we wish to
approximate a function of the form

F1:2%—22%+38.

Genetic programming is often implemented as a Lisp program. One Lisp program to
implement function F1 is as follows.
(+ (Fx(Fxx) (+ (-2 (*xx)) 8))
There are several important things to note about this expression that are also important
to genetic programming. First, there is a tree structure that directly corresponds to this
program. Second, the tree structures are composed of substructures that are also trees and

that are also syntactically correct self-contained expressions. Third, the expression itself is
made up of functions that appear as internal nodes and terminals that appear as leaf nodes.

In genetic programming a structure such as
(+ (Fx (Fxx)) (+ (* -2 (F xx)) 8))
can directly be used as an artificial chromosome. A natural question is, “How can one re-
combine such structures?” Recombination directly swaps subtrees from different expressions.
Figure 6 shows how two subtrees can be recombined to produce a tree that exactly computes
3 2

z° —2x° + 8.

Mutation can use used to change leaf nodes and to change internal nodes. (The arity of

the operator must be handled in some way—either by restricting recombination to subtrees
of the same arity or by defining functions to be meaningful over different arities.)

The other critical question is what set of functions and terminals should be used. The
set, of functions and terminals must be defined when creating the initial population and also
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Figure 6: Subtrees from Parent 1 and Parent 2 can be exchanged to produce a new tree. The
rightmost tree is the offspring produced by taking the circled subtree of parent 2 and replacing
the circled subtree in parent 1.

when doing mutation. This is a somewhat critical question. Is it obvious what the set of
terminals/functions should be? Does using a different set of terminals/functions change how
difficult or easy the problem is to solve?

Another issue that arises when creating the initial population and also when doing re-
combination is the size of the trees that are generated. The larger the trees are allowed to be,
the larger the search space becomes. Allowing trees to become too large can reduce the effec-
tiveness of search, while making trees too small can limit the ability of genetic programming
to find a solution. The depth of the trees in the initial population must obviously be limited
to some maximum depth, and some similar limitation can be imposed during recombination.

Note again that we are attempting to find or approximate the following function:
F1:2° —22° +8.
Figure 7 shows two rough approximations to F1 given by
F2 : 30z + 5000

F3: 2000z — 9992.

The point of Figure 8 is that trees with forms similar to the target functions can also give
rough approximations. It is also the case that the partial subtrees for these approximate
solutions can be reconfigured by using recombination and mutation. Thus, it is possible to
find other partial solutions that yield good approximations and eventually reconfigured to
yield the desired results. As a result, the “fitness landscape” has some degree of smoothness.
If one cannot find trees similar to the target that also yield approximate solutions, then it
may be difficult to search the resulting program space.

There has been a very limited amount of theory developed to explain genetic program-
ming. The theory that does exist has tried to explain genetic programming in terms of
schema processing [35, 34, 33]. But while the field is perhaps short on having a strong the-
ory, there have been some startling empirical successes. For example, Koza et al. [28] have
used genetic programming to evolve circuit description programs. Genetic programming has
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Figure 7: The leftmost graph shows the linear approrimation F3 plotted against the target
F1. The rightmost graph shows the quadratic approrimation F2 plotted against the target
F1.

been able to rediscover several patented circuits; in another case, genetic programming has
been able to find circuits to accomplish a task that many electrical engineers thought was
impossible [29].

In addition to being applied to Lisp programs, genetic programming has also been ap-
plied to other specialized languages. One such system is AIM-GP: Automatic Induction of
Machine-code Genetic Programming. One of the advantages of AIM-GP is that this system
can execute as much as 2 or 3 orders of magnitude faster than other genetic programming
implementations because learning occurs at the machine code level.

The AIM-GP system represents individuals as machine code programs. AIM-GP uses C
code operations to act directly on registers. This means that, in effect, AIM-GP generates a
subset of C as its program output [5]. One can still constrain the operations on registers to
produce effects similar or identical to higher level primitives often used in GP. For example,
one might use a sequence of code to compute the Cosine of some value. In this case, a high
level mutation could introduce this block of code or alter how it is applied.

8 Parallel Evolutionary Algorithms

Evolutionary Algorithms are easily parallelized. One of the simplest things that can be done
is to evaluate the populuation in parallel. There have also been several mechanisms and
selection strategies developed to support this type of parallelism. From a practical point of
view, there is also another form of parallelism that is extremely easy to implement and that
offers the potential to significantly improve search. This is the parallel Island Model.

An island model is a coarse grain parallel model. Assume we wish to use 64 processors and
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Figure 8: Three different trees for functions F1, F2 and F3. Similarities between trees that
approximate the target function areis an advantage when searching program space.

6,400 strings. One way to do this is to break the total population down into 64 subpopulations
of 100 strings each. Fach one of these subpopulations could then execute as a normal
evolutionary algorithm. It could be a canonical genetic algorithm, evolution strategy or
Genitor. But occasionally, perhaps every five generations or so, the subpopulations would
swap a few strings. This migration allows subpopulations to share genetic material [52, 20,
42, 44]. Note that the implementation cost is extremely minimal. This model can easily be
implemented on a network of workstations and has very minimal communication costs since
the migration of individuals between islands is limited.

The search in every subpopulation will be somewhat different since the initial populations
will impose a certain sampling bias that will cause them to have a different trajectory through
the search space. Thus, having different subpopulations acts as a means of maintaining and
exploiting diversity in the overall population. By introducing migration, the Island Model
is able to exploit differences in the various subpopulations. If a large number of strings
migrate each generation, then global mixing occurs and local differences between islands will
be driven out. If migration is too infrequent, it may not be enough to prevent each small
subpopulation from prematurely converging.

Running an Island Model on a single processor (without the parallelism) is often more
effective than running a single population evolutionary algorithm with the same cumulative
population size.

9 The Evaluation of Evolutionary Algorithms

When should an evolutionary algorithm be used? For example, when an optimization prob-
lem is encountered, when should one consider the use of an evolutionary algorithm?

Evolutionary algorithms are what are known as weak methods in the Artificial Intelli-
gence community. Weak methods do not exploit domain specific knowledge. Evolutionary
algorithms are also an example of what is known as a blind search method.

For many domains, there may be a good deal of domain specific knowledge. Methods that
exploit domain knowledge will almost always out-perform methods that are blind. This leads
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Anldand Model Genetic Algorithm

Figure 9: An example of an Island Model evolutionary algorithm. Migration is only allowed
occassionally between the islands. The migration is typically between different islands at
different points in time.

to two observations: 1) if one has a domain specific method that exploits domain knowledge,
use it; 2) if one is still interested in trying some form of evolutionary computation, try to
add domain knowledge into the evolutionary algorithm.

One of the most simple tests to do before one attempts to apply an evolutionary algorithm
is to try some form of local search. In local search, a neighborhood structure is defined around
every point in the search space. Search then proceeds from a point and by testing all of the
neighbors for an improving move. Any point where all of the neighbors are inferior is a local
optimum.

An easy way to do local search is to apply a bit climber. This is especially true if a genetic
algorithm is going to be used that also utilizes a bit encoding. In this case, the neighborhood
is defined by flipping the L bits of the string representing the current point in the search
space. This neighborhood is also known as the Hamming Distance-1 neighborhood; the
entire search space is then Hamming Space.

Dave Davis’algorithm called Random Bit Climbing (RBC) is a local search algorithm
that climbs in Hamming Space [7]. A random permutation is generated that determines
the order in which bits are flipped. Each improving move is accepted. After every bit has
been tested, a new permutation is generated for the next pass. If RBC has checked every
bit in the string and no improvement is found, a local optimum has been found and RBC is
restarted from a new random point in the search space.

Other methods that might be used include such simple methods as forms of line search [49]
and the Nelder Mead simplex methods (c.f. [40]). None of these methods requires gradient
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information. If gradient information is available, then some form of nonlinear gradient based
search should be attempted. Whitley et al. [49] provide a more in-depth discussion of the
evaluation of evolutionary algorithms for optimization and search problems.

In the case of genetic programming, finding some reasonable comparative method may
or may not be simple. In the case of classification problems, neural networks may be a
reasonable alternative to genetic programming. But in specialized domains, such as circuit
design, it may not be easy to find an obvious method that can be easily compared against
genetic programming. In some cases, it may be possible to use some form of local search.

10 Conclusions

There is a large body of literature covering evolutionary algorithms. Some topics not covered
include the use of hybrid evolutionary algorithms that combine local search or some other
heuristic search methods. Such methods can be used to improve the initial population or
to improve each offspring that is produced. Evolutionary algorithms also have been applied
with a good measure of success to scheduling and other combinatorial optimization problems.
A special issue of the journal Evolutionary Computation [10] covers scheduling applications.

Major conferences in the area include the Genetic and Evolutionary Computation Con-
ference (GECCO), Parallel Problem Solving from Nature (PPSN), and the IEEE Congress
on Evolutionary Computation. Smaller high quality venues include the Foundations of Ge-
netic Algorithms theory workshops and the Furopean Conference on Genetic Programming
(Euro-GP).
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