CHAPTER 3

Tableaux and Related Methods

Reiner Hahnle

SECOND READERS: Uli Furbach and Philippe de Groote.

Contents

1 Introduction e e e e e 103
2 Preliminaries L e e e e e e e e 104
2.1 Syntax ... e e e 104
2.2 Semantics e e e e e e e e e e e e 106

3 The Tableau Method e 107
3.1 Informal Introduction e 107
3.2 Non-clausal Tableaux with Unification 109
3.2.1 Unifying Notation 109

3.2.2 Tableau Rules e 110

3.2.3 Tableau Proofs e e 110

3.2.4 Tableau Semantics and Soundness 112

3.2.5 Universal and Rigid Variables. 114

3.2.6 Binary versusn-ary Rules 000000 116

3.3 From Calculus to Proof Procedure 116
3.4 Tableau Completeness Lo e e 120
3.5 Proof Representation o oo 121
3.5.1 Trees, Matrices, Connections & Matings 121

3.5.2 Pruning Irrelevant Parts of a Proof 124

3.5.3 Simplification e e e 125

4 Clause Tableaux L o e e e e e 125
4.1 Normal Form Computation, 126
4.2 Clause Tableau Proofs, Soundness, Completeness 126
4.2.1 Clause Tableaux e e e 126

4.2.2 Soundness and Completenesso . 127

4.3 Connections L e e e e e e e e 129
4.3.1 Connection Tableaux o 129

4.3.2 Weak Connections o o v v v e 131

4.4 Regularity 131
4.5 Orderings and Selection Functions 134
4.5.1 Redundancy and Saturation in Tableaux 134

4.5.2 Tableaux with Selection Function 135

4.5.3 Related Calculi e 136

4.5.4 First-Order Issues o v v v i i i e e e e e 137

HANDBOOK OF AUTOMATED REASONING
Edited by Alan Robinson and Andrei Voronkov
© 2001 Elsevier Science Publishers B.V. All rights reserved

4.6 Hyper Tableaux e

4.6.1 Positive and Semantic Hyper Tableaux
4.6.2 First-Order Issues o i ittt e e
4.6.3 Model Generation
4.7 A Destructive and Strongly Complete First-Order Calculus
4.8 Tableaux with Cuts and Lemmas
4.8.1 Tableaux and Sequent Calculi
4.8.2 Tableaux with Lemmas,
4.8.3 Tableaux with Folding Up
4.8.4 Tableaux with Factoring
4.8.5 Problems of Strengthening Tableaux
Tableaux as a Framework L
5.1 Model Elimination L e
5.2 Linear Resolution L e
5.3 Tableaux and (Disjunctive) Logic Programming
5.3.1 Near-Horn Prolog, Simplified Problem Reduction Format
5.3.2 Restart Model Elimination
5.3.3 Restart Tableaux
5.4 Davis-Putnam Procedure, KE method and Stgalmarck’s proof procedure
Comparing Calculi
Historical Remarks & Resources
Bibliography L e
Notation e e

Index . ..

138
140
140
143
144
146
148
149
150
151
151
152
153
155
155
159
161
162
162
164
167
168
176
177

TABLEAUX AND RELATED METHODS 103

1. Introduction

Reasoning methods based on tableaux and their relatives gained a lot of attention in
the past decade after a long period of near stagnation. One reason is that theoreti-
cal and implementational progress finally permitted to build tableau-based theorem
provers [Moser, Ibens, Letz, Steinbach, Goller, Schumann and Mayr 1997] that can
compete [Sutcliffe and Suttner 1999] with state-of-the-art resolution-based systems,
at least for logic without equality. Tableau calculi are also well suited to cooper-
ate with [Ahrendt, Beckert, Hihnle, Menzel, Reif, Schellhorn and Schmitt 1998]
interactive theorem provers used for software verification, which are usually based
on sequent calculi. Another reason is the increased need for deduction in various
non-classical logics for which tableau calculi are a particularly good match.

Today, a large number of refinements of tableau-like calculi aimed at efficient
automated proof search are available. In fact, there are so many of them that it
has become quite difficult for the non-specialist keep track of the main develop-
ments. The difficulty of this task is increased by the plethora of names for closely
related systems: connection tableaux, connection method, hyper tableaux, matri-
ces, matings, model elimination, model generation, near-Horn logic programming,
SL-resolution all are relatives of each other.

In this paper I introduce the main lines of development of tableau-like calculi,
as far as they are relevant for automated reasoning, in a uniform framework. At
the same time I work out their mutual relationships and I classify the refinements
according to various properties.

Most refinements of tableau calculi are defined and implemented only for clause
normal form. Accordingly, after a brief treatment of tableaux for full first-order
logic in Section 3, the bulk of the material is presented on the clause level (the
transformation of arbitrary formulas into clause normal form is discussed in detail
in [Baaz et al. 2001, Nonnengart and Weidenbach 2001] (Chapters 5 and 6 of this
Handbook)). In Section 4 the main types of refinements of tableau-like calculi are
defined and discussed; in Section 5 a number of related calculi are defined relative
to the coordinates introduced in the section before. A brief section on comparison
and evaluation of calculi follows. The history of tableau-like proof methods is long
and vined. Many key ideas were discovered several times independently. I sketch
the major developments in the brief historical Section 7.

It was an editorial decision to handle certain topics closely related to tableaux not
in the present chapter. Equality reasoning in sequent and tableau calculi is discussed
in [Degtyarev and Voronkov 2001a] (Chapter 10 of this Handbook), material on
tableaux for non-classical logics in [Baaz, Fermiiller and Salzer 2001, Waaler 2001]
(Chapters 20 and 22), implementation techniques for (connection) tableau calculi
in [Letz and Stenz 2001] (Chapter 28).

104 REINER HAHNLE

2. Preliminaries

Here some basic ingredients of computational logic are collected. This section cannot
replace a proper introduction into logic and elementary issues of theorem proving.
I recommend Fitting’s [1996] book as background.

2.1. Syntaz

A first-order signature ¥ = (Py, F%.) consists of a non-empty set Py, of predicate
symbols and a set Fx of function symbols. Each symbol in Ps, Fx has a fixed
non-negative arity. In addition, there is an infinite set Var of variables.

Given a signature X, the sets Ty, of terms and Ay, of atoms over X are inductively
defined by:

1. Variables and O-ary function symbols from ¥ are terms.

2. If ty,...,t, are terms, f is a n-ary function symbol from X, then f(t1,...,t,)

is a term over X.

3. If ty,...,t, are terms, P is a n-ary predicate symbol from X, then P(t1,...,t,)
is an atom over 3.

The logical operators are the connectives V (disjunction), A (conjunction) and
— (negation), the quantifier symbols V and 3, and the constant operators true and
false.

Given a signature X, the set Ly of first-order formulas' over ¥ is inductively
defined by:

1. true, false and atoms over ¥ are formulas.

2. If ¢ is a formula, then —¢ is a formula.

3. If ¢1,...,¢n, n > 1, are formulas none of which is a conjunction (resp., dis-
junction) formula, then ¢; A --- A ¢, (resp., ¢1 V ---V ¢,) is a conjunction
(disjunction) formula.

4. If ¢ is a formula and x € Var, then (Vz)¢ and (3z)¢ are formulas. ¢ is called
the scope of the quantifier (Vz), resp., of (3z).

Formulas that are identical up to associativity of V and A are identified. Instead
of (Va1) -+ (V)¢ write (Y1, ..., z.)é. A literal is an atom or a negated atom. In
the former case, one speaks of a positive literal, otherwise of a megative literal.

The size of a (set of) formula(s) is the number of symbols occurring in it. Let
[|¢]| stand for the size of a formula or set of formulas.

A formula is in negation normal form (NNF) if each occurrence of the negation
symbol in it is part of a literal.

A ground term (atom, literal, formula) is a term (atom, literal, formula) that
contains no variables. The set of ground terms is abbreviated with 7°. A proposi-
tional formula is, by definition, a ground first-order formula, in which no quantifiers
or function symbols occur.

Hmplication and equivalence are considered to be defined operators, i.e., ¢ — 1 is the same as
—¢ VY, and ¢ <> 1 is the same as (¢ AY) V (mp V —p).

TABLEAUX AND RELATED METHODS 105

The complement ¢ of a formula ¢ is defined by: ¢ = ¢ if ¢ is of the form —p,
and ¢ = —¢ otherwise.

An occurrence of a variable x in a formula is called bound if x occurs in the scope
of a quantifier over z, it is called free otherwise. A formula without free variable
occurrences is a sentence.

A clause is either the formula false or a sentence of the form (Vai,...,z,)(L1 V

-+V Lp,), m > 1, where L; are literals. For sake of readability the quantifier prefix
of first-order clauses is usually not written (but assumed to be present). If m = 1,
we speak of a unit clause. The formula false is the empty clause. Note that clauses
are particular formulas. A formula is in conjunctive normal form (CNF) if it is of
the form /\::1 C;, where C; are clauses.

A clause with at most one occurrence of a positive literal is a Horn clause. A
clause with only positive (negative) literals is a positive (negative) clause. A non-
empty, positive Horn clause is called a fact (note that it must contain exactly
one literal), a non-empty, negative Horn clause is called a query. Non-empty Horn
clauses that are neither facts nor queries are called rule.

When C, D are ground clauses C C D means that every literal of C is also a
literal of D; L € D expresses that the literal L is a literal of clause D. A clause is
a tautology if it contains literals of the form p and —p for some atom p.

A substitution is a mapping o : Var — Tx. It is extended to terms and (sets of)
formulas as follows:

1l.o(c)=c

2. o(true) = true, o(false) = false

3. 0(s (tl,..., tn)) = s(o (tl) ,0(ty)) for s € Fx U Py, arity of sis n

4. 0(pre---0p,)=0(d1)e o o(¢y) for e € {A,V}

5. 0(=¢) = ~o(¢)

6. o((Qz)d) = (Qy)o'(¢) for @ € {V,3}, where o’ =c\{z =t |t € TIU{z — y}

and y is a variable not occurring in (Qz)¢ such that o(y) =y

T.0({¢1,. - 0n}) = {0(¢1), ., 0(dn)}

If o(xz) = z for all but finitely many = € Var we denote o by {z1 + t1,...,z, —
t,}, where {z;,...,x,} are exactly the variables with o(z;) = t; # x;, and o(z) =
x for all other variables. Application of substitutions is usually written postfix,
composition of substitutions o o p is denoted by po (note that ¢(o o p) = (dp)o =
¢po). When for the substitution o all o(z) for z € V' C Var are ground terms one
has a grounding substitution for the variables V. A renaming for a set of variables
{z1,...,z,} is a substitution v = {z1 — y1,..., &, — Yy, } such that the y; are new
and different variables in the context, where v appears. An idempotent substitution
is a substitution, for which 0 o0 = 0.

Let |S| denote the cardinality of a set S. If T is a non-empty set of terms and
|To| = 1, then o is a unifier of T. It is a most general unifier (MGU) if for all
unifiers p of T" there is a substitution 6 such that p = 6 o ¢. Unifiability of a finite
set, of terms can be decided in linear time. A unifiable set of terms has always an
idempotent MGU. See [Baader and Snyder 2001] (Chapter 8 in this Handbook) for
details.

106 REINER HAHNLE

An instance or, more precisely, a o-instance of a clause C' = (Vaq,...,2,) (L1 V
-+V Lp,) is a formula (L; V -+-V L,,)o, where o is any substitution. One has a
new instance of C, if o is a renaming for {z,...,z,}. When ¢ is a grounding
substitution for {z;,...,x,} one has a ground instance of C.
The subformulas of a formula ¢ are recursively defined as follows:
1. Every formula is a subformula of itself
2. If p = P @ -0y, then any formula of the form = ¢;, ®---e¢; is a subformula
of ¢, where {iy,...,i,} C{1,...,n} and e € {A,V}
3. If ¢ = —p, then 1) is a subformula of ¢
4. If ¢ = (Qx)v, then ¢ is a subformula of ¢, where Q € {V,3}

If ¢ is a subformula of ¢ and ¢ # v then 1 is a proper subformula of ¢. If ¢ is a
proper subformula of ¢ such that there is no proper subformula p of ¢ with ¢ being
a proper subformula of p, then v is an immediate subformula of ¢.

An occurrence of a subformula p in ¢ € Ly is

1. positive if ¢ = p,

2. negative (positive) if ¢ is of the form —) and the occurrence of p is positive
(negative) in v,

3. positive (negative) if ¢ is an immediate subformula of ¢, but ¢ # —), and the
occurrence of p is positive (negative) in).

2.2. Semantics

Given a first-order signature X, a first-order structure M = (D,I) consists of a
non-empty set D called domain and an interpretation I that assigns to each n-ary
function symbol f € Fs a mapping I(f) : D" — D and to each n-ary predicate
symbol P € P a relation I(P) C 2P".

A wariable assignment for a first-order structure M is a mapping u : Var — D.
The d-variant of u at x is

gy =4 ¢ Hr=v
‘ wu(y) otherwise

For a first-order structure M over signature ¥ with variable assignment p we
define tM:# for all ¢ € Ty inductively:

oMK = u(x) for x € Var
Pty oo t)™ = IO EH, L N8) for f(t1, . 1) € T
Truth of formulas ¢ € Ly, in M under u, written (M, u) [¢, is defined as follows:

(M, p) = true for all M and pu

(M, p) [= false for no M and pu

(M, 1) = P(ty, ..., t,) iff (Y0, ... tM#) € I(P) for P(ty,...,t,) € As
(M, p) =~ iff not (M,) ¢

(M) Edr ANy, iff (M,p) =¢; forallie{l,...,n}

(M,p) Edr V-V, iff (M,u)E¢; for at least onei € {1,...,n}

TABLEAUX AND RELATED METHODS 107

(M,) E (Vz)¢ iff (M,pud) ¢ foralldeD
(M, p) = (Jz)o iff (M, ul) = ¢ for at least one d € D

A formula ¢ is satisfiable in M, if there exists a p such that (M, pu) =¢. A set
of formulas is satisfiable, if each of its members is satisfiable simultaneously under
the same variable assignment.

A first-order structure M over signature X is a model of a set of formulas ¥ C Ly,
denoted M | U, if (M, u) ¢ for all ¢ € ¥ and variable assignments p. In the
light of this definition, CNF formulas are identified with finite sets of clauses. A
sentence ¢ is a logical consequence of a set of sentences ¥, denoted ¥ |= ¢ if each
model of ¥ is also a model of ¢. ¢ is valid, written |= ¢, when each structure M is
a model of ¢.

A first-order structure M = (D, I) over signature ¥ is a term domain structure

if D =TY.

2.1. PROPOSITION. For all sentences ¢ € Ly, and sets of Ly -sentences V: ¥ =y, ¢
iff ©U{~¢} is unsatisfiable.

For skolemization we do not use symbols from Fx but from a special infinite
set, Fyo of Skolem function symbols that is disjoint from Fy; the extended signature
(Ps, Fs, U Fy,) is denoted with X*.

Here is a variant of the Lowenheim-Skolem theorem that will be needed:

2.2. THEOREM. If a sentence ¢ € Ly, is satisfiable, then it has a X*-term model.

In the following, assume F% contains at least one constant, then 72 # (). A term
domain structure (73, I), where, in addition, I(f)(t1,...,t,) = f(t1,...,t,) for all
f € Fy, is called Herbrand structure.

2.3. THEOREM (Herbrand’s Theorem). Assume that ¢ is a sentence of the form
(Y1, ..., 2)0, where 1 is quantifier-free; ¢ is unsatisfiable iff there is an m > 1
and grounding substitutions 0; for {x1,...,x,} such that \;-, (40;) is unsatisfiable.
The minimal number m, for which this is possible is the Herbrand complexity of ¢.

In particular, let S be a finite set of clauses. Then S is unsatisfiable iff there is
a finite unsatisfiable set S of ground instances of S.

The result is due to Herbrand [19300]; a proof is, for example, in [Smullyan 1995].

3. The Tableau Method
3.1. Informal Introduction

It is common to view the tableau method as a proof by contradiction and case
distinction (this view was already stressed by pioneers Beth [1955] and Hintikka
[1955]). More precisely, it allows one to systematically generate subcases until ele-
mentary contradictions are reached. Let us go through a small example:

108 REINER HAHNLE

Agsume we want to prove the following simple theorem from elementary set
theory: for arbitrary sets P, @, R,

(1) P#90
if¢ (2) PCQ pthen PNR#.
B) QCR

The proof is by contradiction: assume PN R = (). From (1) we know that there
is an element ¢ € P. Now apply (2) to c: if ¢ € P, then ¢ € (). But we know already
that ¢ € P, hence, ¢ €). Note that (2) can be seen as an implicit case distinction:
either ¢ ¢ P or ¢ €), where the first case immediately contradicts (1). In the same
way, deduce from ¢ €) with (3) that ¢ € R. At this point, apply the assumption
to c: either ¢ € P or ¢ € R. Both cases yield a contradiction immediately.

The proof is easier to follow, if displayed tree-like as in Figure 1. Observe that
case distinctions can be generated schematically depending on the form of their
premise. At several points, premises had to be suitably instantiated.

Premises (2), (3), and the assumption are universally quantified, for instance,
the assumption says that for all elements x, x cannot be both an element of P and
of R. In automated theorem proving finding instances is done by wnification—one
tries to find a substitution that produces a contradiction in the current branch
of the proof (in the example this is {x + c¢}). In general one needs, of course, to
apply a premise more than once during a proof. The number of applications, closely
related to Herbrand complexity in Theorem 2.3, cannot be computed in advance
(otherwise, first-order logic would be decidable). One of the problems that tableau
methods must solve is to systematically enumerate “enough” (this is made precise
later) instances of universally quantified formulas.

From premise (1) one obtains existentially quantified expressions saying that P
must contain at least one element. In automated theorem proving such witness
elements are produced by skolemization: the existentially quantified variable is re-
placed by a “new” term that has not yet an interpretation (again, this is made
precise later).

(1)—(3) & Ass.

ceP
ichP/ \thenceQ
x ichQ/ }znceR
X either cé orc¢ R
X X

Figure 1: Structure of an informal proof by contradiction and case distinction.

TABLEAUX AND RELATED METHODS 109

a Ay, ...,0n I3 By Bn
AN\ Dryee s bn o1 V...V, Dryee s bn
(L V...V, —o1,...,m0, (LA NG D1, ., O,

- ¢
—false true
—true false
i Y1 0 01
(Vo) (6(2)) () ~(V2)(6(x) —o(a)
~(30)(6(x) —¢(a) (@)(6() olx)

Table 1: Correspondence between formulas and their types.

3.2. Non-clausal Tableauz with Unification

3.2.1. Unifying Notation

The first step in formalizing the considerations in the previous section is to supply
formal rules that tell in which way a formula is analyzed according to its leading
connective. Smullyan [1963] and Lis [1960] independently observed? that some work
can be saved if non-literal formulas are grouped into types which are treated iden-
tically: a for formulas of conjunctive type, 3 for formulas of disjunctive type, v for
quantified formulas of universal, and ¢ for quantified formulas of existential type.
Correspondence between formulas and their types is summarized in Table 1. By
convention, doubly negated formulas and negated logical constants are treated as
type a-formulas (with n = 1).

The letters a, 3, v, and 0 are used to denote formulas of (and only of) the
appropriate type. In the case of 7- and d-formulas the variable z bound by the (top-
most) quantifier is made explicit by writing y(z) and 7, (z) (resp., 6(x) and d; (z));
accordingly v (¢) denotes the result of replacing all occurrences of x in v, by t.
Without loss of generality assume that no variable of ¢ occurs in the scope of
a quantifier in 4, or d;. If necessary, this can be achieved by renaming the bound
variables in y; and d;. Associativity of A and V justifies conjunctive and disjunctive
formulas with an indefinite number of arguments.

Some authors [Lis 1960, Smullyan 1995] prefer to work with signed formulas.
These are expressions of the form T ¢, F ¢, where ¢ is a formula. Signed formula
tableaux relate more directly to sequent calculi, because T-signed formulas play
the role of formulas standing left of a sequent arrow while F-signed formulas are on
the right (see also Section 4.8.1 below). In classical logic theorem proving there is
no particular gain from signs, but in non-classical logics their use is indispensable

2See Section 7; see [Fitting 1999] for a full historical account.

110 REINER HAHNLE

[Beckert and Goré 1997, Héhnle 1999].

3.2.2. Tableau Rules
With the help of unifying notation decomposition rules for arbitrary formulas can
be given in a concise way.

In Table 2 expansion rule schemata for the various formula types are given.
Premises and conclusions are separated by a horizontal bar, while vertical bars in
the conclusion denote different extensions. The formulas in an extension are implic-
itly conjunctively connected, and different extensions are implicitly disjunctively
connected. We use n-ary a- and [S-rules; for example, when the (§-rule is applied
to a formula ¢ = @1 V ...V ¢y, then ¢ is broken up into n subformulas (instead of
splitting it into two formulas ¢ V...V ¢, and ¢p11 V...V ¢y, 0 <7 < n).

Type ~ formulas are simply stripped from their quantifier while the quantified
variable is renamed into a variable not occurring elsewhere. Instantiation of free
variables is delayed.

The d-rule is the most technical rule. Its purpose is to replace an existential
quantifier with a witness element or Skolem term. It incorporates two important
optimizations with respect to the more straightforward rule of [Fitting 1990]: the
first is that the choice of the witness element merely depends on the free variables in
0, not on all free variables on the current branch; in addition, the leading function
symbol f of the Skolem term may be the same for §-formulas which are identical
up to variable renaming, formally:

3.1. DEFINITION. Given a signature ¥ = (P, F%), the function sko assigns to
each § € Lx+ a symbol skos € Fg, such that (a) skos > f for all f € Fy, occurring
in 0, where > is an arbitrary but fixed ordering on Fg,, and (b) for all 6,0 € Ly,
the symbols skos and skojs are identical if and only if § and ¢’ are identical up to
variable renaming (including renaming of the bound variables).

The purpose of condition (a) in the above definition of sko is to avoid cycles like:
skos occurs in ¢ and skoj occurs in 6.

Both improvements of the d-rule together have the consequence that its conclu-
sion can be computed locally to the formula d—no “global” information is required.

Skolemization rules for normal form computation are due to Andrews [1971] and
Bibel [1982¢]; specific tableau rules seem to appear first in [Brown 1978], they gained
wide popularity through [Fitting 1990]. Our d-rule is from [Beckert, H&hnle and
Schmitt 1993], further improvements are possible [Baaz and Fermiiller 1995, Giese
and Ahrendt 1998, Cantone and Nicolosi Asmundo 1998].

3.2.3. Tableau Proofs

As was hinted at already, tableau proofs are trees whose nodes are formulas that are
(sub)goals in the proof and the tree structure gives the logical dependence between
them. Assume we want to prove that a set of sentences ® logically implies a sentence
1. By Proposition 2.1 this amounts to checking that the set of sentences ® U {—)}
is unsatisfiable.

TABLEAUX AND RELATED METHODS 111

a B v(z) ()

(5] ﬂl e ﬂn Y1 (y) 51 (SkO(;(.Tl, . ,xn))
: y € Var is new Z1,...,T, are the

o to the tableau. free variables in §.
n

Table 2: Rule schemata for tableaux with unification.

3.2. DEFINITION. Let ¥ be a first-order signature. A tableau (over X) is a finitely
branching tree whose nodes are formulas from Lx«. A branch in a tableau T is a
maximal path in 7.3 A tableau calculus is a set R of rules each having a set ® of
sentences from Ly, and, optionally, a tableau for ® as premises, and another tableau
for ® as conclusion. For each concrete ®, the transitive closure of these rules defines
a set of tableaux constructed with R for ®.

Our main example of a tableau calculus in the present section are tableaux with
unification:

3.3. DEFINITION. Given a set ® of sentences from Lx, a tableau with unification
for ® is defined as a tableau constructed with the following rules:
1. The tree consisting of a single node true is a tableau for ® (initialization rule).
2. Let T be a tableau for ®, B a branch of 7', and) a formula in BU ®. Consider
an arbitrary instance of a tableau rule schema in Table 2 with premise) and
n extensions. Obtain the tree 7' by extending B with n new linear subtrees
whose nodes are the formulas in the extensions of the rule instance. Then 7" is
a tableau for ® (expansion rule).
3. Let T be a tableau for ®, B a branch of T', and 1 and ¢’ literals in BU®. If
and 1)’ are unifiable with MGU o, and T" is constructed by applying ¢ to all
formulas in T (i.e., T' = T'o), then T' is a tableau for ® (closure rule).

The last item in this definition incorporates two conditions: first, MGUs are
used instead of arbitrary substitutions; second, 1) and ¢’ are literals, not arbitrary
formulas. The former is crucial, because there are only finitely many MGUs (up to
renaming of variables) of formulas and their complements in a finite tableau. If ® is
finite this implies that there are systematic procedures for enumerating the (finite)
tableaux for ®.

Branches in a tableau correspond to different subcases in a proof. Formulas occur-
ring in tableaux with unification may contain free variables, hence, Definition 3.3(3)
is required to produce an explicit contradiction in a subcase/branch. A tableau proof
is finished when this has been achieved for all branches, formally:

3When no confusion can arise, branches are frequently identified with the set of their nodes
(formulas).

112 REINER HAHNLE

3.4. DEFINITION. In a tableau T for a set ® of sentences a branch B is closed iff
B U ® contains a pair ¢, 7¢ € Ls- of complementary formulas, or false; otherwise,
it is open. A tableau is closed if all its branches are closed.

A tableau proof for (the unsatisfiability of) a set ® C Ly of sentences is a closed
tableau T for ®.

3.5. REMARK. In the previous definition, not only formulas from B, but also from
® are permitted to participate in branch closure. As a consequence, for example,
any tableau for ® = {false} is closed. Some authors prefer to define branch closure
with respect to only B. In this case an additional tableau construction rule that
fetches formulas from ® and places them on some branch is required. Our version
was chosen, because it allows a more uniform presentation of various calculi.

3.6. ExaMpPLE. We are now in a position to formalize the introductory example
from Section 3.1. Sets P, (@, R are represented by unary predicates P,Q, R: their
characteristic functions. Then, over the signature ¥ = ({P,Q, R}, {}), the claim
holds if and only if the set ® consisting of the following Lx-sentences is unsatisfiable:

(1) (F2)P(z)
2) (Va)(=P(z) v Q(z))
(3) (Vo)(-Q(x) V R(z))
4) (Vo) (=P(

Va)(=P(z) V- R(x))

Figure 2 shows a tableau 7" with unification for ®. The nodes of the tableau are
numbered starting from 5 (the numbers 1-4 refer to the formulas in ®); an expres-
sion [i;7] is in front of the i-th node N;, where j signifies that N; stems from an
expansion rule applied to N; (respectively, to formula (j) in ®).

All branches of T' can be closed; a closure is indicated by an arc between its
complementary literals, labeled with the required MGU. Observe that MGUs are
applied to all nodes in the tree. For example, the MGU of nodes 12 and 15 is the
identity, because x3 is instantiated during unification of nodes 6 and 14. Convince
yourself that the tableau is well-defined.

In the following we say just ‘tableau’ instead of ‘tableau with unification’, if it is
clear from the context that the latter is meant.

Occasionally, we speak of the size of a tableau. Formally, the size of a tableau is
the sum of the sizes of the formulas occurring in it.

3.2.4. Tableau Semantics and Soundness

Since our goal is to use tableaux as a framework for formal proofs, we require to
extend semantics from formulas to tableaux. Our guideline here is to ensure that
there exists a closed tableau for ® iff ® is unsatisfiable. We fixed already that a
tableau represents the disjunction of its branches which in turn are considered as
conjunctions of their labels. By a standard argument then, the equivalence above is

TABLEAUX AND RELATED METHODS 113
[5;-] true
[6;1] P(c)

I

[7;2] _|P(£L’1) V Q(l‘l)

{z1 — ¢}

x [10;3] =Q(z2) V R(2)
{z2 = c} ~—
[11;10] =Q (=) [12;10] R(x2)

|
X [13;4] = P(x3) V = R(z3)

{zg+—>c}
~— id
[14;13] ~P(x3) [15;13] ~R(x3)

X X

Figure 2: Tableau proof for ® from Example 3.6.

reduced to the question whether the tableau construction rules leave tableau satisfi-
ability unaltered. This is a routine matter for all but the §-rule, which requires some
care. Recall that two optimizations were incorporated into this rule (Section 3.2.2):
(i) the variables of the Skolem term are restricted to the free variables of 4, (ii) the
leading function symbol skos of the Skolem term is not unique in a tableau proof.
Tableau semantics must be carefully chosen to reflect these restrictions. To meet (i)
it suffices to treat free variables in a tableau essentially as if they were universally
quantified.

3.7. DEFINITION. A tableau T for ® C Ly is satisfiable if there is a structure M
of ® such that for every variable assignment p there is a branch B of T with
(M, i) = B. In that case we say that M is a model of T, denoted by M = T.

For (ii) it is important that Skolem function symbols are interpreted in the “right”
way. The most elegant way to achieve this, is to define formula semantics with
respect to only such interpretations—Ilet us call them canonical interpretations. Of
course, one needs to show then that each satisfiable formula can be satisfied by a
canonical interpretation.

3.8. DEFINITION. A term domain structure M = (D,I) is canonical iff for all
variable assignments p and all §(z) € Lyx-: if (M,p) = d(z) then (M, p) |=
01(skos (1, ..., 2y)), where 1, ...z, are the free variables in .

3.9. LEMMA ([Beckert and Hihnle 1998]). Given a signature X, if the set ® C Ly,
of sentences is satisfiable, then there is a canonical structure M* over ¥* such that
M* E .

114 REINER HAHNLE

3.10. COROLLARY. Let M™ be a canonical structure over ¥*, u a variable assign-
ment, and ¢ € Lx+; and let ¢' be constructed from ¢ by (a) replacing a positive
occurrence of some d(x) in ¢ by 61(skos(y)(1,...,2,)), or by (b) replacing a nega-

tive occurrence of §(x) in ¢ by §1(skos(yy (w1, ..., Tn), where x1,..., 1, are the free
variables in §(z). Then (M", u) E ¢ implies (M*,) E ¢'.

3.11. LEMMA. Any tableaw T with unification constructed for a satisfiable set of
Ls:-sentences is satisfiable.

PROOF. By definition of tableaux with unification, there is a sequence T1,...,T),
(m > 0), where T' = T,, and T is the initial tableau whose single node is true, and
where T} is constructed from T; by applying a single tableau expansion or closure
rule. By Lemma 3.9, the input set is satisfied by a canonical structure M* over ¥*.
By induction on m one proves that M™ satisfies all of T}, ..., T, and hence T. The
induction step is easy (see [Fitting 1996] for details) and all cases, but the d-rule
case are straightforward. The latter, however, holds by the corollary. O

Now assume we have a closed tableau T for a set of Ly-sentences ®. Obviously, no
structure and variable assignment can satisfy a closed branch, so T is unsatisfiable.
By the preceding lemma, ® is unsatisfiable as well. This proves:

3.12. THEOREM (Soundness). If there is a tableau proof for a set ® C Lx, of sen-
tences, then ® is unsatisfiable.

Completeness is stated and proven in Section 3.4.

3.2.5. Universal and Rigid Variables

In general, different instances of the variables in the scope of a universal quantifier
are needed in order to close a branch (or a subtableau). In tableaux with unification
the mechanism to achieve this is to apply the y-rule multiply to generate formula
instances with different free variables. It is crucial to note that free variables in
tableaux are mot implicitly universally quantified locally to the branch on which
they occur?, but are rigid: any substitution o with o(z) # = must be applied to
all occurrences of x in a tableau. Figure 3 shows an unsound tableau proof for the
invalid formula ¢ = (Vz)(P(z) V Q(z)) — ((Vz)P(z) V (Vz)Q(z)) that would be
possible if free variables were not handled rigidly.

In some cases, though, it is sound to treat free variables as if they were quantified
universally. For example, if we have a tableau for ® = {=P(c) V =P(d), (Vz)P(x)}
that consists of two branches, one containing P(z;) and —P(c), and the other
containing P(z;) and —P(d). This tableau cannot be closed immediately as no
single substitution closes both branches. To find a proof, the y-rule has to be applied
again to create another new instance of (Vz)P(x). In this example, (Vz)P(z) is a
logical consequence of ® and the formulas already on the tableau (in a sense made

4In contrast to this, resolvent clauses in a resolution calculus, for example, are universally
quantified.

TABLEAUX AND RELATED METHODS 115

{.’l‘1>—)d}

Figure 3: Unsound tableau proof due to non-rigid treatment of free variables.

precise in Definition 3.13), hence, (Vz)@(x) can be added to each branch. In this
situation, substitutions with differing values for z can be used without destroying
soundness of the calculus. The tableau for ® then would close earlier. Recognizing
such situations and exploiting them allows using more general closing substitutions,
yields shorter tableau proofs, and in many cases reduces the search space.

3.13. DEFINITION. Suppose ¢ is a formula on a branch B of a tableau T for ® C Ly.
Let T" result from adding (Vz)¢ to B for some z € Var. Formula ¢ is called universal
on B with respect to z if every model of T is also a model of T'.> Denote with
UVar(¢, B) the variables with respect to which ¢ is universal on B.

Instead of designing a closure rule that takes universal variables into account
(Definition 3.3(3)), we generalize the concept of a unifier:

3.14. DEFINITION. A substitution o is a unifier of formulas ¢, ¢' on a branch B of a
tableau T if it is the restriction of a substitution 7 with the property (¢m)r = (¢'7')T
to Var \ U, where U = UVar(¢, B) N UVar(¢', B) and 7, 7' are renamings of the
variables in U with variables new to 7.

With the closure rule based on this modified concept of unification, a tableau
proof with less applications of expansion rules than in the standard calculus of
tableaux with unification may be found; the calculus is strengthened.

Recognizing universal formulas is undecidable in general, however, a practically
important subclass can be recognized easily (and this can already shorten tableau

5When obvious, a formula ¢ being universal on a branch B with respect to a variable z is just
referred to as “the universal formula ¢,” and = as “the universal variable x.”

116 REINER HAHNLE

proofs drastically): in any sequence of tableau rule applications with a variable x
introduced by a vy-rule application and not distributed over different branches by
(B-rule applications, all formulas generated during this sequence of rule applications
are universal with respect to x, formally:

3.15. LEMMA. A formula ¢ on a branch B of a tableau T is universal with respect
to x on B if in the construction of T the formula ¢ was added to B by applying
1. a y-rule and x is the free variable introduced;
2. an a-, vy-, or d-rule to a formula that is universal on B with respect to x; or
3. a B-rule to a formula B that is universal on B with respect to x, and x does
not occur in any B; 7% ¢.

The proof of soundness of tableaux with unification (Theorem 3.12) can accom-
modate the universal formula technique. Bibel [1982] proposed a technique for re-
ducing the size of proofs in the connection method, called splitting by need; like
universal formulas it is based on the idea to avoid copying a universally quanti-
fied formula in cases where it is sound to use a single copy with different variable
instantiations.

3.2.6. Binary versus n-ary Rules
The n-ary branching tableau rules for type 8 formulas in Table 2 have a binary
variant

g
ﬂi‘ PrVe--VBicaVBig1 V-V By

(3.1)

which in fact is the more popular one and used, for example, in [Smullyan 1995,
Fitting 1996]. Only recently, Massacci [19984] pointed out that tableaux based on
the n-ary rule cannot polynomially simulate tableaux based on (3.1) with respect
to the minimal proof size, see also Section 6. In the present paper I work with the
n-ary rule to achieve maximum uniformity among clausal and non-clausal tableaux.
There is no loss of generality in doing so, because it is obvious that rule (3.1) can
polynomially simulate the n-ary rule.

3.3. From Calculus to Proof Procedure

Tableau soundness gives the desirable property of tableaux with unification that
a closed tableau for ® signifies validity of V¢6<I> 1. There remains the question,
whether for all valid sentences a tableau proof exists and, if this is the case, how it
can be found. While the first question can be answered affirmative, for the second,
a fully satisfactory answer is not yet available. This requires some explanation.
Definition 3.3 consists of a bunch of rules that define how to construct a tableau.
In Section 3.4 it is shown that there exists a closed tableau with unification for

TABLEAUX AND RELATED METHODS 117

any given unsatisfiable set of sentences. This property of a calculus is called com-
pleteness. There is only a finite number of rules that can be applied to each given
tableau, so it is a routine task to breadth first search for tableau proofs.

It would be much better, of course, if there were no need for search. Define a
tableau proof procedure to be a tableau calculus equipped with a function F' that,
given a set of sentences ® and a tableau 7', computes in deterministic polynomial
time (in the size of ® and T') the next rule to be applied on 7. It can be thought
of as a “deterministic calculus”: its rules allow to construct at most one successor
tableau from any given tableau and set of sentences. If the tableau proof procedure
computes a tableau proof for any given unsatisfiable sentence, it is called strongly
complete. The function F is called a computation rule. Let me point out why it is
a difficult problem, to find strongly complete tableau proof procedures.

Usually, a great number of rules is applicable to any given tableau. More precisely,
one must first select a branch B, where a rule is applied, then decide whether an
expansion rule or a closure rule is used; in the first case one must choose a formula
1 € BU ®, in the second case a pair of literals on B. Let us refer to these kinds
of nondeterminism with the phrases select branch, select mode, select formula, and
select pair in the following. In the propositional case no substitutions occur and,
to arrive at a strongly complete tableau proof procedure, it suffices to select each
non-literal formula exactly once on each branch in any order.

In the first-order case, one needs to apply rules more than once to certain formu-
las (otherwise, first-order logic were decidable). Making an arbitrary choice for a
computation rule in the first-order case, however, results in general in an incomplete
proof procedure.

In Figure 4, for example, the y-formula is always preferred for expansion rule ap-
plication, delaying expansion of the inconsistent propositional formula indefinitely.
In an obvious way, the formula QA—Q is treated unfair. This motivates the following
definition.

¢ = {Q A=Q, tr{le
(Vz)P(z)} P(z1)

y-rule

Figure 4: Incompleteness caused by unfair select formula.

3.16. DEFINITION. The set of tableaux with unification for a given set of sentences
® C Ly is partially ordered relative to a computation rule F', where the successor
of a tableau T for @ is the tableau computed from 7" by F'. This defines a (possibly
infinite, if ® contains at least one type 7 formula) ascending chain starting with
the initial tableau T for ® and supremum 7T, (which exists by Zorn’s lemma).

A computation rule F is fair if for all ® the following holds for all branches B
in tableau T, for ®:

118 REINER HAHNLE

1. All formulas of type «, 3, and d occurring on B or in ® were used to expand B
(by applying the appropriate expansion rule)

2. All type « formulas occurring on B or in ® were used infinitely often to ex-
pand B (by applying the ~-rule).

It is simple to construct a fair computation rule, but this is not sufficient for
strong completeness, because the above notion of fairness says nothing about clo-
sure. Combining fair application of the expansion rules with fair application of the
closure rule, however, is a difficult problem, because tableaux with unification are
destructive:

3.17. DEFINITION. A tableau calculus is non-destructive if all tableaux that can
be constructed with the help of its rules from a given tableau T contain T' as an
initial subtree; otherwise the calculus is destructive.

For example, at first sight it might seem to be a good idea to apply the closure
rule in a “greedy” manner, that is, as early as possible. Alas, it is not so. One
problem is that several pairs of closure literals (with incompatible MGUs) may
compete, but this is not all. In Figure 5, independently from which branch is closed
first, the variable z; gets “used up” by a substitution that blocks closure of the
other branch. Of course, a second free variable instance of the vy-formula may be
created, but then the same happens one level below etc.

b= ((P(b) A P(c)) = P(x)) = =(Q(z) = (Q(b) v Q(c)))
@ ={(Va)y, Pa), ~Q(d)}

possible

closure

{0 possible
) {w mﬁ Q) v QN
A P(0) Q)
—'Pl(ﬂfl) =(Q(b) |V Q
P(b) A P(c) Q)

Figure 5: Incompleteness caused by unfair select mode.

Tableau with unification are (trivially) not destructive for propositional logic and
for quantifier-free sets of sentences.

A non-destructive tableau calculus equipped with a fair computation rule gives
a strongly complete proof procedure. Examples of non-destructive tableau calculi
are Smullyan’s [1995] ground tableaux and Fitting’s [1996] tableaux with delayed
instantiation rule, see below. As mentioned already, tableaux with unification are
destructive. The culprit is the closure rule, Definition 3.3(3).

Independently of being destructive, a complete tableau calculus may fail to be
proof confluent:

TABLEAUX AND RELATED METHODS 119

3.18. DEFINITION. A tableau calculus is proof confluent, if from every tableau for
an unsatisfiable set of sentences a closed tableau can be constructed.

In other words, the search space of a proof confluent tableau calculus contains no
“dead ends”, from where no proof can be found. A strongly complete tableau proof
procedure is trivially a proof confluent tableau calculus. Thus, proof confluence is
a necessary prerequisite for strong completeness.

A destructive tableau proof procedure still might be strongly complete, but as
witnessed by the example in Figure 5, it might as well be not. At the present time,
no strongly complete, destructive tableau proof procedure is known that works
well in practice (there is hope, however, see Section 4.7). Therefore, it is worth
discussing possible ways around the problem. Another reason is that some of the
techniques dealing with destructiveness also deal with lack of proof confluence: some
of the more important complete refinements of the tableau calculus are not proof
confluent. This is discussed in Section 4.3 below.

An obvious way to tableaux with unification into a strongly complete proof pro-
cedure is to separate application of expansion and closure rules. Under a fair com-
putation rule, delay the application of the closure rule until all tableau branches
can be closed simultaneously by a suitable substitution. This is the path chosen
in Fitting’s [1996] text book—and it has its inefficiencies: first, one cannot discard
closed branches until the proof is essentially finished which might lead to storage
problems (this can be partially remedied, see Section 3.5), and second, after each
expansion rule application, the whole tableau must be tested for closure, which is
very redundant. If more sophisticated data structures were used and the different
MGUs available to close each branch were maintained as a tableau-wide constraint
system that can be incrementally tested, then this approach might still be worth a
try. There is experimental evidence to support this [Giese 2000].

Another option for implementing tableau proof search, which was mentioned
already, comes from the observation that its nondeterminism is locally finite—from
each tableau only a finite number of successor tableaux can be constructed. Envisage
tableau proof search as a, possibly infinite, search tree whose nodes are tableaux.
The root node contains the trivial tableau. The successors of a node are all the
tableaux that can be constructed from it with one of the available tableau rules.
Nodes that contain a closed tableau are success nodes. Even though the whole
search tree is infinite, success nodes occur at finite depth and can be searched for
in a breadth first manner. This approach is impractical, however, because of space
requirements.

Stickel [1992] suggested to replace breadth first search by depth first search with
backtracking and iterative deepening of the search depth (DFID search), which has
only a small overhead in run time as compared to breadth first search, but is much
more space efficient [Korf 1985].

DFID tableau proof search is based on a mapping m from IN to subsets of the
tableaux that can be constructed with a given calculus, such that (J;cpn m(i) con-
tains all these tableaux. Common choices® for m, which is called completion mode,

6These options are implemented, for example, in the provers 37’413 [Beckert, Hahnle, Oel and

120 REINER HAHNLE

include the following:
e m(i) = all tableaux with depth ¢

° ... with ¢ nodes
° ... with ¢ applications of y-rule (per branch)
. ... with nesting depth ¢ of terms

Now the parts of the search space containing the tableaux in m(1), m(2),...
are successively enumerated by depth first search with backtracking. To increase
efficiency of the search it is important to get rid of as many nodes in the search space
as possible. In the DFID setup this means to minimize the amount of backtracking.
It is obvious that one may choose any deterministic strategy for select branch as all
branches need to be closed eventually. In addition, it is not difficult to implement
a fair computation rule that gets rid of select formula [Fitting 1996]. This leaves
the—destructive—branch closure.

Tableau proof search based on DFID with backtracking over nodes correspond-
ing to select mode and select pair is elegant and fast, when implemented in logic
programming languages [Stickel 1992, Baumgartner and Furbach 1994, Beckert and
Posegga 1995].

3.4. Tableau Completeness

The preceding discussion shows that it is difficult to ensure strong completeness of
tableaux with unification. On the other hand, it is not too difficult to show mere
existence of a closed tableau for each unsatisfiable set of sentences. The presentation
of the latter result closely follows [Beckert and Hahnle 1998].

It is convenient to work with a data structure that slightly abstracts from tableau
branches: so-called Hintikka sets (named after their inventor Hintikka) may contain
an infinite number of formulas whose order is irrelevant. A model can be immedi-
ately constructed for any Hintikka set.

3.19. DEFINITION. A set H C Ly« of sentences is a Hintikka set if it satisfies the
following conditions:
1. false ¢ H and there are no complementary literals in H;
.if « € H, then all o; are in H;
.if g € H, then some g; is in H;
. if y(x) € H, then v (t) € H for all t € T,;
. if 6(x) € H, then 6;(t) € H for some t € TY..

CU = W N

3.20. LEMMA (Hintikka). Every Hintikka set is satisfiable.

PrOOF. An Herbrand model over the signature ¥* is simply defined by setting
PY(ty,...,t;) = trueiff P(t1,...,t;) € H for P(t1,...,t;) € AL.. By induction on
the structure of formulas in H it is easy to prove that M = H. O

Sulzmann 1996] and Setheo [Moser et al. 1997].

TABLEAUX AND RELATED METHODS 121

3.21. THEOREM (Completeness). If the set ® C Lyx. of sentences is unsatisfiable,
then there is a tableau proof for ®.

Proor. Let (7T),)n>0 be a sequence of tableaux for ® constructed with a fair com-
putation rule, containing no closure rule applications, and with limit T,,. We define
a particular grounding substitution o, as follows: let (By)r>o be an enumeration
of the branches of T, and (¢;);>0 an enumeration of the y-formulas in T,. For
every y-formula ¢;, if ¢; occurs on By, let x;;, name the new variable introduced by
the j-th application of the y-rule to ¢; on By. (Note that different x;;, can name
the same variable.) Finally, let (¢;)j>0 be an enumeration of 7. .

If we want to extract a model of ® from By, then the instances of the ¢; on
B0 must “cover” all ground terms ¢;. It suffices to choose oog(x;jx) = t; for all
i,7,k > 0. (If z;j and ; j & name the same variable, then ¢ =i’ and j = j', s0 0
is well-defined.)

By construction of o, and fairness, if B is a branch in T, and Bo, is open, then
Boy, U is a Hintikka set and so @ is satisfiable. This contradicts the assumption,
hence T\,0 o is closed. The tree T, 0 is finitely branching and the distance of all
formulas involved in closures to the root node is finite. Then, by Kénig’s Lemma’,
there is an n > 0 such that the finite tableau T},04 is closed.

In general, o, is not a most general unifier of complementary literals used in
closures and cannot be used in an MGU closure rule application to T},. Therefore, it
remains to show that o, can be suitably decomposed. This is done with a standard
lifting argument: oo, = 0 0 0,0 0,._1 0---0 0y, where g; is a most general closing
substitution for the instance B;o10s...0;—1 of the i-th branch in 7,, (0 < i <
r +1); o is the part of o, not actually needed to close T,. The o; are constructed
inductively:

Let 0] = 0. For 1 <i < r + 1, let o; be a most general substitution such that
(1) o}_, is a specialization of o; (there is a substitution o} such that o}_, = o} 00;)
and (2) o; is a closing substitution for B;o103...0;—1. Now 0; is a most general
closing substitution of B;o10 ...0;_1. Otherwise, there is a closing substitution o}’
being more general than o;. The is-more-general relation is transitive, hence o}’ is
more general than ¢_, in contradiction to o; being already a suitable most general
substitution. Finally, let ¢ = /. O

It suffices to apply the appropriate expansion rule exactly once to each «, 3, or §-
formula on each branch to obtain a Hintikka set from a fairly constructed sequence
of tableaux. This has the practically relevant consequence that only to y-formulas
must a rule be applied more than once per branch.

3.5. Proof Representation

3.5.1. Trees, Matrices, Connections & Matings
Trees are quite a redundant way to represent proofs. Notably, each expansion step
gives rise to new copies of some subformulas. This is unnecessary, as the result of an

T«A tree that is finitely branching but infinite must have an infinite branch.” A proof is, for
example, in [Fitting 1996].

122 REINER HAHNLE

expansion step is uniquely determined once the position, where it is to be applied,
is fixed. In the case of formulas in negation normal form (NNF), the situation is
even simpler: up to variable instantiation, any formula occurring in a tableau for a
formula ¢ in NNF is just a subformula of). Therefore, in the case of quantifier-free
sentences in NNF, a tableau branch can be viewed as a sequence of positions of
certain subformulas.

Such representations were first suggested independently by Davydov [1973], Bibel
and Schreiber [1975], and Andrews [1976]. Bibel [1979] and Andrews [1981] defined
procedures to check the validity of first-order formulas in NNF (in this case, one
must record substitutions as well).

Full accounts of Bibel’s matriz or connection method are [Bibel 19825, Bibel
1987], of Andrews’ general matings it is [Andrews 1981].

For the present discussion it is sufficient to define a matriz simply as an NNF
formula not containing true, false, written in a two-dimensional notation: the im-
mediate subformulas of a disjunctive formula are stacked vertically onto each other,
while the immediate subformulas of a conjunctive formula are written in a horizon-
tal row and enclosed between square brackets; literals are unchanged. To simplify
things we start with propositional logic.

3.22. EXAMPLE. The NNF formula ¢y = PA(=PV ((-PV Q) A—Q)) is represented
as follows, where different occurrences of the same literal are distinguished by a

superscript:
~pl
P e]
Q
~P?
A path through a matrix M is a set 7 = {M, ..., M,} of occurrences of subma-

trices (which can be literals) defined inductively:
1. For every matrix M, {M} is a path through M (note that M can be a literal).
2. If M consists of rows Mj,..., M, and « is a path through some M; for i =
1,...,r, then 7 is a path through M.
3. If M consists of columns My,..., M, and m; is a path through M; for all
i1=1,...,n, then 7 U...Um, is a path through M.

~P!
- T = P -
Q Q]}) 2 {)Q: Q}:

Some paths in the example are m; = {P,

while 73 = {P,=P!,=P?} is not a path.

Consider any branch of B of any non-trivial tableau for a propositional NNF
formula 1. Let m be those formulas of B that were not used as a premise of a
rule application on B. Then it is fairly easy to prove by induction that 7 is a
path through the matrix of ¢ and, vice versa, each path through) is contained
in a branch of some tableau for . Thus, complementary formulas on branches are
just complementary submatrices in paths. A pair of complementary formulas on a
branch is called connection by Bibel and mated by Andrews.

TABLEAUX AND RELATED METHODS 123

In the NNF case, only connections between literals are possible. The paths of the
example with only literals in them are ma, m4 = {P,=P!,=Q}, m5 = {P,~P?}. One
notices that each path contains a connection. As 1) is unsatisfiable, by soundness
and completeness of tableaux and the correspondence between paths and tableau
branches just stated, this is to be expected, of course. A set of connections C such
that each path through a matrix M contains a connection from C is called spanning
by Bibel [1981] who was the first to give this kind of matrix characterization of un-
satisfiable formulas (without making use of the mentioned correspondence between
matrices and tableaux):

3.23. THEOREM ([Bibel 1981]). A propositional NNF formula 1 is unsatisfiable iff
there is a spanning set of connections for its matriz.

Bibel’s [19820] connection method and Andrews’s [1981] general matings consist
of a formal notation for matrices, paths, and connections together with a systematic
procedure to find a spanning set of connections. It turns out that the paths these
procedures look at correspond to the branches successively generated by certain
tableau procedures.

An exact tableau counterpart to the non-clausal connection method with some
additional restrictions is discussed in [Hahnle and Klingenbeck 1996]. The restric-
tion of the connection method to clausal input corresponds exactly to weak con-
nection tableaux with left-first branch selection discussed in Section 4.3.2 below.

Matrix methods were extended to first-order logic [Andrews 1981, Bibel 1982b)].
In this case matrices contain additional notation to signify the kind and scope of
quantifiers. True to the spirit of matrix methods, Skolem functions are avoided in
[Bibel 1982b]. Instead, existentially quantified variables are considered as param-
eters that cannot be instantiated. To ensure soundness, ordering constraints on
terms of the form “t may not occur as a subterm of ¢'” are being generated from
the nesting structure of quantifiers. These constraints must then be satisfied by
substitutions. The technique is independent of proof representation issues and, in
fact, was employed for tableau calculi as well [Reeves 1987]. Its main advantage
is that it generalizes to logics not permitting skolemization, such as intuitionistic
logic [Voronkov 1996].

Just as y-formulas need to be applied several times in tableau proofs, the scope
of universally quantified submatrices must be present in a sufficient number of new
instances, which is closely related to the Herbrand complexity in Theorem 2.3. Bibel
[19820] stresses that most of the structure of a universally quantified submatrix can
be shared in an implementation. Again, the problems of proof search in destructive
first-order calculi discussed in Section 3.3 are orthogonal to proof representation.
Therefore, in practice, matrix methods tend to be implemented by DFID search
[Bibel, Briining, Egly, Korn and Rath 1995], just as tableaux with unification.

Matrix methods are closer to data structures allowing efficient implementation
than tableaux. This positive feature, on the other hand, makes their the formal pre-
sentation of matrices very technical. I suspect that this a main reason why many
refinements were conceived within the more abstract—and redundant—tableau for-

124 REINER HAHNLE

malism. Even worse, the less redundant structure of matrices can actually be in the
way of extensions or optimizations: for example, certain rules needed to deal effi-
ciently with formulas that contain equalities, add a new literal to a branch that is
a logical consequence of a literal set C' on the same branch (for example, the basic
superposition calculus of [Degtyarev and Voronkov 1998])—this cannot be done in
an obvious way within a matrix framework, because the paths containing C' are not
explicitly represented. Similarly, simplification as discussed in Section 3.5.3 below,
cannot be easily incorporated into a matrix framework.

But there is an important merit of matrix formulations compared to tableau
methods, besides taking implementation issues seriously: for instance, there are
sound transformations on the matrix level, called reduction in [Bibel 19820], that
cannot necessarily be efficiently simulated on the level of paths or branches. More
generally, the global view suggested by matrices may very well lead to refinements
difficult to detect with the path- or branch-based view of tableaux. Evidence of this
consideration is provided by Letz [1998] who defined a tableau refinement based on
the observation that one spanning set of connections gives possibly rise to many
different tableaux that differ only in the sequence in which these connections occur
on the branches.

An extensive overview over various calculi from the point of view of matrices is
[Bibel and Eder 1992].

Finally, it should be mentioned that apart from matrices further formula repre-
sentations exist that try to avoid redundancy: I want to mention clausal [Gallo and
Urbani 1989] and non-clausal [Preifl 1998] hypergraphs and binary decision diagrams
(BDD) [Bryant 1986]. While hypergraphs are an alternative notation for formulas
and can be computed in linear time, BDDs combine normal form computation and
deduction, in fact, a BDD is a normal form of a propositional formula from which
its models can be directly read off. Both, hypergraphs and BDDs are closely re-
lated to tableaux [Posegga 1993, Preify 1998]. They share, however, the drawback
that their generalization to first-order logic so far has proven to be problematic
[Rago 1994, Posegga and Schmitt 1995].

3.5.2. Pruning Irrelevant Parts of a Proof

Pruning, which is closely related to the condensing technique of Oppacher and
Suen [1988], allows the reduction of both the size of the search space and the size
of generated tableau proofs. It appears in the literature also under the name level
cut [Baumgartner, Furbach and Niemeld 1996]. Koshimura and Hasegawa [1999]
showed that condensing is a special case of the non-Horn magic set transformation
[Hasegawa, Inoue, Ohta and Koshimura 1997] which in turn was shown [Ohta, Inoue
and Hasegawa 1998] to be essentially the same as relevancy testing [Loveland, Reed
and Wilson 1995].

Suppose a branch B of a tableau was expanded by a (-rule application and one
of the extensions (3; was not used to close the subtableau T; below f;, then T; is
still closed when appended to any of the other extensions ;, j # i, or even when
appended immediately below B (define an extension f3; to be used, if 3; itself or

TABLEAUX AND RELATED METHODS 125

any of the formulas resulting from it through tableau rule application is used in
an application of the closure rule). To take advantage of this situation, either the
closure rule is changed such that all branches in the tableau containing B as a
subbranch are considered to be closed, or—similarly—all branches containing one
of the 3; are pruned, that is, the effects of the B-rule application are undone, see
Figure 6.

unused_ - B

I}

closed

Figure 6: Pruning irrelevant parts of a tableau proof.

3.5.3. Simplification

The benefits of intermediate simplification steps to be applied after each tableau rule
application is stressed by Massacci [19980]. The idea is that for each propositional
formula ¢ present on a branch B each positive occurrence of ¢ as a subformula can
soundly be replaced by true while each negative occurrence can be replaced by false
with subsequent simplification steps of the form trueV 6 = true, etc. In contrast to
branching, simplification is an inexpensive operation and can be computed in (low)
polynomial time in the size of formulas on branches. The well-known unit resolu-
tion and pure literal rule subprocedures of the Davis-Putnam-Loveland-Logeman
procedure [Davis, Logemann and Loveland 1962] (see also Section 5.4) are special
cases of Massacci’s [19980] simplification rule who demonstrated its effectiveness
for (modal) propositional logic. It remains to be seen, however, if a useful variant
for first-order tableau with unification will emerge.

4. Clause Tableaux

In the present section a number of refinements of the tableau procedure are intro-
duced. For several reasons, these refinements are discussed on the clause level:
e Simplified notation leads to easier detection of new refinements
e Efficient implementability, for example, by compilation to abstract machines
e Completeness proofs stay manageable
e Comparability (most deduction procedures are implemented on the clause level)
Restricting attention to the clause level implies some limitations as well:
e Some applications (such as software verification) expect proofs on the non-
clausal level: back-translation from clauses can be tricky
e For some non-classical logics a clause normal form is unknown
e Proofs become harder to read for humans

126 REINER HAHNLE

e Some applications (such as computing prime implicants) require the models of
a formula to be preserved, and then in the worst case its CNF has exponential
size
In summary, there is considerable incentive to generalize the results that fol-
low (partially this has been done, for example, in [Hahnle and Klingenbeck 1996,
H&hnle, Murray and Rosenthal 1997]), but I believe the material to be more acces-
sible in the present, syntactically limited form.

4.1. Normal Form Computation

How first-order sentences are efficiently transformed into sets of clauses is shown,
for example, in [Plaisted and Greenbaum 1986, Nonnengart, Rock and Weidenbach
1998], and in [Baaz et al. 2001, Nonnengart and Weidenbach 2001] (Chapters 5
and 6 of this Handbook).

4.2. Clause Tableau Proofs, Soundness, Completeness

4.2.1. Clause Tableaux
Let us start by stating suitably simplified versions of Definitions 3.3 and 3.4.

4.1. DEFINITION. Given a set S of clauses from Lsx, a clause tableau for S is defined

as a tableau constructed with the following rules:

(i) The tree consisting of a single node labeled with true is a tableau for S (ini-
tialization rule).

(ii) Let T be a tableau for S, B a branch of T', and Ly V ---V L, a new instance of
C € S. If the tree T" is constructed by extending B with r new subtrees and
the nodes of the new subtrees are labeled with L;, then T" is a tableau for S
(extension rule).

(iii) Let T be a tableau for S, B a branch of T', and L and L' literals on B. If L
and L' are unifiable with MGU o, and T” is constructed by applying ¢ to all
literals in T' (that is, 7" = T'o), then 7" is a tableau for S and branch Bo is
marked as closed (closure rule).

Clauses are first-order formulas, so the extension rule is composed of several
applications of the expansion rule 3.3(2), which justifies the change in terminology.

4.2. DEFINITION. A clause tableau T for a set S is closed if all its branches are
marked as closed.

A clause tableau proof for (the unsatisfiability of) a clause set S C Ly is a closed
clause tableau T for S.

TABLEAUX AND RELATED METHODS 127

4.3. EXaMPLE. The formula set of Example 3.6 can be transformed in a CNF that
consists of the following clauses:

A clause tableau for this clause set is displayed in Figure 7. Observe that the nodes
are a subset of the nodes of the tableau in Figure 2.

In the following, closed branches are not indicated by arrows between participat-
ing literals anymore, but merely by a horizontal bar and the closing MGU below
their leaf.

[5;-] true

[6;1] P(c)

— T

(7:2] 2P (21) (8:2] Q(x1)
(22 s 0} // \
x ; (z2) [1053]

{z1— ¢

Figure 7: Clause tableau proof of Example 4.3.

Clause tableaux mainly constitute a syntactic simplification of full first-order
tableaux. The main properties of the calculus are the same, in particular the dis-
cussion in Section 3.3 applies to them as well.

In contrast to the full first-order case the extension and closure rule only use
clauses from the input set and branch literals. This simplifies some definitions.

4.2.2. Soundness and Completeness

Soundness of clause tableaux follows immediately from Theorem 3.12 by observing
that clauses are particular first-order formulas and extension rule 4.1(ii) can be
composed of several applications of rule 3.3(2).

Completeness could be obtained easily by suitable simplification of the proof of
Theorem 3.21, but in the clausal case a more modular approach is useful. Following
Robinson [1965], lifting a ground proof to a first-order proof is separated from
proving ground completeness of a calculus. The advantage is that the lifting part is
similar for all completeness proofs of the following tableau refinements and either

128 REINER HAHNLE

is obvious or at most requires a sketch. So it is sufficient to concentrate on ground
completeness. Abstraction from first-order issues greatly simplifies completeness
proofs of the more complicated calculi that follow.

4.4. TueoreM (Lifting). Let S be a clause set, S a set of ground instances of S

and T a clause tableau proof for S. Then there is a clause tableau proof T for S
and a substitution T such that T = T'r.

PROOF. The main technical difficulty of this proof is that in Definition 4.1(iii) only
MGUs are to be used whereas S may contain arbitrary ground instances of clauses.
The following property of MGUs is needed:

If T' is a clause tableau, T a substitution such that 77 is closed, (4.1)
and p an MGU that closes any branch of T, then T'pr = T'r. '

Proof of (4.1): by definition of an MGU and as 7 closes 7", there is 7/ with p7’ = 7.
MGUs can be assumed to be idempotent, so T"pr = T'ppr’ = T'pr" = T'r.

Back to the main proof, let TP be constructed exactly as T but for each extension
step with C € S used in T take instead a new instance of the clause C' € S of which
Cisa ground instance. Obv10usly, T°r =T for a suitable grounding substitution
T.

If B is an arbitrary open branch of T°, then it is closed by 7, so there is an MGU
p that closes B and rule 4.1(iii) is applicable to obtain a clause tableau T = Tp.
By (4.1), T'r = T°r = T. Repeating this argument in a straightforward induction
over the number n of open branches in T° yields a clause tableau T = T™ such that
Tr=T. O

In the proof the sequence of branch closures was arbitrary which shows indepen-
dence of the select branch strategy.®

As to completeness, let us look first at the ground case. To minimize iterated
efforts, we proceed in a schematic way. The following ground completeness schema
for any given clause tableau restriction, let us call it X-tableau, is proven:

If the finite ground clause set S is unsatisfiable, then there

is an X-tableau proof for S. (4.2)

We could proceed to prove ground completeness of unrestricted clause tableaux
right now, but in following sections ground completeness of various restrictions of
clause tableaux is proven, of which completeness of the unrestricted calculus is an
immediate consequence.

4.5. PRINCIPLE (Schematic Completeness). If the clause set S is unsatisfiable, then
there is an X-tableau proof for S.

8When the computation rule of select clause is arbitrary, but fair, the theorem still holds in
the weakened form that there is a clause tableau T for S such that T'7 appears as a subset of the
nodes of 7T'.

TABLEAUX AND RELATED METHODS 129

PROOF (Schema). Herbrand’s Theorem 2.3 provides a finite, unsatisfiable set S
of ground instances of S. By a suitable instance of (4.2) there is a closed ground
X-tableau 7 for S and, by Theorem 4.4, there is a closed X-tableau for S, whenever
X has the lifting property: if T'r is an X-tableau, then 7" is an X-tableau as well. J

As announced already, the next goal is to find complete restrictions of clause
tableaux. It is sufficient to prove a suitable instance of (4.2), whenever a ground
X-tableau proof T lifts to a first-order X-tableau proof T'. It is usually sufficient to
check that the proof of Theorem 4.4 can be used unaltered.

From the point of view of proof search, restricting the tableau calculus means to
exclude certain choices in select clause and select pair and to fix select branch in
some way.

4.8. Connections

Connection conditions were pioneered by Andrews [1981] and Bibel [19820)].

4.8.1. Connection Tableaux

A major drawback of the tableau calculus is that the extension rule 4.1(ii) is applied
completely unguided which can clutter up tableaux with many nodes that do not
contribute to a proof.

4.6. ExaAMPLE. Consider the two clause tableaux for S = {P(z) V Q(z), R(z) V
S(x), =P(a), =Q(a), ~R(b), ~S(b)} displayed in Figure 8. The tableau on the right
constitutes a minimal proof, while the second extension step in the tableau on the
left is completely unrelated to the initial step.

trlue trlue
—P(a) —P(a)

7 ~N 7/ AN
R(z1) S(z1) P(z) Q(z1)
| / N |
~R(O) Plz2) Qa2) ea -Q(a)

T b : id

Figure 8: Redundant nodes in a tableau.

4.7. DEFINITION. A connection tableau is a clause tableau in which every inner
node L (except true) has L as one of its immediate successors [Letz, Schumann,
Bayerl and Bibel 1992].

130 REINER HAHNLE

The tableau on the right in Figure 8 is a connection tableau, the tableau on the
left is not. It is excluded by the connection restriction.

Connection tableaux are complete, but the proof is deferred until the next section.
The definition of connection tableaux implies that when T # true at least one
of the new branches generated by the tableau extension rule can be closed. This
suggests a procedural definition of connection tableaux obtained from Definition 4.1
by changing the first two rules:

(i") For any new instance Ly V ---V L, of C' € S the tree constructed by extending
true with » new subtrees with nodes L; is a connection tableau for S.

(ii") Let T be a tableau for S, B a branch of T ending with L, L; V ---V L, a
new instance of C' € S. If L, L; (where i € {1,...,r}) are unifiable with MGU
o and the tree T" is constructed by extending B with r new subtrees, where
the nodes of the new subtrees are the Lj, then T'c is a connection tableau
for S, in which the branch ending with L;o is marked as closed. This is called
a connected extension step.

Closure of open branches (Definition 4.1(iii)) is unchanged and called reduction
step. Note that, besides in reduction steps, branches can be in addition be closed
in extension steps. This justifies the change of terminology.

It is important to note that while clause tableaux are proof confluent, connection
tableaux are not:

4.8. PROPOSITION. Ground connection tableauz are not proof confluent.

Proor. Consider S = {P, =P, @} and let) be the clause used in the initial
step. It is impossible to make any further extension step, although S is clearly
unsatisfiable. (Examples independent of the choice of the initial clause can be found
in [Letz 1993].) O

In Section 3.3 it was pointed out that a “greedy” strategy for preferring closure
over extension steps leads to incompleteness. It is tempting to employ a greedy
strategy at least for closures occurring within reduction steps, but the following

counter example due to Letz? shows that even this results in incompleteness:'®

4.9. EXaMPLE. If S = {P(a) V P(z) V Q(z), -Q(b) V R, =P(b) V R, =R}, then
{=P(a)} U S is unsatisfiable.

A proof starting with =P(a) must use P(a) V P(z) V Q(z) in the first extension
step. A left-first select branch rule leads to greedy reduction with P(z) (and —P(a))
and the proof is stuck at the open branch containing Q(a). With a different starting
clause, a proof with greedy reduction is possible, but a trick taken from [Letz, Mayr
and Goller 1994] gives a general counter example: let S’ be as S, but P replaced with
P’, Q with Q" and R with R'. Then {—P(a)V —P'(a)} USUS’ is still unsatisfiable.

9Personal communication.

10Tn fact, the authors of SL-resolution [Kowalski and Kuehner 1971], discussed as a close relative
to connection tableaux in Section 5.2, were tempted enough: they suggested reducing greedily
without noticing the incompleteness problem.

TABLEAUX AND RELATED METHODS 131

Regardless of the starting clause, however, =P(a) V =P’(a) must be used at some
point. This cannot be the last extension step in a proof, because the signatures of
S and S’ are disjoint. Therefore, the proof gets stuck in the same way as above.

4.3.2. Weak Connections
The extension rule (ii’) of connection tableaux, however, has a natural relaxation
that partially restores proof confluence:

(ii") Let T be a tableau for S, B a branch of T' containing L not necessarily as
leaf, Ly V ---V L, a new instance of C € S. If L, L; (where i € {1,...,r}) are
unifiable with MGU o and the tree 7" is constructed by extending B with r
new subtrees, where the nodes of the new subtrees are the L;, then T'o is a
clause tableau for S, in which the branch ending with L;o is marked as closed.
(This is called a weakly connected extension step.)

Let us call the resulting calculus weak connection tableauz.

4.10. DEFINITION. A clause set is minimally unsatisfiable (mu) when it is unsat-
isfiable and each of its proper subsets is satisfiable. A clause is relevant in S when
it is contained in a mu subset of S.

It can be shown that weak connection tableaux are proof confluent provided that
select clause is implemented in a fair manner and the initial clause is relevant.
Unfortunately, testing for membership in a mu set is as expensive as testing unsat-
isfiability itself. This limits the usefulness of weak connection tableaux in practice,
but in Section 4.5 a slight relaxation is the basis of a whole class of interesting
calculi which are proof confluent regardless of the initial clause.

4.4. Regularity

An important device in tableau-based theorem proving that avoids constructing
certain redundant proofs is reqularity:

4.11. DEFINITION. A clause tableau is regular, if none of its branches contains more
than one occurrence of the same literal.

4.12. EXAMPLE. Regularity can help to avoid substitutions that lead to redundant
proofs. Consider the tableau for S = {P(0), =P(z) V P(s(z)), 7P (s(s(0)))} in
Figure 9. The first possible substitution for the middle branch renders the right
branch irregular and is thus avoided.

Implementing regular tableaux is not straightforward, because an admissible clo-
sure substitution can potentially unify as well formerly different literals on branches
closed already. For efficiency reasons one discards closed branches immediately, so
there must be a mechanism to exclude such critical substitutions. It was suggested in
[Letz et al. 1992] to create an inequality constraint of the form ¢ # | V.- Vi, # tl,,

132 REINER HAHNLE

whenever two unifiable literals L(t1,...,t,) and L(t],...,t,) are encountered on
one branch. Similar constraints are generated to characterize tautologous instances
of clauses used in extension steps. Then substitutions are applied to constraints as
well and must ensure their satisfiability. In the example above, the second extension
step generates the constraint s(0) # s(z2) which is not satisfied by x5 + 0.

trlue
P(0)
—~ ~
—P(z1) P(s(z1))
7 ~N
=0 P(x) P(s(larz))
T2 0 P(s(s(0))
irregular!
id
xo — s(x1)

Figure 9: Advantage from regularity.

The following standard lemma is needed in the proof of ground completeness of
regular connection tableaux. Its easy proof is given, for instance, in [Loveland 1978,
Lemma 2.3.2, p. 63]. The completeness theorem below was first proven (differently)
in [Letz 1993]. The present proof is from [Hahnle et al. 1997].

4.13. LEMMA. Let S be a mu ground clause set with C € S, D C C, and Sp =
(S —{C})U{D}. Then for any mu subset S’ of Sp: (i) D € S"; (ii)) D ¢ D" for
all D #D" e 8",

4.14. THEOREM (Completeness). If the finite ground clause set S is unsatisfiable,
then there is a regular connection tableau proof for S.

PrOOF. We show by induction on the number k of literal occurrences in S: for any
relevant clause C'; € S, that is not a unit clause, there is a closed regular connection
tableau for S whose initial step uses C. If there is no such clause, there must be
a mu subset of unit clauses in S; it is trivial to find a regular connection tableau
proof for such a set.
k € {0,1,2} : either S is satisfiable or it contains only unit clauses or the empty
clause and the claim is trivially satisfied.
k > 2 : (see Figure 10) let C; = Ly V---V L;V---V L,, be a relevant non-unit clause
in S and let T" be the regular connection tableau consisting just of an initial step
that uses Cj (upper middle part of Figure 10).

Foralli € {1,...,n}let C} = L; and Sg, = (S—{C;})U{C;}}. By Lemma 4.13(i),
C' is contained in an mu subset SL of Sg,. Hence, L; occurs in a clause C? of S’
Moreover S}, contains less literals than S.

TABLEAUX AND RELATED METHODS 133

[
L ‘.~ o
E(-w(

[]
%)
e &
S =
=
3 3
[<5) - ®/~s —
E—9 23
[]
%)
<
~
>
>
%) . >
S 7 O 3 1§ 3
: N I >
> © o : ©
~) :
~ I
" O
Q _
" »

Figure 10: Illustration of the proof of Theorem 4.14

134 REINER HAHNLE

If C? is a unit clause, then the i-th branch of T' can be closed immediately, result-
ing in a regular connection tableau. Otherwise, applying the induction hypothesis
on C* and Sj_ yields a closed regular connection tableau T; for Sg, D S, where
the first extension step uses C? (lower middle part of Figure 10).

By Lemma 4.13(ii), L; occurs at most in C} and is therefore only used in ex-
tension steps with the unit clause C]’- in T; (highlighted by boldface type in the
figure). As shown in the figure, each T; is glued together with T' at L; maintaining
connectedness. In the resulting tableau, irregularity can at most occur with the Lj;.
But as L; occurs on top of each T; (circled occurrence) the extension steps with unit
clause L; simply can be replaced by reduction steps with the circled occurrence of
L;. Because of Sp, — {C}} C S, the result is a regular connection tableau for S. O

The proof has an interesting consequence resulting in a restriction for initial
clauses, which is of importance later on in Section 5.3: each mu set of (not necessarily
ground) clauses S trivially contains a negative clause (if not, it can be satisfied
by the constantly true interpretation). Hence, one of the negative clauses of S
is relevant and, therefore, the initial extension step can be restricted to negative
clauses.

4.15. COROLLARY. Regular connection tableauz are complete even when the first
extension step must use a negative clause.

4.5. Orderings and Selection Functions

4.5.1. Redundancy and Saturation in Tableaux
Let us take up the theme expressed in the regularity restriction, namely to avoid
redundancy in tableau proofs.

Any open branch B in a ground clause tableau T for S, or equivalently, any
consistent set of ground literals B defines a partial interpretation Ig on S via
InELiff L € B.

A first-order clause tableau is rendered irregular by an extension step of branch
B with a non-tautologous clause C' iff I3g = C, where 3B is obtained from B by
replacing its variables with new and differing constant symbols. When B is ground,
regularity, therefore, amounts to avoiding extension, whenever Iz |= C holds. A
stronger notion of redundancy is desirable, though. Until further notice we work
with ground clauses.

4.16. DEFINITION. An open clause tableau branch B has a saturation with respect
to a clause set S iff it has an extension B D B such that Iz = S.

It is, of course, not realistic to consider all possible extensions of a branch (the
empty branch, for example, always has a saturation when S is satisfiable), so we
check only one of them to guide tableau extension.

If Ip is not yet a model of S (that is, B is not a saturation itself), then there
must be a reason for it in the form of clauses C' € S not satisfied by Is. We try to

TABLEAUX AND RELATED METHODS 135

complete Ip to a model of all clauses in S by adding to it selected literals from the
unsatisfied clauses. These clauses are, by definition, no tautologies and are regular
on B.

This idea is formalized in the following section.

4.5.2. Tableaux with Selection Function

Let f be a selection function on clauses: a function mapping each clause into a
(possibly empty) subset of its literals. The extension By of B with respect to f is
defined as follows:

By=BU |J f(0) (4.3)

ces
Ip %C

If By is consistent and all clauses with no selected literals were used on B, then
IE, = S by construction and proof search can be stopped here. In general, how-

ever, B ¢ does not induce an interpretation, because it may contain complementary
literals. In this case, one of the clauses not yet satisfied by Ip is selected for ex-
tension whose selected literal(s) contribute to a contradiction in By. Formally, let
F(C) denote the set of complements of literals selected by f in C. Then extension
steps (Definition 4.1(ii)) are restricted to clauses in

{C|C eS8 IpCand (f(C)NB; #0or f(C)=0)} (4.4)

By definition, if L € f(C) N Ef, either L € B or L € f(D) for some clause
D € S. In the first case the extension is a weak connection step in the sense of (ii"’)
on page 131 (accordingly, the branch containing L € f(C) is marked as closed). The
second case and the case when no literal is selected are called a restart step (and
C a restart clause) to emphasize that this part of a tableau proof bears no direct
connection with the current branch. The top clause in a tableau proof is always a
restart step. No new restart clauses are added once a selection function f is fixed:
they can be computed in advance.

4.17. ExaMmPLE. Consider the clause set S; = {-QVaS, -RVS, PVQVR, =P} in
which the lexicographically largest literal is selected (these are underlined). Initially,
B = {true} and B; = {=S,S, R,~P}. The first two clauses are the only restart
clauses of which the first is selected (see Figure 11).

For the leftmost branch B = {-~Q} one obtains By = B U {S, R,~P}, which
models S;. On the other branch B = {=S} one has ﬁf = BU{S,R,-P}, so an
extension step (the only one) with the second clause is possible. The only open
branch is now B = {=S,-R} with ﬁf = BU{R,—P} and only extension with the
third clause is allowed. The first open branch, {—S,-R, P} is closed by a further
extension while the last open branch B = {=S, =R, Q} yields By = BU {~P} and
thus the second model of S. Observe that all but the very first extension step were

136 REINER HAHNLE

determined which demonstrates the potential for down-sizing the search space with
selection functions.

true
-Q -9
- R/ \5
BU{S,R,~P} ! 2
., / 6‘2\5
|
P BU{f:P}

Figure 11: Tableau with selection function.

4.18. THEOREM. If the finite ground clause set S is unsatisfiable, then for any
selection function f there is a tableau proof with selection function f for S.

PRrROOF. Assume there is a tableau with selection function f and an open branch
B in which all possible extension steps were made. As S is finite, B is finite as
well. We claim that By is consistent from which I B, E S follows by construction

(in particular, all clauses with no selected literal are satisfied). If B ¢ is inconsistent
there is a literal L € {f(C) | C € S, Iz [~ C} such that L occurs (I) in B or (II)
in f(D) for some clause D not yet satisfied by B. In case (I) a weakly connected
extension step is possible on B in case (II) a restart step is admissible. Either way,
the assumption that all possible extension steps were made on B is contradicted. [

The proof is independent of the sequence of extension steps chosen, so tableaux
with selection function are proof confluent. Moreover, a slight generalization of the
proof shows that completeness is retained even when f is changed during tableau
construction.

4.5.8. Related Calculi

A number of recently suggested restrictions of clause tableaux can be considered
as special cases of tableaux with selection function, for example, ordered tableaux
[Klingenbeck and Héhnle 1994, Héhnle and Klingenbeck 1996].

4.19. DEFINITION. A ground literal (L-)ordering is a binary relation < on ground
literals which is irreflexive and transitive.

TABLEAUX AND RELATED METHODS 137

L-orderings give a complete tableau restriction which can be expressed via selec-
tion functions as follows: simply use

f<(C) ={L | L maximal in C with respect to <} .

The restriction Ip = C in (4.3), (4.4) is not enforced by Hiahnle and Pape [1997]
and | f(C')| > 01is required, otherwise their calculus is identical to the present version
of tableaux with selection function. On the other hand, Pape and Hahnle [1997]
showed that tableaux with selection functions can be modified to accommodate
connected extension steps.

In ordered tableaux, by definition, f(C) # 0); hence, only restart clauses of the
kind that are connected via f can occur. It is a natural question, if one can get rid of
restart clauses altogether. In [Hahnle and Klingenbeck 1996] it is shown that ordered
tableaux without restart steps (that is each extension step is weakly connected via
f) are incomplete for certain total orderings. It is not obvious, for which selection
functions a calculus without restart clauses might be complete (besides the trivial
selection function defined by f(C) = C for all C' € S, which gives regular clause
tableaux without any further restriction).

On the other hand, one can impose a restriction, which is complementary to that
of ordered tableaux, in the sense that one permits only restart clauses of the kind,

where f(C) = 0:

4.20. DEFINITION. A selection function is consistent (with respect to S) if
Uces F(C), the set of all literals in a clause set S selected by f, is consistent.

Whenever f is consistent with respect to S, only restart steps with clauses
that have no selected literals are possible. The special case when S is consistent,
|7(C)] <1, and there is exactly one restart clause in S, is a complete calculus known
in the literature as SL-resolution without contrapositive clause variants (SLWV-
resolution) [Pereira, Caires and Alferes 1992].

4.5.4. First-Order Issues

Lifting is straightforward for tableaux with selection function f provided that f lifts.
More precisely, call f stable with respect to substitutions if f(Co) C f(C)o for all
clauses C' and substitutions . For L-orderings this translates into the requirement
L < L' implies Lo < L'o for all substitutions o and literals L, L'. It is obvious from
the discussion following 4.4 that tableaux with selection functions that are stable
with respect to substitutions lift without problems.

Implementation of first-order tableaux with selection function poses similar prob-
lems as regularity. In addition to regularity constraints, selectedness constraints are
derived from (4.4) and take the form L € f(C) [Pape 1996, Hihnle and Pape 1997].

Checking selectedness constraints for satisfaction can be expensive (NP-complete).
If one decides to suppress their generation, then the resulting calculus can be called
tableauz with input selection function [Hahnle and Pape 1997], because the selection
restriction is only enforced on clauses that serve as input for extension steps, but

138 REINER HAHNLE

not on instances of clauses used in a tableau already. This has another advantage:
it was noted after the proof of Theorem 4.18 that the selection function may be
arbitrarily changed during tableau construction. This implies at once that selection
functions need not be stable with respect to arbitrary substitutions in tableaux
with input selection function, rather, stability with respect to variable renamings
is sufficient [Hiahnle and Pape 1997].

4.6. Hyper Tableaux

Recently, tableau calculi based on hyper extension rules gained considerable at-
tention [Bry and Yahya 1996, Baumgartner et al. 1996, Shults 1997, Baumgartner
1998]. This is not surprising, because hyper-resolution [Robinson 19654] is long
known to be a key ingredient to success in theorem proving. Hyper calculi share
the feature that several deduction steps are combined into one. This yields a speed-
up in proof search, but the main advantage is that some intermediate results are
not computed in the first place and this can limit the search space considerably. In
fact, hyper tableaux were considered early on by Brown [1978], but this work did
not make the impact it deserved. The family of calculi known as model generation
[Manthey and Bry 1988, Fujita and Hasegawa 1991] is essentially a variant of hyper
tableaux and is discussed below.

It is well-known that hyper-resolution can be seen as an instance of semantic
resolution [Slagle 1967]. The same kind of generalization is done in the following
for hyper tableaux.

Again, we start with the ground case. One stipulates a similar condition as (4.4)
on clause candidates for extension saying that all selected literals of an extending
clause must be weakly connected to the current branch, formally, each clause used
in an extension step (Definition 4.1(ii)) on B must be from the set:

{C|C €S, 15 Cand F(C) C B} (4.5)

A ground clause tableau constructed with this restriction is called a hyper tableau.
In each extension step the branches containing complements of selected literals of
the extending clause are marked as closed.

Given a selection function f and a clause C' with f(C) = {Li,..., Ly} and
C—f(C)={Lm+t1,-..,Lp}, one can rewrite C as a rule in the following fashion:

selected literals not selected literals
—

— p— —_——
LiyN---ANLp = Ly V-V L, (46)

The premise of C' viewed as a rule (that is, the set of literals {Ly,...,L,,}) is
equivalent to {true}, when there are no selected literals; likewise, the conclusion
of C viewed as a rule (that is, the set of not selected literals {Ly+1,...,L,}) is
equivalent to {false}, when there are only selected literals. Note that the premise
of a rule contains complements of selected literals.

TABLEAUX AND RELATED METHODS 139

As true occurs on every tableau branch, the following reformulation of (4.5) is
possible:

{C'|C € S, Ip [£ C and all literals of the premise of C' occur in B} (4.7

Clauses with no selected literals are unrestricted in application and, therefore,
play the role of restart clauses in hyper tableaux. In the following the convention
is adopted not to display branches closed by extension steps and to treat false as a
literal indicating closure by clauses having only selected literals.

4.21. EXAMPLE. Let fxn select exactly the negative literals of each clause. Ground
clause set Sy = {-Q V oS, 2RV S, PV Q V R, =P} in rule notation becomes:
{QAS — false, R — S, true =+ PV QV R, P — false}. The only possible hyper
tableau for fy and S, is as follows:

trl\w
" Q \R

I |
false S

Note that the left branch is closed. A hyper tableau for S; must begin with the
only restart clause. Closure of the leftmost branch and extension of the rightmost
one are both mandatory. No other rule can be applied after this.

In general, hyper tableaux are not complete (for example, when all literals are
selected no initial extension step can be made), but completeness is regained for
consistent selection functions.!!

4.22. THEOREM. If the finite ground clause set S is unsatisfiable, then for any
consistent selection function f there is a hyper tableau proof with selection function

f for S.

PROOF. The proof is very similar to the proof of Theorem 4.18. Consider an open
branch B in a hyper tableau for S, in which all possible extension steps were made,
and let By be the extension of B, see (4.3). The set By — B is consistent, because f is
consistent, so when Ef is inconsistent there is a literal L € {f(C) | C € S, Ip |~ C}
such that I occurs in B. Obtain B’ by removing all such literals from B;. Now B’
is consistent and we claim Ip/ |= S. By construction B’ D B, so it suffices to prove
Ip = C for clauses C not used on B (this implies |f(C)| > 0).

B ¢ contains the literals from f(C'); if all of these were removed when computing

B’ then f(C) C B and a hyper extension step would be possible with C' on B

HTn fact, for consistent selection functions that select at most one literal per clause conditions
(4.4) and (4.5) become identical.

140 REINER HAHNLE

contradicting the assumption that all possible extension steps were made. So at
least one literal in f(C') is still present in B’, thus Ip = C. O

The set B’ that induces the model I in the previous proof can be defined more
directly as B' = BU{L e f(C)|C € S, L ¢ B}.

4.6.1. Positive and Semantic Hyper Tableauz
Many hyper tableau calculi [Manthey and Bry 1988, Fujita and Hasegawa
1991, Brown 1978, Baumgartner et al. 1996, Bry and Yahya 1996, Shults 1997,
Baumgartner 1998] focus on the particular selection function fy which selects ex-
actly the negative literals in a clause. The ensuing calculi are called positive hy-
per tableauz, because negative literals occur only as leaves of branches closed by
an extension step in a hyper tableau with fxn. Therefore, closure by reduction
steps cannot occur. If ¥ contains the atoms of S, then computing B’ simplifies
to BU{=P | P € (As — B)}. From the two open branches in the tableau of
Example 4.21 one reads off the models {Q,=S,2R, 2P} and {R, S, -Q,=P}.
Selection function fx is an example of a complete selection function'?, which
selects at least one of P, =P for each ground atom in the signature of ground clause
set S.1% In the presence of complete selection functions reduction steps are not
required, because they would occur with two complementary, not selected literals
whose existence is exactly what has been ruled out;'* this proves:

4.23. COROLLARY. If the finite ground clause set S is unsatisfiable, then for any
consistent and complete selection function f there is a hyper tableau proof with
selection function f for S that does not use the reduction rule.

4.24. ExamMpPLE. Completeness of the selection function is a necessary condition in
the corollary: consider the clause set S = {true — P, true — —P} in which nothing
is selected (that is, its corresponding selection function is consistent). Both clauses
are restart clauses, so P and —P are present on any branch via extension, however,
closure is only possible with a reduction step.

4.6.2. First-Order Issues
For sake of clarity, the first-order version of the hyper tableau extension rule is
stated explicitly:

12This notion of completeness is unrelated to completeness of calculi.

13Consistent and complete selection functions on S can be considered as interpretations of S
(I = Liff L € f(C)). Hyper tableaux based on such f can be seen as a tableau counterpart to
semantic resolution [Slagle 1967] and would be best called semantic tableaux if the latter phrase
were not used sometimes for the whole tableau framework. Perhaps one should call them semantic
semantic tableauz?

14 Alternatively, one argues that consistent and complete selection functions f induce a suitable
literal renaming of S on which fy can be used to the same effect as f.

TABLEAUX AND RELATED METHODS 141

(ii"") Let T be a hyper tableau for S and consistent selection function f, B a branch
of T,C =L A---ANLp = Lyyi1 V-V L, anew instance of a clause in S.
If there is an MGU o such that all literals of the premise of C'o occur in Bo
(see also (4.7)), Iaps £ VCo, and the tree T' is constructed by extending B
with 7 new subtrees, where the nodes of the new subtrees are the literals of
C, then T'c is a hyper tableau for S and f, in which all new branches ending
with L;o (1 <i < m) are marked as closed.

As before, selection functions must be liftable, that is, stable with respect to
substitutions to ensure completeness. As can be seen from (ii"”’), in addition to
the regularity and tautology check (that is, Isg, & VCo), one must compute a
set By C B as well as a simultaneous MGU of {{L,L'} | L € By, L' € f(C)} to
perform a hyper extension step on branch B with clause C'. This is easily seen to be
an instance of the first-order clause subsumption problem, which is NP-complete
[Garey and Johnson 1979]. This complexity is implicitly present in proof search
without hyper steps as well, although on a different level. It does not indicate
inferiority of hyper tableaux as a calculus for proof search.

A more interesting question takes up the discussion of Section 3.3: how deals
one in the context of hyper tableaux with the difficulties to define combined fair
clause and substitution selection in destructive calculi? For positive hyper tableaux,
several strategies are found in the literature:

The first option is to fix a computation rule and accept incompleteness. Typically,
one minimizes n—m in (ii"") and/or the size of terms in MGUs. For specific problem
domains, where specific heuristics could be developed, success is reported in [Brown
1978, Shults 1997]. Another form of incompleteness (in syntactical expressivity of
the logic) ensues from restriction to range-restricted sets of clauses:

4.25. DEFINITION. A first-order clause C' is range-restricted with respect to a se-
lection function f when all variables occurring in the conclusion of C' (that is, in
not selected literals) occur also in its premise (that is, in selected literals).

Observe that range-restricted clauses with no selected literals (premise is {true})
are ground. A trivial induction shows that when all clauses in S are range-
restricted, then a hyper tableau for S is ground. As an immediate consequence,
in this case hyper tableaux are not destructive, so fair selection of clauses
used in extension steps renders hyper tableaux a strongly complete calculus, of
which efficient implementations were realized with respect to fy [Manthey and
Bry 1988, Fujita and Hasegawa 1991, Hasegawa, Koshimura and Fujita 1992, Bry
and Yahya 1996, Hasegawa, Fujita and Koshimura 1997] (by Corollary 4.23 reduc-
tion steps are not necessary). These calculi are further discussed in Section 4.6.3
below.

EP-tableauz are a variant of positive hyper tableaux for non-clausal first-
order logic without function symbols that can detect finite satisfiability [Bry and
Torge 1998]. The key ingredients are (i) a non-clausal version of range-restrictedness
called positive formulas with restricted quantifications (PRQ formulas)—in particu-
lar, type v formulas are of the form (VZ)(¢(#) — ¢) and are only used on a branch

142 REINER HAHNLE

B with Ip |= ¢o for some o; (ii) only formulas ¢ with Ip [~ ¢ are added to a branch
B, (iii) a modified 0-rule that explicitly enumerates the current model domain:

o()
du(er) | -+ | d1lem) | 01(skos)
C1,...,Cn are all

constants on the branch.

Because of (i), EP-tableaux have no free variables, so they are not destructive. In
the function-free case, finite term domain models have a finite representation on
branches; (iii) ensures that enough information for explicit model construction is
present. Together with (i) and a fair computation rule, this is sufficient to detect
all finite term domain models on finite EP-tableau branches.

Back to general clause sets, call a variable violating range-restrictedness of a
clause and occurring in more than one literal of the conclusion of this clause crit-
ical. Obviously, non-critical variables in a tableau are universal in the sense of
Section 3.2.5 and need, therefore, not be instantiated. Baumgartner et al. [1996]
enumerate ground instances of clauses restricted to critical variables to obtain a
strongly complete calculus which is better than enumerating all ground instances
as in Smullyan’s [1995] tableaux.

Baumgartner [1998] improves on this: like in the range-restricted case, a tableau
is treated as if it were ground: substitutions are only applied to new instances of
input clauses (in other words, not unification, but merely matching is employed).
If an instance Lo (with critical variables) of a literal occurrence L on a tableau
branch is required to perform an extension or reduction step, then ¢ is applied to
an instance of the clause containing L and the result is added to the input clause set.
The latter possibility regains completeness.'® Needless to say, lifting is not trivial
in such a calculus.

This version of first-order hyper tableaux is not destructive, as only input clauses
are instantiated. The destructive part of the substitution of the closure rule is
recorded “outside” of the tableau as additional instances of input clauses. They can
be arranged in a fair manner easily. This can also be seen as a kind of constraint
on substitutions to guide proof search.

In principle, a strongly complete, destructive calculus could be obtained if one
compiled the information contained in these “outside” clauses (and their fair se-
lection) into a clause selection rule. Consequences for such a calculus would be:
(I) clause selection is not defined branch-local, because “outside” clauses touch on
several branches; (IT) one needs to identify clause instances that are identical up
to variable renaming to ensure finiteness; (III) a suitable ordering on literals must
be used to enumerate instances of literals for closure in a fair manner. All three
ingredients are actually present in recent suggestions for strongly complete, destruc-
tive proof procedures in [Beckert 1998, Beckert 2000] and [Baumgartner, Eisinger

15This idea can be applied to any tableau calculus, not only to hyper tableaux. They are
particularly suitable, though, because less clause instances are generated.

TABLEAUX AND RELATED METHODS 143

and Furbach 1999, Baumgartner, Eisinger and Furbach 2000], the first of which is
discussed in Section 4.7.

4.6.3. Model Generation
Positive hyper tableaux for range-restricted clause sets are better known as model
generation and were suggested by Manthey and Bry [1988]. Traditionally, they are

described in a somewhat different manner (adapted from [Fujita and Hasegawa
1991]):

4.26. DEFINITION. M is an inductively defined set of interpretations called model
candidates each of which is represented by a consistent set of ground literals.
Init: Set M to {0}
Model Extension: I € M is a model candidate, D — FE a new instance of a
clause in S. If there is a substitution ¢ such that Do C I and I £ Eo, then set
M to
(M—-{I}HU{{L}UI| L€ Eo} .
Model Rejection: I € M is a model candidate, D — false a new instance of a
clause in S. If there is a substitution ¢ such that Do C I, then delete I from M.

Model candidates correspond to open hyper tableaux branches, while model ex-
tension and model rejection are special cases of the positive hyper tableau exten-
sion rule. Model candidates that can neither be extended nor rejected correspond
to open hyper tableau branches with no applicable rule and, therefore, induce a
model of the input clause set. A closed tableau corresponds to the empty set of
model candidates.

In the light of Corollary 4.23, model generation works unaltered for range-
restricted rule sets with consistent and complete selection functions, if selection
functions are suitably defined on the first-order level:

4.27. DEFINITION. A selection function f is consistent on a first-order clause set S
if it is consistent on all its ground instances. It is complete on S if for each ground
instance P of an atom occurring in S: f selects a literal) or =@ such that P is an
instance of Q.

A further generalization of model generation was obtained by Shirai and
Hasegawa [1995] and called constraint model generation. It can be described in the
present framework as hyper tableaux with arbitrary selection function and range-
restricted input. Theorem 4.22 (plus a trivial lifting step) grants completeness for
fair input clause selection and consistent selection functions, when a reduction rule
is present. But the latter can be expressed within the calculus by adding a clause
of the form

P(zy,...,xy) AN0P(xq,...,2,) — false (4.8)

for each n-ary predicate symbol P € Px. The rules (4.8) were called integrity
constraints by Shirai and Hasegawa.

144 REINER HAHNLE

Whether constraint model generation is complete for a given problem S was
unclear in [Shirai and Hasegawa 1995]. From the tableau perspective, Theorem 4.22
ensures completeness for each problem S with a consistent set of rule premises (with
the exception of the problem-independent rules (4.8)). The quasi-group problems
discussed in [Shirai and Hasegawa 1995] are a practically relevant case.

If necessary, any clause set can be made consistent with respect to any given
selection function f: assume there is a rule R = LAC — D such that L is unifiable
with L’ occurring in the premise of another rule. Replace R with R' = d(&) AC —
DV L, where ¥ are the variables occurring in L but not in C, and d is a domain
predicate that enumerates the ground terms of the problem signature [Manthey and
Bry 1988]. This preserves satisfiability and range-restrictedness and eliminates the
inconsistency at L.

4.7. A Destructive and Strongly Complete First-Order Calculus

Recall from the discussion in Section 3.3 that destructive first-order tableau calculi
cannot easily be turned into a strongly complete proof procedure so that one usually
retracts to DFID search, although backtracking is not necessary, in principle, within
proof confluent calculi.

Recall further that it is the closure rule (Definition 4.2(iii)) that renders tableaux
with unification destructive, but the MGUs computed in it are needed for guidance
of proof search.

Baumgartner’s [1998] idea, briefly discussed in the previous section, is to record
MGUs outside of the tableau in the form of a dynamically growing input clause set.
Beckert [1998] has a different approach not modifying the input clause set, but the
tableaux themselves.'®

Whenever a substitution ¢ must be applied to close a branch in a tableau T,
the smallest subtableau T" of T affected by o (that is, containing variables x with
o(x) # z) is reconstructed. This can be done trivially by copying 7" below each open
branch of 7o as depicted in Figure 12, but obviously less redundant strategies are
conceivable.

The effect is that substitution is syntactically still destructive, but from a seman-
tical point of view absolutely no harm is done.

Select clause and select pair must still be fair, of course, but this is much easier
to achieve once destructivity is essentially eliminated. Unfair selection can result
in two phenomena which have to be both avoided: (i) generating arbitrarily large
terms of one kind (such as s"(x) for all n, when also, say, 0 is present); (ii) avoid
loops of tableaux that subsume each other.

To avoid unfair generation of terms one restricts the order in which they can be
introduced. A well-order < on literals is any partial, well-founded order, such that
there are not infinitely many incomparable elements (up to variable renaming).

16Beckert’s framework is designed for quite general tableaux calculi including non-classical and
non-clausal logics. I present it in simplified form for clause logic, because the technicalities of the
general case are beyond the scope of this article.

TABLEAUX AND RELATED METHODS 145

Figure 12: Reconstructing a subtableau “destroyed” by substitution.

4.28. EXAMPLE. Let |L| denote the number of symbols in L, where variables are
counted twice. Then define a well-order < by L < L' iff |L| < |L'| and false < L for
all L. This implies P(a) < P(z) < =P(y).

Now the effect of each rule, when applied to a tableau, can be measured in terms
of <:

4.29. DEFINITION. With each tableau construction rule R applied to tableau 7" one
associates a set of literals R(T'), depending on the rule type:

Extension: the set of literals in the clause instance used for extension;
Closure: {false} U {Lo | L occurs in T, Lo # L}, when closure is by MGU o.

It remains to assure that each tableau rule application derives “new” information
so that progress towards a proof is not infinitely delayed. In tableau calculi progress
can be measured in terms of branch closure. If a tableau can be closed, and it turns
out that its predecessor could have been closed as well, then this tableau is not
needed. The following definition formally captures this:

4.30. DEFINITION. A tableau T subsumes a tableau 1" if each branch of T sub-
sumes at least one branch of T".
A branch B of T' subsumes a branch B’ of T" if for all sets ®' of literals on B’
with at most two elements there is a set ® of literals on B such that
1. &7 = &' (where 7 is a variable renaming)
2. for each literal L in T that has variables in common with ® there is an L' in
T' such that Lw = L' up to renaming of free variables not occurring in ®'.

The reason for |®| < 2 is that a single rule application involves either one (ex-
tension) or two (reduction) branch literals. The second, rather technical, condition
is required to guarantee that a deduction that is possible in T', can be mimicked
in T, and has the same effect on instantiations and order. Putting things together,
one obtains:

146 REINER HAHNLE

4.31. THEOREM ([Beckert 1998]). If S is an unsatisfiable first-order clause set and
< a well-order on literals, then any sequence of first-order clause tableauz for S
results in a tableau proof for S after finitely many steps provided that (A) a recon-
structing version of the closure rule is used and (B) a rule R is only applied to a
tableau T' when

1. the <-mazimal elements of R(T) are <-minimal in U max R'(T)

R’ applicable on T
2. T does not subsume the result of applying R to T'.

4.32. EXAMPLE. Consider S = {P(a), Q(a), Q(b), ~P(z) V -Q(z)} and the well-
order defined in the previous example. Starting with the initial tableau, the ground
clauses must be applied first, because closure is not possible and ground literals
are minimal. No ground clause can be applied twice, because the resulting tableau
would be subsumed. The top left hand tableau in Figure 13 is obtained.

Assume select branch is implemented right-first. Now a second application of the
non-ground clause competes with closure as indicated (the substitution that does
not immediately lead to a proof is chosen deliberately). The literal set associated
with the closure contains only ground literals and so is preferred over extension.
Substitution {z — b} affects the tableau below @(b) which is, therefore, replicated.
The reconstructed tableau is on the right on the top row.

In the rightmost open branch, again, closure is preferred over extension. But if
the same substitution as before is used, then the resulting tableau (right hand in
bottom row) is subsumed by the top right tableau: the unchanged branch is trivially
subsumed; both gray branches subsume the same gray branch in the subsumed
tableau.

This leaves closure with {z — a} as the only legal rule application which results
in a tableau proof immediately.

4.8. Tableaux with Cuts and Lemmas

So far we discussed restrictions of tableau calculi aimed at diminishing the search
space. Some problems, however, only have extremely long tableau proofs. Already
on the ground level there exist classes of formulas S,, such that the size of their
smallest, tableau proof is exponential in the size of S, whereas short resolution
proofs exist [Cook and Reckhow 1979]. The reason is that resolution incorporates
an atomic cut rule or (and this is just another name) lemma generation.

4.33. EXAMPLE. Let {P,..., P,} be different ground atoms. Consider the clause
set

Sp=AL1V---V L, | L €{P;,~PF},i€{l,...,n}} (4.9)

Obviously, S,, is unsatisfiable. D’Agostino [1992] proved that the smallest closed
clause tableau for S,, has at least n! inner nodes, whereas S,, contains merely n2"
literals. Even simple truth table checking has linear cost in the size of S,,.

TABLEAUX AND RELATED METHODS 147

true true true
P(a) P(a) I’t’lm
Qla) Qla) Q(a)
Q) Qlb)= {false: "P(5) ~Q()} (’J‘!‘,‘;}‘)
—|P(a§ EQ(a:) —|P(a§ EQ(a:) —J"(/{ EQ(b)
T b ﬁf't'.r/ -Q(x)
true true
P(a) /"(Iu)
Q(a) f,,'&ilu‘)
ol /@n’:w\
PR EU P e
P@) Q)
x>

Figure 13: Illustration of Example 4.32.

Now consider the clause set T, = {P;V-PF; | i € {1,...,n}}. S, UT, has a
short proof (displayed for n = 3 in Figure 14). The point is that the tautologies
in T,, can be used to enumerate all interpretations over {P,..., P,}. Then each
clause in S, is contradicted by exactly one interpretation. The resulting tableau
has n2" + 2"t — 1 € O(||S,, UT,||) nodes.

- \
/PQ\/ _‘PQ P2/ _‘P2
7 N\ 7 N\ e ~N
P3 _'P3 P3 3 P3 _'P?) P3 _'P3
VAR / 1\ VAN
—P| =Py P “P =P P; P PP

Figure 14: Clause tableau proof for S3 U T5.

The effect of the clauses T}, can also be achieved by adding a new tableau exten-
sion rule

4.10
P -P ()

called atomic cut rule. It is closely related to the well-known cut rule found in
sequent calculi [Gentzen 1935]. This is what we look at next.

148

REINER HAHNLE

Clausal Sequent Calculus

Clausal Tableau Calculus

Axiom rule

V-left rule

Atoms/unit clauses left of ‘=’
Atoms right of ‘=’

Sequent proof trees interpreted as
logical conjunction of their leaf se-
quents

Sequents interpreted as logical dis-
junction of their elements

Validity proof

Branch closure rule
Tableau extension
Positive branch literals
Negative branch literals

Tableaux interpreted as logical dis-
junction of their branches

Branches interpreted as logical con-
junction of their literals

Unsatisfiability proof

Table 3: Duality between sequent and tableau calculi.

4.8.1. Tableauz and Sequent Calculi

Sequent calculi [Gentzen 1935] are direct ancestors of tableaux; see [Avron 1993,
Smullyan 1995] for full accounts of their relationship, which I sketch here for the
clausal case.

A propositional clausal sequent is an expression of the form I' = A, where T’
is a tuple of clauses and A is a tuple of atoms. I' = A is walid iff the formula
Acer G = V pea D is valid. Hence, a clause set S is unsatisfiable if the sequent
S = is valid. The propositional clausal sequent calculus consists of only three rule
schemata:

D, Li,I" = A| | DL, "= A
V -left
T,V VL,['=A
(4.11)
I,I'= P,A X .
-left axiom

[,-PT = A [,PI' = A,P,A

Sequent proof trees have sequents as their nodes. A sequent proof tree for a
sequent I' = A has this sequent as its root and is extended by applying suitable
instances of rule schemata (4.11) to leaves.

It is straightforward to show that a sequent is valid iff it has a proof tree in which
all leaves are marked with x. Moreover, there is a duality between clause tableaux
and clausal sequent calculi, summarized in Table 3.17

Literal occurrences may be shared among several tableau branches, but are du-
plicated in sequent proof trees. In the light of this and the duality between sequent
and tableau proofs, rule (4.10) corresponds exactly to the usual cut rule of sequent
calculi, if the cut formula ¢ is restricted to being an atom:

7"This duality extends to the non-clausal and first-order case, see [Smullyan 1995].

TABLEAUX AND RELATED METHODS 149

DI = A, A | Do T = AN

(4.12)
L= AA

4.8.2. Tableauxr with Lemmas

We saw that the atomic cut rule (4.10) can lead to exponentially shorter tableau
proofs, however, its application is completely unrestricted—one can use it anytime
during tableau construction. This may well cause longer proofs than shorter ones.
It is not obvious when to apply cut advantageously. A first restriction is obtained
by permitting its use only if the extension rule application immediately following
it during tableau construction is a connected extension step (see Figure 15).

/\L_
//l\

Li Ly

L;

Figure 15: Cut rule application followed by connected extension step.

With this restriction in place, not more branches are generated than if one had
performed only the extension step without the preceding cut. The cut has the effect
that in all n — 1 branches that contain a literal L; # L; in addition the literal L;is
present. If one applies n — 1 atomic cuts to n — 1 different literals from {Ly, ..., L,}
before an extension step and writes the resulting proof tree as a “macro rule” (not
displaying closed branches) yields the extension rule with local lemmas displayed
in Figure 16.

Loy | Leqy | Leqyy | | Laq
Lz2) | La2) Lz (2)
L3 L3 Liv---VL,€eS
. 7 permutation of
{1,...,n}
La(n-1)
Lz (n)

Figure 16: Extension rule with local lemmas.

The complemented literals are called local lemmas: for example, Ly ;) is obtained
as a lemma on its sibling branches after the branch B is closed with the help of

150 REINER HAHNLE

Ly (iy- (Recall that closed branches are unsatisfiable, hence, a branch that can be
closed and where L.(; occurs, proves B |= Lr(;.) The lemma is local to certain
branches as opposed to being global (on the whole tableau).

4.8.3. Tableaux with Folding Up

Depending on the sequence of branch closures, there are n! different permutations
of the local lemma rule applied to a n-literal clause. Not all of these are equally
useful. To remedy this situation, a version of local lemma generation called folding
up rule has been suggested [Letz 1993]. It can be seen as “lazy lemma generation”.

4.34. EXAMPLE. Consider the clause set S ={PVT, PV -T,-PVQQVS, -QV
R, =RV —P, =SV R} and the partial tableau proof for S displayed in Figure 17.
Assuming that select branch is left-first, after closure of branch B = {P, @, R} one
knows that SU{P,Q} = —R. This lemma is useless, though, because the branch
{P,Q,Q} to the left of B is closed already, and B has no right sibling. Inspection
of the partial proof shows, however, that even SU{P} | =R holds, because @) was
not involved in the closure of B.

P
7
~P Q
ARNIE
- /N
-R

Figure 17: Illustration of Example 4.34.

In clause tableaux with folding up rule each literal L that is a local lemma in
the sense of the local lemma rule in Figure 16 may be moved up towards the
root as follows: we say that a literal L' on the path between L and the root was
used to prove L if L' is involved in the closure of a branch through L’; now the
folding up rule permits to move L immediately above the lowest literal used to
proof L [Letz 1993, Letz et al. 1994] and it can be used to close any branch below
its new position.

With the folding up rule, in the previous example, lemma =R may be moved up
above P and lemma —P from the right subtree is moved up above true (the latter
is also possible with a suitable variant of the local lemma rule). In Figure 18 new
lemma positions are boxed, upward moves are indicated by dashed arrows, while
additional closures made possible by moved lemmas are indicated by solid arrows.

One can show that the folding up rule does not change the nondeterministic
power of tableau with local lemmas, that is, the length of shortest proofs does not

TABLEAUX AND RELATED METHODS 151

— T =2

-R P

Figure 18: Tableau with folding up rule.

change [Letz 1993]. In a concrete tableau proof search the shortest proof is generally
not found, therefore, folding up can speed up proof search considerably: an ill choice
of select clause might be remedied.

4.8.4. Tableaux with Factoring
Tableaux with factoring (also called tableauz with merging) are related to the sub-
sumption rule in resolution theorem proving [Robinson 1965]. Assume branch B is
not yet closed, but there is a “more specific” branch B’ closed already. Intuitively,
this justifies to close B as well (as long as one does not go around in circles). For-
mally, a branch B’ is more specific than a branch B iff there is a substitution o such
that B’ C Bo. Instead of trying to close B, one may simply refer to B’ then, apply
o to B and consider it as closed provided that these references are acyclic. Sound-
ness of tableaux with factoring is straightforward to prove directly; alternatively, it
is sufficient to observe that tableaux with factoring can be simulated by tableaux
with local lemmas: assume B was closed by referring to the more specific branch
B’ and that L is the top-most literal on B’ not on B. Now replace the extension
rule that produced L with a local lemma version putting L on B. As B’ is more
specific than B, there must be L' € B and substitution o such that L'c = L, so B
can be closed with o.

An improvement of tableaux with factoring called tableauz with regressive merg-
ing was introduced in [Wallace and Wrightson 1995] and is essentially the same as
tableaux with the folding up rule; details can be found in [Wallace 1994].

4.8.5. Problems of Strengthening Tableaux

Strengthening of tableau procedures at first seems a sure win, because length of
proofs can be drastically reduced. On the propositional level this holds without
reservation and it can safely be claimed that any competitive propositional proof
procedure embodies some variant of cut. On the first-order level, however, additional
literals introduced as cuts or lemmas create additional possibilities for branch clo-
sure. The negative effects from this increase of the search space can easily outweigh
the possibility of finding shorter proofs.

152 REINER HAHNLE

4.35. EXAMPLE. S = {=P(2)VQ(z)VR(x), P(a), 7Q(a), P(b), ~Q(b), ~R(b)}. In
the partial connection tableau in Figure 19 the left branch was closed first by exten-
sion with P(a) (only P(b) would lead to success). This forces extension with —Q)(a)
in the middle branch and generation of some lemmas (framed literals). The lemmas
allow to extend the right branch with another instance of the first clause which
would have been impossible without them. Detection of the wrong first extension
is thus possibly delayed a long time.

In the example, a regularity check would help (R(a) becomes irregular on the
rightmost branch) and also restriction of lemma usage to reduction steps. Although
this helps somewhat, more complex examples create the same problems as before.

true

_—
- Q) \Rﬁﬂf)

Pla) [P)

{z— a} -Q(a)
(

i ~
T P
{y— x} id

~
y) R(y)

Figure 19: Search space increase caused by local lemmas.

On the other hand, local lemmas are not strong enough on the first-order level. In
the clause tableau for S = {Q(c) VQ(d), ~Q(z)V P, =P} in Figure 20, for example,
the lemma —Q(c) can be folded up to the true node, but it cannot be used to close
the open branch on the right, because a different instance than ¢ is required. Closer
inspection of S, however, shows that it is in fact justified to derive the stronger
lemma (Vz)-Q(x). A sufficient condition for lemma generalization is reached when
the proof of (that is, the tableau below) the node giving rise to the lemma does not
instantiate any variables that occur elsewhere in the tableau. It remains to be seen
whether such an optimization can be efficiently implemented and whether it does
not blow up the search space beyond any usefulness.

5. Tableaux as a Framework

In this section it is argued that many well-known calculi for automated deduction
can be uniformly presented within a tableau framework and that this deepens the
understanding of these calculi. In Section 4.6 I put model generation into a tableau
perspective. The relationship between tableaux and the connection method [Bibel
19820 is discussed in Section 3.5 above for the general, non-clausal case. Therefore,
these calculi are not discussed again in the following.

154 REINER HAHNLE

5.4. EXaAMPLE. Consider S = {P, RV-PVQ, SV-Q, ~QV-S, ~\QV-R-RVQ}.
A model elimination proof of S is as follows:

0. P Init

1. [P] R Q@ Extend

2. [P] R [Q] S Extend

3. R E @ Extend
4. R 6 Reduce

5. [P] R Contract

6. |] Q Extend

7. | P] (O] -R Extend

8. 6 Reduce

9. Contract

For sake of readability delimiters of chains are not displayed, lines are numbered
starting with 0. The initial step can be with any clause from S: take the first. Now
P is the single type B literal. Neither reduction nor contraction is allowed. The only
possibility to extend is with the second clause, because a clause with an occurrence
of =P is required. The type B literal P turns into a type A literal and =P is deleted.

Again, only extension is possible and a clause with =) in it is required of which
the first is chosen. Then extend with =S V =@, the result is line 3.

Finally, a reduce step is possible with ; type B literal =) is deleted. The
rightmost block of type A literals is removed with the contract rule.

Two extension steps with =R V @ and =@ V =R are followed by reduction with
, whereby —R is deleted. The empty chain is obtained by contraction of all
remaining (type A) literals.

4 3

Figure 21: Partial regular connection tableau corresponding to the model elimina-
tion proof in Example 5.4.

Model elimination is closely linked to the connection tableau calculus. This is
demonstrated by the tableau in Figure 21 which simulates lines 0 to 5 in the model

TABLEAUX AND RELATED METHODS 155

elimination proof above. The number below each branch indicates which line in the
model elimination proof corresponds to its closure. Type A literals correspond to
inner tableau nodes. Type B literals occurring between two type A literals in chains
correspond to leaves of branches yet to be closed. Obviously, the initialization, the
extension, and the reduction rule correspond to tableau rules with the same name.
The contract rule changes the focus from closed branches without open siblings
to the next open branch to the left. Hence, a chain is simply a linear format to
represent a partial connection tableau. This is possible, because select branch in
model elimination chooses always the rightmost branch for extension.

In the paper [Loveland 1969, p. 351] chains are restricted in a way that corre-
sponds to regularity in tableaux. Two different completion modes of chains for a
given clause set are specified which vary the necessary number of extensions to
produce a chain. A lemma generation mechanism that corresponds to local lemmas
in tableaux is described as well.

Like matrices [Andrews 1981, Bibel 1981], model elimination chains are a much
more implementation-oriented format than tableau trees. This makes it harder to
see further optimizations (such as more liberal branch selection rules or folding up)
and to prove completeness. The latter follows directly from completeness of regular
connection tableaux, of course.

Model elimination can be interpreted as a systematic way to exclude certain
interpretations as possible models of a clause set [Loveland 1969, p. 362], but it
should be stressed that those type A literals in a non-empty chain to which no rule
can be applied in general do not constitute a partial model (or have a saturation,
in the terminology of Section 4.5), because model elimination, just like connection
tableaux, is not proof confluent. To summarize, model elimination (without the
lemma generation mechanism) can be conceived as a notational variant of regular
connection tableaux (although it preceded the latter, of course).

5.2. Linear Resolution

Linear resolution [Loveland 19684, Luckham 1968] and its refinements do not fit
directly into the framework of standard resolution [Robinson 1965], because their
definition, like that of tableau calculi with connection condition, relies on the form
of the derivation. Moreover, in first-order SL-resolution [Kowalski and Kuehner
1971, Reiter 1971] (discussed on page 69 in Chapter 2 of this Handbook) variables
are treated rigidly like in tableaux with unification. Indeed, as Loveland [1972]
observed, SL-resolution is almost identical to model elimination plus the factoring
rule (as defined in Section 4.8.4) and, hence, to regular connection tableaux with
factoring.

5.3. Tableauz and (Disjunctive) Logic Programming

In order to benefit from this section, a little background in logic programming is of
advantage, which can be gained from [Lloyd 1987].

156 REINER HAHNLE

Historically, one root of logic programming [Kowalski 1974] is SL-resolution
[Kowalski and Kuehner 1971] and, hence, model elimination. It is not surprising,
therefore, that logic programming and many of its extensions have natural inter-
pretations as variants of connection tableaux.

More formally, let S be an unsatisfiable set of Horn clauses. Corollary 4.15 guar-
antees the existence of a connection tableau proof 7" for S starting with a query Q.
Regularity is not enforced. By a trivial induction on the depth of 7', using that S is
Horn and connectedness of T', one obtains that the positive literals of T" are exactly
the literals at leaf nodes. As a consequence, no reduction steps occur in 7' and the
connection literal of clauses used in extension steps is always the positive literal of
a rule or a fact in S.

It was noted on page 128 that the existence of 7' is independent of the select
branch strategy, so we may assume that to be left-first. In this case, 7" is a notational
variant of a Prolog-SLD resolution refutation of {Q}U (S —{Q}) in the usual sense
[Lloyd 1987]. This remains true on the first-order level.

5.5. EXaMPLE. To approximate the usual notation of logic programming, we em-
ploy rule notation of clauses as introduced in Section 4.6.'°

S ={Ci(z) =Q(z) AR — P(x), true —» P(d), Cy(z) = S(z) ANT(x) = Q(z),
true — Q(a), true — S(b), true — S(c), true — T'(c), true — R,
P(z) — false}

One of several possible connection tableaux for S starting with the only query
P(z) — false in S is displayed on the left in Figure 22.

The open branches are the ones ending with —7'(2){z — ¢} = =T(c) and -R,
respectively. The tableau contains a lot of redundant information such as branches
already closed and non-leaf nodes (which are never used, because only connected
extension steps are made). Thus a less redundant notation for connected Horn
clause tableaux merely records (a) the sequence of leaves of open branches and
(b) the clause instance and MGU leading to the successor tableau. The result of
this simplification is displayed in Figure 22 on the right: each node represents
a connection tableau constructed from its parent node. The tableau on the left
corresponds to the bottom-most node in black. The grey nodes complete the proof.

At the same time, the structure on the right constitutes a Prolog-SLD refuta-
tion of S from P(z) — false in common logic programming notation [Lloyd 1987].
Another valid point of view is to interpret the figure as a model elimination proof
with left-first branch selection, where only the rightmost block of type B literals in
a model elimination chain is represented.

In summary, although the Prolog procedure is often presented as a resolution
refinement, it can be completely and naturally fitted into the connection tableau

9Without loss of generality, clause sets are assumed to be in goal normal form in this section,
that is, they contain at most one query clause. When there is more than one query clause, this
can easily be achieved by adding a new head predicate P to each query as well as the new query
P — false.

TABLEAUX AND RELATED METHODS 157

true (=P(x))

(-R)

Figure 22: Illustration of Example 5.5.

(and hence: model elimination) framework. In the remainder of this section I intend
to show that it is even advantageous to do so.

The following terminology comes handy: given a clause set S in rule notation,
consider a clause tableau T' for S. An occurrence of a literal L in 7' that was
introduced in an extension step using rule C' € S such that L occurs in the premise
or body of C is called a body literal. Similarly, literal occurrences in 7' that stem
from conclusions or heads of rules in S are called head literal. Further, in a reduction
step in a clause tableau that involves L as the leaf literal, we say that the reduction
is from L. Finally, the literal L € C in a (weakly) connected extension step using
clause C' in branch B such that L occurs on B is referred to with the phrase
extension via L.

Disjunctive logic programming, instances of which are Non-Horn clause logic
programming [Plaisted 1988] and Near-Horn logic programming [Loveland 1987],
is the attempt to lift the Horn restriction from Prolog while retaining the efficient
implementability of Prolog-SLD resolution. One line of development is to imple-
ment model elimination (that is: regular connection tableaux) for arbitrary clauses
directly via an extended Prolog Abstract Machine [Letz et al. 1992]. This is dis-
cussed in detail in [Letz and Stenz 2001] (Chapter 28 of this Handbook). In a
second group of papers one can find several suggestions how to extend Prolog-
SLD resolution such that general clauses can be handled [Plaisted 1982, Gabbay
and Reyle 1984, Plaisted 1988, Loveland 1991, Reed and Loveland 19924, Baum-
gartner and Furbach 1994, Baumgartner and Furbach 1997, Baumgartner and
Furbach 1998]. These calculi are in some aspects more restrictive, and in others
more general than connection tableaux and model elimination.?’ We start our dis-
cussion by two examples that highlight some differences.

20The proximity of near-Horn Prolog to model elimination was pointed out by Reed and Love-
land [1992b] and again by Baumgartner and Furbach [1994].

158 REINER HAHNLE

5.6. ExaAMPLE. Consider S; = {true - PV @, PAQ — false, P - Q, Q — P}.
In the Prolog-SLD restriction of connection tableau no reduction steps are allowed.
Obviously, no connection tableau proof without reduction steps can exist for S;: as
there are no unit clauses, no extension step diminishes the number of open branches.

The example shows that reduction steps are necessary to handle general clause
sets. The second example concerns positive leaf literals of tableau proofs. Recall
that these cannot occur in the Horn case when one starts the proof with a query.

5.7. ExampLE. Consider So = {P; - R, P, —» R, R — false, true — P, V P»}.
Below is a partial connection tableau proof for Ss:

trlue
-R
7\
-P R
/ N\
Py Py

In connection tableaux the open branch ending in P, can be extended with P, = R
which completes the proof with one more extension using R — false (the case when
P, — R is used before P, — R, leads to a symmetric situation). To do so, however,
is a violation of a main principle of Prolog-interpretation, namely, that the current
subgoal (the leaf) may only be unified with a head literal of a rule. Indeed, in the
linear format for Prolog-SLD resolution discussed in Example 5.5, the literal P
is not represented. It is, of course, possible to extend the linear proof format to
accommodate head literals (see [Reed and Loveland 19924] and Example 5.8), but
I prefer to use the clause tableau format, where all required information is present
and subgoal dependencies are easy to see. Some authors prefer to use a sequent-style
format [Plaisted 1990, Reed and Loveland 1992b].

The principle of Prolog execution, not to extend via body literals, discussed in
the previous example is often referred to as “no use of contrapositives”. The set of
contrapositives of a clause L1 V ---V L, is the rule set

{L_l/\---Lifl/\LZ#l/\---/\L_n—)Li|1§i§n} .

Apart from implementational issues it is obvious that the possibility of exten-
sion steps with arbitrary contrapositives such as in connection tableaux and model
elimination increases the local search space. Thus the interest in calculi that are
complete without contrapositives.

For the rest of Section 5.3 we assume that clause sets S are given in rule notation
and no other contrapositives than the explicitly given rules can be used in tableau
extension steps.

How does one render connection tableaux without contrapositives complete?
The situation is quite similar to tableaux with selection function discussed in Sec-

TABLEAUX AND RELATED METHODS 159

tion 4.5.2, because the head literals can be seen as the selected literals of a clause.?!
It does not come as a surprise then, that the remedy is similar: certain restart steps,
that is, extension steps without a connection are permitted to regain completeness.

A general framework of clause tableau calculi for disjunctive logic programming
is, therefore, given by the following coordinates:

1. the first extension step is with a query, see Corollary 4.15;

2. connected extensions steps, generalizing the Prolog-SLD resolution rule, are
permitted;

3. a list of permitted contrapositives of clauses is either explicitly given in rule
notation or exactly the positive literals are head literals and the negative literals
are body literals;

4. reduction steps (called ancestor cancellation rule by Reed and Loveland [19925]
who derive the name from ancestor resolution) are only allowed from body
literals;

5. restart extension steps are only allowed below head literals.

The last two items constitute the parameterizable part. Disjunctive logic pro-
gramming calculi are not proof confluent as the example S = {true - C, C —
A, B — A, A — false} shows: any tableau starting with the last clause, followed by
a extension step with the second but last clause, cannot be extended, although S
is clearly unsatisfiable. Hence, all calculi described in the remainder of this section
are not proof confluent, unless otherwise noted.

All deduction procedures incorporating at least the first four ingredients are clas-
sified as the ancestry family of deductive procedures by Reed and Loveland [19925)].
In the remainder of the section I define some of the more important representatives
within the tableau framework.

5.8.1. Near-Horn Prolog, Simplified Problem Reduction Format

Near-Horn Prolog, later called unit near-Horn Prolog (UnH-Prolog), was suggested
in [Loveland 1987, Loveland 1991]. A variant called inheritance near-Horn Prolog
(InH-Prolog) is due to [Loveland and Reed 1991]. The most detailed reference on
near-Horn Prolog and related procedures is [Reed and Loveland 19920].

In UnH-Prolog restart steps are allowed with query clauses and with any clause
containing a head literal that is weakly connected to the current branch (when
head literals are considered as selected literals this is exactly a weakly connected
extension step of tableaux with selection function, see Section 4.5.2). In UnH-Prolog
restarts can only occur below head literals and reduction steps are only allowed to
the head literal above the most recent restart.

In InH-Prolog, on the other hand, restart steps are only permitted with query
clauses, but reduction steps can be to the head literal above any restart step on
the current branch.

Both, UnH- and InH-Prolog, use a left-first branch selection rule and both feature
the so-called cancellation pruning rule which excludes certain redundant proofs:

2l Tableaux with selection function select the body literals of a clause, but Prolog proceeds
“top-down” from the query and extension steps are via head literals.

160 REINER HAHNLE

each head literal above a restart step must be used in a reduction step with no
restart step in between.

5.8. EXAMPLE. As its name suggests, near-Horn Prologs are generalizations of
Prolog-SLD resolution. We stress this by rewriting Example 5.7 in a Prolog-like
notation [Reed and Loveland 1992b]. The separator ‘#’ is followed by a list of ac-
tive heads available for reduction: the head literals in the current tableau branch
(only the most recently introduced head literal, in the case of UnH-Prolog). Next is
the list of deferred subgoals (leaves of open branches), surrounded by curly brack-
ets. The tableau in the Example 5.7 corresponds to the following derivation, which
is both an UnH- and an InH-Prolog derivation:

?- false #
7-R #
-P #
?- # (P2}

In UnH-Prolog one can continue with a restart step at R and the only deferred
subgoal Ps:

7R # P,
7- Py # Py

- #P
This time, clause P, — R is used, which makes reduction with P, possible. As there
are no more deferred subgoals, the proof is finished.
In InH-Prolog only a restart step at false is possible after the first block, leading
to a slightly longer proof.

It was observed by Baumgartner and Furbach [1994] that completeness of InH-
Prolog entails completeness of weak connection tableaux (Section 4.3.2) and, hence,
of the clausal version of the connection method (Section 3.5), even without using
contrapositives of clauses provided that the input is in goal normal form. The reason
is simply that the query clause of a restart step in an InH-Prolog proof is weakly
connected to the root literal in this case. Therefore, an InH proof (which does not
use contrapositives) is at the same time a weakly connected clause tableau proof.

In Plaisted’s [1982] simplified problem reduction format (SPRF) reduction steps
are as in InH-Prolog while restart steps may occur anytime with non-Horn clauses.
Branch selection is flexible. In SPRF-D (for SPRF with delay) [Plaisted 1988] restart
steps are restricted exactly as in InH-Prolog, but need not to occur below a head
literal. Up to this feature and the cancellation pruning rule (not present in SPRF-D)
both calculi are identical [Reed and Loveland 1992a].

Another deduction system related to InH-Prolog is N-Prolog [Gabbay and
Reyle 1984, Gabbay 1985]. As N-Prolog is not clause-based and has an intuitionistic
semantics, a comparison hinges on the translation chosen for clause representation.
Reed and Loveland [1992a] showed that it is possible to embed both InH-Prolog
and SPRF into N-Prolog.

TABLEAUX AND RELATED METHODS 161

SLWV-resolution [Pereira et al. 1992], often discussed in connection with near-
Horn Prolog [Reed and Loveland 19925, Baumgartner and Furbach 1994], was men-
tioned in Section 4.5.3, because it is actually an instance of tableaux with selection
function.

5.3.2. Restart Model Elimination

While near-Horn Prolog and its relatives were developed as generalizations of
Horn clause logic programming, the motivation of restart model elimination for
Baumgartner and Furbach [1994] was to obtain a specialized version of connection
tableaux/model elimination that is complete without contrapositives.

The base calculus of restart model elimination has exactly the same restart rule
as InH-Prolog: only query clauses (in goal normal form: the query clause) can be
used as a restart below head literals. Reduction is completely unrestricted, hence
InH-Prolog is a refinement of restart model elimination.

Within the restart model elimination framework the restriction of reduction steps
to be only from body literals employed in InH-Prolog is called strict restart model
elimination in [Baumgartner and Furbach 1994]. This leaves the cancellation prun-
ing rule and left-first branch selection strategy as the only remaining difference
between InH-Prolog and strict restart model elimination. Left-first branch selec-
tion is standard in PTTP technology-based implementations such as the one re-
ported in [Baumgartner and Furbach 1994]. The gap is closed by [Baumgartner
and Furbach 1998] where strict restart model elimination with cancellation pruning
is considered.

Restart model elimination has a number of refinements [Baumgartner and
Furbach 1994, Baumgartner and Furbach 1998] which justify the investigation of
this procedure in its own right. The following refinements were investigated:

Head Selection Function: similar as in Section 4.5.2 a selection function is used
to choose one head literal to be used in an extension step.

Blockwise Regularity: several restarts on the same branch with the same literal
are admissible to maintain completeness, but in between subsequent restarts
regularity can be enforced.

Independence of Goal Clause: clause sets in goal normal form have exactly one
query clause, but in the second extension step any of the query clauses that
existed before transformation to goal normal form can be used. Independence
of the goal clause means that completeness is independent of the choice of the
clause at the second extension step.

Not all refinements are compatible with each other, certain combinations result
in an incomplete deduction system. Details are given in [Baumgartner and Furbach
1998].

An important issue when using Disjunctive Logic Programming as a program-
ming language is the computation of all correct answer substitutions (closing substi-
tutions for the tableau proof restricted to variables occurring in the query). Baum-
gartner, Furbach and Stolzenburg [1997] prove answer completeness of restart model
elimination.

162 REINER HAHNLE

Many aspects discussed in the present section are covered in greater detail in
[Reed and Loveland 19925, Baumgartner and Furbach 1998].

5.3.3. Restart Tableaux
There are calculi that combine features of tableaux with selection function and of
near-Horn Prolog/restart model elimination.

Restart tableauz [Pape and Hahnle 1997] can be motivated from the observa-
tion that the combination of selection functions and enforcing the weak connection
condition for every extension step via a selected literal in general results in an in-
complete calculus (Section 4.5.3). Adding restart steps in the sense of Section 4.5.2
gives completeness back. Restart tableaux restrict their restart steps to occur only
in situations when no weakly connected extension step via a selected literal is pos-
sible, but, in contrast to near-Horn Prolog and restart model elimination, these
restart steps may also occur below body literals. This relaxation makes restart
tableaux a proof confluent calculus.

Restart tableaux admit to select an arbitrary subset S, of the input clause set S
such that only connected extension steps can be performed with clauses from S..
Depending on the degree of “connectedness”, a more restrictive notion of regularity
than in restart model elimination may be enforced. Thus restart tableaux combine
features of restart model elimination and tableaux with selection function.

There is a non-proof confluent version of restart tableaux, called strict restart
tableauzr [Pape and Hahnle 1997], which does not allow restart steps below body
literals, but has a more liberal regularity concept. It is a generalization of strict
restart model elimination.

5.4. Davis-Putnam Procedure and related methods

Clause tableaux with the cut rule (4.10) are a redundant calculus in the sense that
the cut rule is not required for completeness. It was noted in Section 4.8.5 that
the presence of cut can blow up the search space considerably. Mondadori [1988]
designed a tableau system with cut called KFE for full first-order logic, where every
rule, including the cut rule, is essential for completeness. Together with D’Agostino,
KE was further developed and extended to non-classical logics in a series of papers
[Mondadori 1989a, Mondadori 19895, D’ Agostino 1990, D’Agostino and Mondadori
1994].

KE in the clausal case is a close variant of weak connection tableaux (Sec-
tion 4.3.2) and can be succinctly described as follows: take the atomic cut rule
(4.10), the initialization rule of clause tableaux (Definition 4.1(i)), and these exten-
sion rules (compare with (ii"”) on page 131) are:

(ii"") Let T be a KE-tableau for S, B a branch of T' containing L, Ly V ---V L,
is on B or a new instance of C € S. If L, L; (where i € {1,...,r}) are
unifiable with MGU ¢ and the tree T” is constructed by extending B with
min{2,r} new subtrees, where the nodes of the new subtrees are L; and, if

TABLEAUX AND RELATED METHODS 163

r>2,LiV---VLi_1VLyi V-V L. then T'o is a KE-tableau for S, in
which the branch ending with L;o is marked as closed. (This is called a KE
extension step.)

Let T be a tableau for S, B a branch of T, L a new instance of a unit
clause in S. Then the tableau constructed from 7T by extending B with L is
a KE-tableau for S. (This is called a unit extension step.)

(iiiIIII)

Formally, the resulting calculus is not an instance of the clause tableau frame-
work, but of non-clausal tableaux, because nodes may be clause instances (not just
literals). Application of the extension rules of KE-tableaux does never increase the
number of open branches, so the system is incomplete without the atomic cut rule,
which is called principle of bivalence by Mondadori [1988].

Rule (ii"”") is better known under the name unit resolution. Its propositional
version originates in [Davis and Putnam 1960], where it is called elimination of
one-literal clauses. The affirmative-negative rule in [Davis and Putnam 1960], bet-
ter known as pure clause rule avoids all extensions with clauses that contain an
unconnected literal; it is only partly realized in the weak connection condition.
Finally, atomic cut is a notational variant of the splitting rule in [Davis et al. 1962].

To summarize, in the ground clause case, Mondadori’s [1988] KE system and
the Dawvis-Putnam-Loveland-Logeman procedure [Davis and Putnam 1960, Davis
et al. 1962] are very similar and closely related to weak connection tableaux with
atomic cut. The idea is, of course, to apply the splitting/cut rule only when no
other rule is applicable. This heuristic is very useful for propositional logic, but it
makes the Davis-Putnam-Loveland procedure problematic to lift, because splitting
may be delayed indefinitely.

It is justified to view the full non-clausal KE system as a non-clausal version of
the Davis-Putnam-Loveland procedure (up to the pure clause rule). Within the non-
clausal tableau framework with analytic cut (the cut formula can be any subformula
of the input), it is characterized by unchanged non-branching (type «, v,) rules,
while type 3 rules are used in the following version:

5
Bi (5.1)
BLV---VBiaVBiy1 V-V By
Mondadori [1989b] also suggested a system called KI consisting of “inverted”

tableau rules that build up complex formulas from simpler ones. At the proposi-
tional level they are:

aq
Bi :
— ' 5.2
; N (5.2
«

These rules are restricted to analytic use in the sense that their conclusion must
occur as a subformula in the input. They may either be used in addition to the KE

164 REINER HAHNLE

rules (in which case they can be seen as an approximation of Massacci’s [1998b] sim-
plification rule, see Section 3.5.3), or alternatively, they form yet another complete
system together with atomic cut.

Another tableau calculus and relative of KE is Stalmarck’s procedure [Sheeran
and Stalmarck 2000], which is underlying a commercially successful satisfiability
checker for propositional logic, the Prover Plug-In. The calculus consists of (non-
branching) KE-like rules for a restricted propositional language, namely, formulas
of the form P + (Q — R), where P,Q, R are atoms or logical constants. They
are called triplets and form the tableau nodes. In addition, there is the so-called
dilemma rule, a generalization of atomic cut: after applying the cut, each branch
is saturated with respect to the non-branching rules; if neither branch is closed or
gives a model, then both branches are recombined by computing the intersection
of their triplets. The nesting depth of dilemma rule applications can be limited to
a pre-set bound.

6. Comparing Calculi

In this section I suggest some coordinates along which the plethora of existing
tableau-like calculi (and others) can be cartographed. It is kept short, because
most of the material is not specific to tableau-like calculi.

A useful qualitative distinction are the properties proof confluence and branching.
The latter encompasses calculi, where the derivation process branches or forks, see
also [Bachmair and Ganzinger 2001] (Chapter 2 in this Handbook). In Table 4 are
typical representatives of each kind of calculus.

branching non-branching
proof confluent tableaux with unification Robinson resolution
not proof confluent connection tableaux Prolog SLD-resolution

Table 4: Qualitative classification of calculi.

Calculi that are not proof confluent cannot be used to find models of satis-
fiable formulas. They make no sense to use with propositional formulas either,
because backtracking is expensive and can easily be avoided in the propositional
case. Implementation of branching calculi demands more general data structures
than of non-branching ones. In practice, implementation-oriented branching calculi
are often formulated sequentially, for example, model elimination. Another prop-
erty that severely affects the choice implementation techniques is destructiveness.
For example, it is not straightforward to build strong redundancy criteria such as
subsumption or regularity into destructive calculi, see Section 4.4.

Deeper insight into similarities and differences among calculi is often gained
by presenting them within a unifying theoretical framework, such as the tableau
framework of the present chapter. The point of view of matrices is taken in

TABLEAUX AND RELATED METHODS 165

[Bibel 19820, Bibel and Eder 1992]; consolution combines aspects from resolution
and the connection method and can be used to analyze a broad class of calculi
[Eder 1992, Baumgartner and Furbach 1993].

Another objective criterion for evaluation of calculi is provided by an investigation
into their complexity.

First of all, one can determine the complexity of the decision problem of vari-
ous subtasks associated with (tableau) proof search. It is well-known that clause
subsumption is an NP-complete problem [Garey and Johnson 1979]; the same is
true, for example, for computing hyper tableau extension steps in first-order logic
(see Section 4.6.2) or for solving constraints arising in ordered tableaux (see Sec-
tion 4.5.4) from certain literal orders [Pape 1996].

A more basic problem is encountered by the realization that tableau-like meth-
ods provide a constructive proof of Herbrand’s Theorem 2.3. A tableau 7" can be
considered as a formula ¢, where branches form conjunctions over their literals
and ¢ is a disjunction over the branches of T'. Let x1,...,z, be the free variables
of ¢7. By tableau soundness (Theorem 3.12), T' can be closed iff (Vzi,...,z,.)¢r
is unsatisfiable and has Herbrand complexity m = 1. The problem, whether the
sentence in Herbrand’s Theorem is unsatisfiable with multiplicity m = 1, is called
the formula instantiation problem in [Voronkov 1998]; it is shown to be decidable
and Y8-complete, if the signature of ¢7 has at least two symbols.

A completion mode used in tableau-like proof procedures (see Section 3.3) can be
seen as a strategy to approximate the required multiplicity of a formula to show its
unsatisfiability with Herbrand’s Theorem. In [Voronkov 1998] such strategies are
discussed and analyzed in an abstract framework. All of the mentioned problems
become substantially more complex, if part of the formula signature is interpreted
relative to theories (such as equality), see [Degtyarev and Voronkov 2001a] (Chap-
ter 10 in this Handbook).

It is important to know the complexity of each part of a proof search procedure,
but one would also like to have results about the relative overall performance of
various refinements. One criterion that received much attention is minimal proof
length, the size of a minimal proof for a formula ¢, based on a suitable notion of proof
length. Our definition of tableau size is an adequate measure. For propositional
resolution, one can take the sum of the sizes of generated clauses (it was shown in
[Letz 1993] that there can be no adequate measure for first-order resolution). Cook
and Reckhow [1979] suggested to compare calculi based on the relative length of
minimal proofs:

6.1. DEFINITION. Let P and Q be sound and complete calculi. P can p-simulate
Q iff there is a polynomial p such that for all formula sets ®: if there is a proof for
® in Q of length n, then there is a proof of ® in P of at most length p(n). P and
Q are p-equivalent iff they can p-simulate each other.

There is a large number of results on p-simulation for tableau and other cal-
culi, for example, [Eder 1992, Letz 1993]. Because of technical difficulties, the vast
majority are for the propositional, clausal case, but there are exceptions such as

166 REINER HAHNLE

[Baaz and Fermiiller 1995, Egly 1997] showing that non-elementary differences in
complexity exist on the first-order level for even closely related calculi. There are
some surprises, for example, clause tableau cannot p-simulate truth table checking
(see Example 4.33 and [D’Agostino 1992]) or n-ary type [tableau rules cannot p-
simulate binary ones (see Section 3.2.6 and [Massacci 1998a]). Regular connection
tableaux (and, hence model elimination) are pretty weak calculi in this hierarchy.
For a number of reasons, relative proof length complexity is of limited use to predict
the practical behaviour of calculi:

e relative proof length complexity measures the nondeterministic power of calculi,
nothing is said about how long it takes to find a proof; for this, the search space
size would be a more suitable measure;

e the stronger the nondeterministic power of a calculus, the larger is often the
search space (witness tableaux with lemmas, Section 4.8.5);

e the notion of p-simulability is often too coarse, for example, all variants of
tableaux with lemmas are p-equivalent, regardless of regularity or connected-
ness;

e the behaviour of calculi on the first-order level can easily override any differences
on the propositional level.

An attempt to formalize the search space associated with calculi is made by
Plaisted and Zhu [1997]. The search space is formalized as a directed graph whose
nodes represent states in a proof and arcs define reachability among these states.
Plaisted and Zhu [1997] analyze width, depth and size of nodes of search space
graphs for a number of calculi and propositional Horn clauses. Satisfiability of the
latter is well known to be decidable in linear time [Dowling and Gallier 1984],
but many calculi turn out to be exponential along at least one dimension of their
search space. As the Horn fragment is practically important, one can argue that
the performance of a calculus there is significant also for its overall behaviour to a
certain extent.

Apart from theoretical investigations one can and does perform experimental
evaluation based on concrete implementations. There is an extensive problem collec-
tion (the TPTP library) for first-order theorem provers [Suttner and Sutcliffe 1999]
and an annual competition [Sutcliffe and Suttner 1999]. This is a good way to test
correctness and base speed of the implementation of an automatic theorem prover,
but it does not necessarily tell everything on the usability of a system. The latter
is perhaps best evaluated within larger case studies or applications. It is unlikely
that the same deduction paradigm suits all needs. In practice, often a combina-
tion of several techniques is successful: see [Weidenbach 2001] (Chapter 27) of this
Handbook for a point in case. There is also indication that the usefulness of fully
automated systems is limited, whereas they have a large potential in connection
with interactive systems [Joyce and Seger 1993, Ahrendt et al. 1998, Dahn and
Schumann 1998].

TABLEAUX AND RELATED METHODS 167
7. Historical Remarks & Resources

I can only give a very rough sketch here. More detailed accounts of the history of
tableau-like theorem proving can be found in [Bibel and Schmitt 1998, pp. 4-7] and
[Fitting 1999].

Despite their recent flourishing, the history of tableau methods is much older
than that of resolution. They can be traced back to the cut-free version of Gentzen’s
[1935] sequent calculus. Hintikka [1955] and Beth [1955] abstracted from structural
rules in sequent calculi (essentially treating sequents as sets of formulas), improved
the proof representation, and introduced signed formulas. They also stressed the
semantic view of tableaux as a procedure that tries systematically to find a counter
example for a given formula (a model in which its negation is true) as opposed to
Gentzen’s purely proof theoretical motivation. Further improvements were made by
Schiitte [1960]; Smullyan’s [1995] elegant formulation, employing unifying notation
which greatly simplified matters, became very popular while similar contributions
by Lis [1960] unfortunately went unnoticed.

Many important improvements directed to automated proof search in se-
quent/tableau/model elimination calculi were made quite early: free variables
[Kanger 1957, Prawitz 1960], unification [Loveland 1969, Bibel 1982b, Andrews
1981], proof representation and connection refinements [Davydov 1973, Bibel and
Schreiber 1975, Andrews 1976].

The relative success of resolution-based theorem proving, however, eclipsed this
progress and serious implementations of tableau-like calculi are spurious before the
late 1980s [Brown 1978, Oppacher and Suen 1986].

In the last decade tableau-like calculi became focal points of research again,
spurred by the success of efficient implementations and the demand for a compu-
tational treatment of non-classical logics. The tableau community gathers in an
international conference,??> where many of the relevant results are now published.
Part I of [Bibel and Schmitt 1998] contains survey articles on various aspects of
state-of-the-art research on tableau methods. The Handbook of Tableau Methods
[D’Agostino, Gabbay, Hihnle and Posegga 1999] contains extensive information,
not limited to automated reasoning.

Acknowledgments

Uli Furbach and Philippe de Groote served as second readers of this chapter. Their
careful reading and constructive criticism resulted in numerous large and small
improvements. In addition, Andrei Voronkov proofread most of this chapter and
provided many corrections and useful suggestions. Thanks are also due to Bern-
hard Beckert, Jean Goubault-Larrecq, Ryuzo Hasegawa, and Reinhold Letz for
discussions, helpful observations, and suggestions. Reinhold Letz contributed Ex-
ample 4.9. Jeff Lansing corrected a number of errors in my English.

22i12yww.ira.uka.de/TABLEAUX/

168 REINER HAHNLE

Bibliography

AHRENDT W., BECKERT B., HAHNLE R., MENzZEL W., REIF W., SCHELLHORN G. AND SCHMITT
P. H. [1998], Integration of automated and interactive theorem proving, in W. Bibel and
P. Schmitt, eds, ‘Automated Deduction: A Basis for Applications’, Vol. II, Kluwer, chapter 4,
pp. 97-116.

ANDREWS P. [1971], ‘Resolution in type theory’, Journal of Symbolic Logic 36, 414-432.

ANDREWS P. [1976], ‘Refutations by matings’, IEEE Transactions on Computers C-25(8), 801—
807.

ANDREWS P. [1981], ‘Theorem proving through general matings’, JACM 28, 193-214.

AVRON A. [1993], ‘Gentzen-type systems, resolution and tableaux’, Journal of Automated Rea-
soning 10(2), 265-281.

BAADER F. AND SNYDER W. [2001], Unification theory, in A. Robinson and A. Voronkov, eds,
‘Handbook of Automated Reasoning’, Vol. I, Elsevier Science, chapter 8, pp. 445-532.

Baaz M., EcLy U. AND LeITscH A. [2001], Normal form transformations, in A. Robinson and
A. Voronkov, eds, ‘Handbook of Automated Reasoning’, Vol. I, Elsevier Science, chapter 5,
pp. 273-333.

Baaz M. AND FERMULLER C. G. [1995], Nonelementary speedups between different versions
of tableaux, in P. Baumgartner, R. Héhnle and J. Posegga, eds, ‘Proc. 4th Workshop on
Deduction with Tableaux and Related Methods, St. Goar, Germany’, Vol. 918 of LNCS,
Springer-Verlag, pp. 217-230.

Baaz M., FERMULLER C. AND SALZER G. [2001], Automated deduction for many-valued logics,
in A. Robinson and A. Voronkov, eds, ‘Handbook of Automated Reasoning’, Vol. II, Elsevier
Science, chapter 20, pp. 1355-1402.

BACHMAIR L. AND GANZINGER H. [2001], Resolution theorem proving, in A. Robinson and
A. Voronkov, eds, ‘Handbook of Automated Reasoning’, Vol. I, Elsevier Science, chapter 2,
pp- 19-99.

BAUMGARTNER P. [1998], Hyper Tableaux — The Next Generation, in H. de Swart, ed., ‘Proc.
International Conference on Automated Reasoning with Analytic Tableaux and Related Meth-
ods, Oosterwijk, The Netherlands’, number 1397 in ‘LNCS’, Springer-Verlag, pp. 60-76.

BAUMGARTNER P., EISINGER N. AND FURBACH U. [1999], A confluent connection calculus, in
H. Ganzinger, ed., ‘Proc. 16th International Conference on Automated Deduction, CADE-16,
Trento, Italy’, Vol. 1632 of LNCS, Springer-Verlag, pp. 329-343.

BAUMGARTNER P., EISINGER N. AND FURBACH U. [2000], A confluent connection calculus, in
S. Holldobler, ed., ‘Intellectics and Computational Logic — Papers in Honor of Wolfgang
Bibel’, Kluwer.

BAUMGARTNER P. AND FUrRBACH U. [1993], ‘Consolution as a framework for comparing calculi’,
Journal of Symbolic Computation 16, 445-477.

BAUMGARTNER P. AND FurBAcH U. [1994], ‘Model Elimination without Contrapositives and its
Application to PTTP’, Journal of Automated Reasoning 13, 339-359.

BAUMGARTNER P. AND FURBACH U. [1997], Refinements for Restart Model Elimination, in ‘Proc.
International Workshop on First Order Theorem Proving’, Technical Report, RISC-Linz.
BAUMGARTNER P. AND FURBACH U. [1998], Variants of clausal tableaux, in W. Bibel and
P. Schmitt, eds, ‘Automated Deduction: A Basis for Applications’, Vol. I, Kluwer, chapter 3,

pp. 73-101.

BAUMGARTNER P., FURBACH U. AND NIEMELA 1. [1996], Hyper tableaux, in J. J. Alferes, L. M.
Pereira and E. Orlowska, eds, ‘Proc. European Workshop: Logics in Artificial Intelligence,
JELIA’, Vol. 1126 of LNCS, Springer-Verlag, pp. 1-17.

BAUMGARTNER P., FURBACH U. AND STOLZENBURG F. [1997], ‘Computing answers with model
elimination’, Artificial Intelligence Journal 90(1-2), 135-176.

BECKERT B. [1998], Integrating and Unifying Methods of Tableau-based Theorem Proving, PhD
thesis, University of Karlsruhe, Department of Computer Science.

TABLEAUX AND RELATED METHODS 169

BECKERT B. [2000], Depth-first proof search without backtracking for free-variable clausal
tableaux, in P. Baumgartner and H. Zhang, eds, ‘Proc. Third Int. Workshop on First-Order
Theorem Proving (FTP), St. Andrews, Scotland’, Fachberichte Informatik 5/2000, University
of Koblenz, Institute for Computer Science, pp. 44-55.

BECKERT B. AND GORE R. [1997], Free variable tableaux for propositional modal logics, in ‘Proc.
International Conference on Theorem Proving with Analytic Tableaux and Related Methods,
Pont-a-Mousson, France’, Vol. 1227 of LNCS, Springer-Verlag, pp. 91-106.

BECKERT B. AND HAHNLE R. [1998], Analytic tableaux, in W. Bibel and P. Schmitt, eds, ‘Auto-
mated Deduction: A Basis for Applications’, Vol. I, Kluwer, chapter 1, pp. 11-41.

BECKERT B., HAHNLE R., OEL P. AND SULZMANN M. [1996], The tableau-based theorem prover

, version 4.0, in M. McRobbie and J. Slaney, eds, ‘Proc. 13th Conference on Automated
Deduction, New Brunswick/NJ, USA’, Vol. 1104 of LNCS, Springer-Verlag, pp. 303-307.

BECKERT B., HAHNLE R. AND ScHMITT P. H. [1993], The even more liberalized d-rule in free
variable semantic tableaux, in G. Gottlob, A. Leitsch and D. Mundici, eds, ‘Proceedings of the
third Kurt Gddel Colloquium KGC’93, Brno, Czech Republic’, Vol. 713 of LNCS, Springer-
Verlag, pp. 108-119.

BECKERT B. AND PosSEGGA J. [1995], ‘leanT¥P: Lean tableau-based deduction’, Journal of Auto-
mated Reasoning 15(3), 339-358.

BERKA, K. AND KREISER, L., EDS [1986], Logik-Texte. Kommentierte Auswahl zur Geschichte
der modernen Logik, Akademie-Verlag, Berlin.

BeTH E. W. [1955], ‘Semantic entailment and formal derivability’, Mededelingen van de Koninkli-
jke Nederlandse Akademie van Wetenschappen, Afdeling Letterkunde, N.R. 18(13), 309-342.
Partially reprinted in [Berka and Kreiser 1986].

BIBEL W. [1979], ‘Tautology testing with a generalized matrix method’, Theoretical Computer
Science 8, 31-44.

BIBEL W. [1981], ‘On matrices with connections’, JACM 28, 633-645.

BIBEL W. [1982q], Automated Theorem Proving, Vieweg, Braunschweig.

BIBEL W. [1982b], ‘A comparative study of several proof procedures’, Artificial Intelligence
18(3), 269-293.

BIBEL W. [1982¢], Computationally improved versions of herbrand’s theorem, in ‘Logic Collo-
quium ’81’°, North-Holland, pp. 11-28.

BiBEL W. [1987], Automated Theorem Proving, second revised edn, Vieweg, Braunschweig.

BIBEL W., BRUNING S., EGLY U., KORN D. AND RATH T. [1995], Issues in theorem proving based
on the connection method, in P. Baumgartner, R. Hahnle and J. Posegga, eds, ‘Proceedings
of the 4th International Workshop on Theorem Proving with Analytic Tableaux and Related
Methods’, Vol. 918 of LNCS, Springer-Verlag, pp. 1-16.

BIBEL W. AND EDER E. [1992], Methods and calculi for deduction, n D. M. Gabbay, C. J. Hogger
and J. A. Robinson, eds, ‘Handbook of Logic in Artificial Intelligence and Logic Programming’,
Vol. 1: Logical Foundations, Oxford University Press, pp. 67-182.

BIBEL, W. AND ScHMITT, P., EDS [1998], Automated Deduction: A Basis for Applications,
Kluwer.

BIBEL W. AND SCHREIBER J. [1975], Proof search in a Gentzen-like system of first-order logic,
in F. Gelenbe and F. Poitier, eds, ‘International Computing Symposium’, North-Holland,
pp. 205-212.

BrowN F. M. [1978], ‘Towards the automation of set theory and its logic’, Artificial Intelligence
10(3), 281-316.

Bry F. AND TORGE S. [1998], A deduction method complete for refutation and finite satisfiability,
in J. Dix, L. F. del Cerro and U. Furbach, eds, ‘Proc. 6th European Workshop on Logics in
AI (JELIA)’, Vol. 1489 of LNCS, Springer-Verlag, pp. 122-136.

Bry F. AND YAHYA A. [1996], Minimal model generation with positive unit hyper-resolution
tableaux, in P. Miglioli, U. Moscato, D. Mundici and M. Ornaghi, eds, ‘Theorem Proving

170 REINER HAHNLE

with Tableaux and Related Methods, 5th International Workshop, TABLEAUX’96, Terrasini,
Palermo, Italy’, Vol. 1071 of LNCS, Springer-Verlag, pp. 143-159.

BRYANT R. E. [1986], ‘Graph-based algorithms for Boolean function manipulation’, IEEE Trans-
actions on Computers C-35, 677—691.

CANTONE D. AND Nicorost AsMUNDO M. [1998], A further and effective liberalization of the
delta-rule in free variable semantic tableaux, in R. Caferra and G. Salzer, eds, ‘Proc. Second
Int. Workshop on First-Order Theorem Proving, FTP’98’, Technical Report E1852-GS-981,
Technische Universitdt, Wien (Austria), pp. 86-96.

CooK S. AND RECKHOW R. [1979], ‘The relative efficiency of propositional proof systems’, Journal
of Symbolic Logic 44, 36ff.

D’AcosTINO M. [1990], Investigations into the Complexity of some Propositional Calculi, PhD
thesis, Oxford University Computing Laboratory, Programming Research Group. Also Tech-
nical Monograph PRG-88, Oxford University Computing Laboratory.

D’AcosTINO M. [1992], ‘Are tableaux an improvement on truth tables? Cut-free proofs and
bivalence’, Journal of Logic, Language and Information 1, 235-252.

D’AGOSTINO, M., GABBAY, D., HAHNLE, R. AND POSEGGA, J., EDS [1999], Handbook of Tableau
Methods, Kluwer, Dordrecht.

D’AGOSTINO M. AND MONDADORI M. [1994], ‘The taming of the cut’, Journal of Logic and
Computation 4(3), 285-319.

DAHN I. AND SCHUMANN J. [1998], Using automated theorem provers in verification of protocols,
in W. Bibel and P. Schmitt, eds, ‘Automated Deduction: A Basis for Applications’, Vol. III,
Kluwer, chapter 8, pp. 195-224.

Davis M., LOGEMANN G. AND LOVELAND D. [1962], ‘A machine program for theorem-proving’,
Communications of the ACM 5, 394-397.

Davis M. aND PurNnam H. [1960], ‘A computing procedure for quantification theory’, JACM
7(3), 201-215.

Davypov G. V. [1973], ‘Synthesis of the resolution method with the inverse method’, Journal of
Soviet Mathematics 1, 12-18. Translated from Zapiski Nauchnykh Seminarov Leningradskogo
Otdeleniya Mathematicheskogo Instituta im. V. A. Steklova Akademii Nauk SSSR, vol. 20,
pp. 24-35, 1971.

DEGTYAREV A. AND VORONKOV A. [1998], ‘What you always wanted to know about rigid E-
unification’, Journal of Automated Reasoning 20(1), 47-80.

DEGTYAREV A. AND VORONKOV A. [2001], Equality reasoning in sequent-based calculi, in
A. Robinson and A. Voronkov, eds, ‘Handbook of Automated Reasoning’, Vol. I, Elsevier
Science, chapter 10, pp. 609-704.

DowLING W. AND GALLIER J. [1984], ‘Linear-time algorithms for testing the satisfiability of
propositional Horn formula’, Journal of Logic Programming 3, 267—284.

EDER E. [1992], Relative Complezities of First-Order Calculi, Artificial Intelligence, Vieweg
Verlag.

EcLy U. [1997], Non-elementary speed-ups in proof length by different variants of classical an-
alytic calculi, sn D. Galmiche, ed., ‘Proc. International Conference on Automated Reasoning
with Analytic Tableaux and Related Methods’, Vol. 1227 of LNCS, Springer-Verlag, pp. 158—
172.

FrrTing M. [1999], Introduction, in M. D’Agostino, D. Gabbay, R. Hahnle and J. Posegga, eds,
‘Handbook of Tableau Methods’, Kluwer, Dordrecht, pp. 1-43.

FirTing M. C. [1990], First-Order Logic and Automated Theorem Proving, Springer-Verlag, New
York.

FIiTTING M. C. [1996], First-Order Logic and Automated Theorem Proving, second edn, Springer-
Verlag, New York.

FuJrta H. AND HASEGAWA R. [1991], A model generation theorem prover in KL1 using a ramified-
stack algorithm, in K. Furukawa, ed., ‘Proceedings 8th International Conference on Logic
Programming, Paris/France’, MIT Press, pp. 535-548.

TABLEAUX AND RELATED METHODS 171

GABBAY D. M. [1985], ‘N-Prolog: An extension of Prolog with hypothetical implication II—logical
foundations, and negation as failure’, Journal of Logic Programming 2(4), 251-283.

GABBAY D. M. AND REYLE U. [1984], ‘N-Prolog: An extension of Prolog with hypothetical
implications I’, Journal of Logic Programming 1(4), 319-355.

GALLO G. AND URBANI G. [1989], ‘Algorithms for testing the satisfiability of propositional for-
mulae’, Journal of Logic Programmming 7(1), 45-62.

GAREY M. R. AND JoHNSON D. S. [1979], Computers and Intractability, Freeman, San Francisco.

GENTZEN G. [1935], ‘Untersuchungen tiber das Logische Schliessen’, Mathematische Zeitschrift
39, 176-210, 405-431. English translation [Szabo 1969].

GIESE M. [2000], Proof search without backtracking using instance streams, position paper, in
P. Baumgartner and H. Zhang, eds, ‘Proc. Third Int. Workshop on First-Order Theorem Prov-
ing, St. Andrews, Scotland’, Fachberichte Informatik 5/2000, University of Koblenz, Institute
for Computer Science, pp. 227-228.

GIESE M. AND AHRENDT W. [1998], Hilbert’s e-terms in automated theorem proving, in N. V.
Murray, ed., ‘Proc. International Conference on Automated Reasoning with Analytic Tableaux
and Related Methods, Saratoga Springs/NY, USA’, number 1617 in ‘LNCS’, Springer-Verlag,
pp. 171-185.

HAHNLE R. [1999], Tableaux for many-valued logics, in M. D’Agostino, D. Gabbay, R. Hihnle
and J. Posegga, eds, ‘Handbook of Tableau Methods’, Kluwer, Dordrecht, pp. 529-580.

HAHNLE R. AND KLINGENBECK S. [1996], ‘A-ordered tableaux’, Journal of Logic and Computation
6(6), 819-834.

HAHNLE R., MURRAY N. AND ROSENTHAL E. [1997], Completeness for linear regular negation
normal form inference systems, in Z. W. Ra§ and A. Skowron, eds, ‘Foundations of Intelligent
Systems, 10th International Symposium, ISMIS’97, Charlotte, North Carolina, USA’, number
1325 in ‘LNCS’, Springer-Verlag, pp. 590-599.

HAHNLE R. AND PAPE C. [1997], Ordered tableaux: Extensions and applications, in D. Galmiche,
ed., ‘Proc. International Conference on Automated Reasoning with Analytic Tableaux and
Related Methods, Pont-a-Mousson, France’, Vol. 1227 of LNCS, Springer-Verlag, pp. 173—
187.

HasecawAa R., Funra H. AND KosHIMURA M. [1997], MGTP: a model generation theorem
prover—its advanced features and applications, in D. Galmiche, ed., ‘Proc. Int. Conference
on Automated Reasoning with Analytic Tableaux and Related Methods, Pont-a-Mousson,
France’, Vol. 1227 of LNCS, Springer-Verlag, pp. 1-15.

HasEGawA R., INOUE K., OHTA Y. AND KOSHIMURA M. [1997], Non-Horn magic sets to in-
corporate top-down inference into bottom-up theorem proving, in W. McCune, ed., ‘Proc.
14th International Conference on Automated deduction’, Vol. 1249 of LNCS, Springer-Verlag,
pp. 176-190.

HASEGAWA R., KOSHIMURA M. AND Fuiita H. [1992], MGTP: A parallel theorem prover based on
lazy model generation, in D. Kapur, ed., ‘Proc. 11t" International Conference on Automated
Deduction’, LNAI 607, Springer-Verlag, pp. 776-780.

HERBRAND J. [1930], Recherches sur la théorie de la démonstration, These de doctorat, Université
de Paris, France. Reprinted in [Herbrand 1971].

HERBRAND J. [1971], Jacques Herbrand: Logical Writings, edited by W. Goldfarb, Reidel, Dor-
drecht.

HINTIKKA K. J. J. [1955], ‘Form and content in quantification theory’, Acta Philosohica Fennica
8, 7-55.

Joyce J. J. AND SEGER C.-J. H. [1993], Linking BDD-based symbolic evaluation to interactive
theorem-proving, Technical Report TR-93-18, UBC.

KANGER S. [1957], Provability in Logic, Vol. 1 of Acta Universitatis Stockholmiensis, Almqvist
& Wiksell, Stockholm.

172 REINER HAHNLE

KLINGENBECK S. AND HAHNLE R. [1994], Semantic tableaux with ordering restrictions, in
A. Bundy, ed., ‘Proc. 12th Conference on Automated Deduction CADE, Nancy/France’, Vol.
814 of LNCS, Springer-Verlag, pp. 708-722.

KOoRF R. E. [1985], ‘Depth-first iterative deepening: an optimal admissible tree search’, Artificial
Intelligence 27, 97-109.

KOSHIMURA M. AND HASEGAWA R. [1999], A proof of completeness for non-Horn magic sets
and its application to proof condensation, in N. Murray, ed., ‘Position Papers, International
Conference on Automated Reasoning with Analytic Tableaux and Related Methods, Saratoga
Springs, NY, USA’, Technical Report 99-1, Institute for Programming and Logics, Department
of Computer Science, University at Albany — SUNY, pp. 101-116.

KowaLskI R. [1974], ‘Predicate logic as a programming language’, Information Processing
74, 569-574.

KowaLskl R. AND KUEHNER D. [1971], ‘Linear resolution with selection function’, Artificial
Intelligence 2(3), 227-260.

LETZ R. [1993], First-Order Calculi and Proof Procedures for Automated Deduction, PhD thesis,
TH Darmstadt.

LeETz R. [1998], Using matings for pruning connection tableaux, in C. Kirchner and H. Kirchner,
eds, ‘Proc. 15th International Conference on Automated Deduction (CADE), Lindau’, Vol.
1421 of LNCS, Springer-Verlag, pp. 381-396.

LETZ R., MAYR K. AND GOLLER C. [1994], ‘Controlled integration of the cut rule into connection
tableau calculi’, Journal of Automated Reasoning, 13(3), 297-338.

LETZ R., SCHUMANN J., BAYERL S. AND BIBEL W. [1992], ‘SETHEO: A high-perfomance theorem
prover’, Journal of Automated Reasoning 8(2), 183-212.

LETZ R. AND STENZ G. [2001], Model elimination and connection tableau procedures, in
A. Robinson and A. Voronkov, eds, ‘Handbook of Automated Reasoning’, Vol. II, Elsevier
Science, chapter 28, pp. 2015-2114.

Lis Z. [1960], ‘Wynikanie semantyczne a wynikanie formalne (logical consequence, semantic and
formal’, Studia Logica 10, 39-60. Polish, with Russian and English abstracts.

LrLoyp J. W. [1987], Foundations of Logic Programming, Second edn, Springer, Berlin.

LovELAND D. W. [1968a], A linear format for resolution, in ‘Proc. IRIA Symp. Automatic
Demonstration’, Springer-Verlag, Versailles, France, pp. 147-162. Reprinted in [Siekmann
and Wrightson 1983a].

LovELAND D. W. [1968b], ‘Mechanical theorem proving by model elimination’, Journal of the
ACM 15(2), 236-251. Reprinted in: [Siekmann and Wrightson 1983a].

LovELAND D. W. [1969], ‘A simplified format for the model elimination procedure’, Journal of
the ACM 16(3), 349-363. Reprinted in: [Siekmann and Wrightson 1983a].

LovELAND D. W. [1972], ‘A unifying view of some linear Herbrand procedures’, Journal of the
ACM 19(2), 366-384.

LovELAND D. W. [1978], Automated Theorem Proving. A Logical Basis, Vol. 6 of Fundamental
Studies in Computer Science, North-Holland.

LOVELAND D. W. [1987], Near-Horn PROLOG, in J.-L. Lassez, ed., ‘Proc. Fourth International
Conference on Logic Programming, ICLP’, MIT Press, Melbourne, Australia, pp. 456-469.
LovELAND D. W. [1991], ‘Near-Horn Prolog and beyond’, Journal of Automated Reasoning 7, 1—

26.

LOVELAND D. W. AND REED D. W. [1991], A near-Horn Prolog for compilation, in J.-L. Lassez
and G. Plotkin, eds, ‘Computational Logic: Essays in Honor of Alan Robinson’, MIT Press,
Cambridge, MA.

LoveELAND D. W., REED D. W. AND WiLsoN D. S. [1995], ‘SATCHMORE: SATCHMO with
RElevancy’, Journal of Automated Reasoning 14(2), 325-351.

LuckHAM D. [1968], Refinements in resolution theory, in ‘Proc. IRTA Symp. Automatic Demon-
stration’, Springer-Verlag, Versailles, France, pp. 163-190. Reprinted in [Siekmann and
Wrightson 1983a].

TABLEAUX AND RELATED METHODS 173

MANTHEY R. AND BRy F. [1988], SATCHMO: A theorem prover implemented in Prolog, in
E. Lusk and R. Overbeek, eds, ‘Proceedings 9th Conference on Automated Deduction’, LNCS,
New York, Springer-Verlag, pp. 415-434.

Massaccr F. [1998a], Cook and Reckhow are wrong: subexponential proofs for their families
of formulae, in H. Prade, ed., ‘Proc. 13th European Conference on Artificial Intelligence,
Brighton’, John Wiley & Sons, pp. 408-409.

Massaccl F. [1998b], Simplification: A general constraint propagation technique for propositional
and modal tableaux, in H. de Swart, ed., ‘Proc. International Conference on Automated
Reasoning with Analytic Tableaux and Related Methods, Oosterwijk, The Netherlands’, Vol.
1397 of LNCS, Springer-Verlag, pp. 217-232.

MOoNDADORI M. [1988], Classical analytical deduction, Annali dell’ Universita di Ferrara, Nuova
Serie, sezione III, Filosofia, discussion paper, n. 1, Universita degli Studi di Ferrara.

MONDADORI M. [19894], Classical analytical deduction, part IT, Annali dell’ Universita di Ferrara,
Nuova Serie, sezione III, Filosofia, discussion paper, n. 5, Universita degli Studi di Ferrara.

MONDADORI M. [1989b], An improvement of Jeffrey’s deductive trees, Annali dell’ Universita di
Ferrara, Nuova Serie, sezione III, Filosofia, discussion paper, n. 7, Universita degli Studi di
Ferrara.

Moser M., IBENS O., LETz R., STEINBACH J., GOLLER C., SCHUMANN J. AND MAYrR K.
[1997], ‘SSETHEO and E-SETHEO—the CADE-13 systems’, Journal of Automated Reasoning
18(2), 237-246.

NONNENGART A., Rock G. AND WEIDENBACH C. [1998], On generating small clause normal forms,
in H. Kirchner and C. Kirchner, eds, ‘Proc. 15th International Conference on Automated
Deduction, Lindau, Germany’, number 1421 in ‘LNCS’, Springer-Verlag, pp. 397-411.

NONNENGART A. AND WEIDENBACH C. [2001], Computing small clause normal forms, in A. Robin-
son and A. Voronkov, eds, ‘Handbook of Automated Reasoning’, Vol. I, Elsevier Science,
chapter 6, pp. 335-367.

OHTA Y., INoUE K. AND HAsEGAwA R. [1998], On the relationship between non-Horn magic
sets and relevancy testing, in C. Kirchner and H. Kirchner, eds, ‘Proc. 15th International
Conference on Automated Deduction (CADE), Lindau’, Vol. 1421 of LNCS, Springer-Verlag,
pp. 333-347.

OPPACHER F. AND SUEN E. [1986], Controlling deduction with proof condensation and heuristics,
in J. H. Siekmann, ed., ‘Proc. 8th International Conference on Automated Deduction’, pp. 384—
393.

OPPACHER F. AND SUEN E. [1988], ‘HARP: A tableau-based theorem prover’, Journal of Auto-
mated Reasoning 4, 69—-100.

PapE C. [1996], Vergleich und Analyse von Ordnungseinschriankungen fiir freie Variablen Tableau
(in German), Interner Bericht 30/96, Universitdt Karlsruhe, Fakultdt fiir Informatik.

PAPE C. AND HAHNLE R. [1997], Restart tableaux with selection function, in G. Gottlob,
A. Leitsch and D. Mundici, eds, ‘Fifth Kurt-Gédel-Colloquium, KGC’97, Vienna’, Vol. 1289
of LNCS, Springer-Verlag, pp. 219-232.

PEREIRA L. M., CAIRES L. AND ALFERES J. [1992], SLWV — a theorem prover for logic program-
ming, in E. Lamma and P. Mello, eds, ‘Proc. Third International Workshop on Extensions of
Logic Programming, Bologna’, Vol. 660 of LNCS, Springer-Verlag, pp. 1-23.

PLAISTED D. A. [1982], ‘A simplified problem reduction format’, Artificial Intelligence 18, 227—
261.

PraisTED D. A. [1988], ‘Non-Horn clause logic programming without contrapositives’, Journal
of Automated Reasoning 4, 287—-325.

PLAISTED D. A. [1990], ‘A sequent-style model elimination strategy and a positive refinement’,
Journal of Automated Reasoning 6, 389-402.

PLAISTED D. A. AND GREENBAUM S. [1986], ‘A structure-preserving clause form translation’,
Journal of Symbolic Computation 2, 293-304.

174 REINER HAHNLE

PLAISTED D. A. AND ZHU Y. [1997], The Efficiency of Theorem Proving Strategies: A Compar-
ative and Asymptotic Analysis, Vieweg Verlag, Braunschweig.

PoseGGA J. [1993], Deduktion mit Shannongraphen fiir Priadikatenlogik erster Stufe (in German),
PhD thesis, University of Karlsruhe. Diski 51, infix Verlag.

PosEGGA J. AND ScuMITT P. H. [1995], ‘Deduction with first-order Shannon graphs’, Journal of
Logic and Computation 5(6), 697-729.

PRrAWITZ D. [1960], ‘An improved proof procedure’, Theoria 26, 102-139. Reprinted in [Siekmann
and Wrightson 1983b].

PrEiss R. [1998], Beweisvisualisierung und -analyse mit Hypergraphen, PhD thesis, Universitit
Karlsruhe, Fakultat flir Informatik. Published by Shaker-Verlag, Aachen.

RAGo G. [1994], Optimization, Hypergraphs and Logical Inference, PhD thesis, Dipartimento di
Informatica, Universita di Pisa. Available as Tech Report TD—4/94.

REED D. W. AND LOVELAND D. W. [19924], ‘A comparison of three Prolog extensions’, Journal
of Logic Programming 12, 25-50.

REED D. W. AND LOVELAND D. W. [1992b], Near-Horn Prolog and the ancestry family of pro-
cedures, Technical Report Technical report DUKE-TR-1992-20, Department of Computer
Science, Duke University.

REEVES S. [1987], Semantic tableaux as a framework for automated theorem-proving, in C. S.
Mellish and J. Hallam, eds, ‘Advances in Artificial Intelligence (Proceedings of AISB-87),
Wiley, pp. 125-139.

REITER R. [1971], ‘Two results on ordering for resolution with merging and linear format’, Journal
of the ACM 18, 630-646.

ROBINSON J. A. [1965a], ‘Automatic deduction with hyper-resolution’, Int. Journal of Computer
Math. 1, 227-234. Reprinted in [Siekmann and Wrightson 1983b].

ROBINSON J. A. [1965b], ‘A machine-oriented logic based on the resolution principle’, JACM
12(1), 23—-41. Reprinted in [Siekmann and Wrightson 1983b].

ScHUTTE K. [1960], Beweistheorie, Vol. 103 of Die Grundlehren der mathematischen Wis-
senschaften in Einzeldarstellungen mit besonderer Bericksichtigung der Anwendungsgebiete,
Springer-Verlag.

SHEERAN M. AND STALMARCK G. [2000], ‘A tutorial on Stdlmarck’s proof procedure for propo-
sitional logic’, Formal Methods in Systems Design 16(1), 23-58.

SHIRAI Y. AND HASEGAWA R. [1995], Two approaches for finite-domain constraint satisfaction
problem: CP and MGTP, in L. Stirling, ed., ‘Proc. 12th International Conference on Logic
Programming’, MIT Press, pp. 249-263.

SuurLTs B. [1997], A framework for using knowledge in tableau proofs, in D. Galmiche, ed.,
‘Proc. International Conference on Automated Reasoning with Analytic Tableaux and Related
Methods, Pont-a-Mousson, France’, Vol. 1227 of LNCS, Springer-Verlag, pp. 328-342.

SIEKMANN, J. AND WRIGHTSON, G., EDS [1983a|, Automation of Reasoning: Classical Papers in
Computational Logic 1967-1970, Vol. 2, Springer-Verlag.

SIEKMANN, J. AND WRIGHTSON, G., EDS [1983b], Automation of Reasoning: Classical Papers in
Computational Logic 1957-1966, Vol. 1, Springer-Verlag.

SLAGLE J. R. [1967], ‘Automatic theorem proving with renamable and semantic resolution’,
Journal of the ACM 14(4), 687-697. Reprinted in [Siekmann and Wrightson 1983a].

SMULLYAN R. M. [1963], ‘A unifying principle in quantification theory’, Procesdings of the Na-
tional Academy of Sciences of the U.S.A. 49(6), 828-832.

SMULLYAN R. M. [1995], First-Order Logic, second corrected edn, Dover Publications, New York.
First published 1968 by Springer-Verlag.

STICKEL M. E. [1992], ‘A Prolog technology theorem prover: A new exposition and implementa-
tion in Prolog’, Theoretical Computer Science 104(1), 109-129.

SUTCLIFFE G. AND SUTTNER C. [1999], ‘The CADE-15 ATP system competition’, Journal of
Automated Reasoning 23(1), 1-23.

TABLEAUX AND RELATED METHODS 175

SUTTNER C. B. AND SUTCLIFFE G. [1999], The TPTP problem library, TPTP v2.2.0, Technical
Report JCU-CS-99/02, Department of Computer Science, James Cook University.

SzABO, M. E., ED. [1969], The Collected Papers of Gerhard Gentzen, North-Holland, Amsterdam.

VORONKOV A. [1996], Proof search in intuitionistic logic based on constraint satisfaction, in
P. Miglioli, U. Moscato, D. Mundici and M. Ornaghi, eds, ‘Proc. 5th International Workshop
on Theorem Proving with analytic Tableaux and Related Methods (TABLEAUX), Terrassini,
Italy’, Vol. 1071 of LNCS, Springer-Verlag, pp. 312-329.

VORONKOV A. [1998], Herbrand’s theorem, automated reasoning and semantic tableaux, in ‘Proc.
13th IEEE Symposium on Logic in Computer Science, LICS, Indianapolis, USA’, IEEE Press,
Los Alamitos, pp. 252—-263.

WAALER A. [2001], Connections in nonclassical logics, in A. Robinson and A. Voronkov, eds,
‘Handbook of Automated Reasoning’, Vol. II, Elsevier Science, chapter 22, pp. 1487-1578.
WALLACE K. [1994], Proof Truncation Techniques in Model Elimination Tableaux, PhD thesis,

University of Newcastle, Australia.

WALLACE K. AND WRIGHTSON G. [1995], ‘Regressive merging in model elimination tableau-based
theorem provers’, Journal of the Interest Group in Pure and Applied Logics 3(6), 921-938.
Special Issue: Selected Papers from Tableaux’94.

WEIDENBACH C. [2001], Combining superposition, sorts and splitting, in A. Robinson and
A. Voronkov, eds, ‘Handbook of Automated Reasoning’, Vol. II, Elsevier Science, chapter 27,
pp. 1965-2013.

176 REINER HAHNLE

Notation
A

As (atoms) ... 104
F

Fy; (function symbols) 104

Fyio (Skolem function symbols) 107
L

Ly, (first-order formulas) 104
P

Py, (predicate symbols) 104
S

3 (first-order signature) 104

¥* (first-order signature with Skolem

symbols) 107

T

Ts (terms)oviiiiiiiiiiii 104
\%

TABLEAUX AND RELATED METHODS 177

Index
A
ancestor cancellation 159
ancestry family ... 159
atom ... 104
B
branch 111
closed ...l 112, 126
(07 oY) s 112
subsumption ... 145
C
cancellation pruning rule 159
chain i 153
admissiblel 153
clause ... 105
empty ... 105
Horn oo it 105
instanceooiiiion, 106
ground ... 106
IEW ottt et 106
positive ... 105
relevantl 131
UNIE e e 105
CNF see conjunctive normal form
complete
calculusl 117
strongly ... 117
completion mode 119
computation rule 117
fair .o 117
conjunctive normal form 105
connected extension step 130
CoONNECtioniiiiiiie 122
connection method 122
consolutionioiiiiiie, 165
constraint model generation 143
CUL et 147, 148, 163
D
Davis-Putnam procedure 163
destructive ...l 118
dilemmarule 164
disjunctive logic programming 157
domain i, 106
E
extension rule with local lemmas 149
F
fact ..o 105

foldinguprule 150
formula
complementol 105
first-order oLl 104
propositional 104
formula instantiation problem 165
G
goal normal form, 156
H
Herbrand complexity 107
Hintikka set 120
hyper tableau extension 140
hypergrapho 124
1
inheritance near-Horn Prolog 159
integrity constraint 143
interpretation00 106
L
level cut ... 124
literalo 104
ancestor ...l 153
body ...l 157
headl 157
negativel 104
ordering i 136
positive ... 104
type A oo 153
type B o 153
local lemma 149
logical consequence 107
M
magic set ... 124
mated ... 122
mating ... 122
mMatrix ..o 122
spanned ... 123
MGU see most general unifier
minimal proof length 165
minimally unsatisfiable 131
modelo 107
model elimination 153
restart ...l 161
strict ... 161
model generation 143

most general unifier 105

178 REINER HAHNLE

N
negation normal form 104
NNF ... see negation normal form
P
p-equivalent, 165
p-simulation ool 165
path ... 122
principle of bivalence 163
proof confluent 119
pure clause rulel 163
Q
QUETY oeeeeeee ettt 105, 156
R
range-restricted oL 141
reductiono 124
reduction step ...t 130
relevancy testing 124
resolution
linear il 155
Prolog-SLD 156
SLWV 137
unit ..o 163
rule .o 105
S
satisfiabilityo ool 107
saturationoooiol 134
SCOPE teeetetee i 104
selection function 135
completel 140, 143
consistent 137, 143
stable oo i 137
sentencel 105
signatureoiiiiiii 104

simplified problem reduction format ..160
size

of formulal 104
of tableau 112
Skolem term oo il 110
Stalmarck’s procedure 164
structure
canonicaliiiiiiiii 113
first-order o oo, 106
Herbrand 107
term domain 107
subformulal 106
immediate i, 106
negative occurrence 106
positive occurrence 106
PIrOPETr ettt eens 106

substitutiono ool 105

groundingl 105
idempotent 105
renaming ..., 105
T
tableau il 111
clause ...l 126
closed ...l 126
connectioniiiiiiiiaa. 129
EP 141
hyper ..., 138
positive ..., 140
KE 162
proof ...l 112, 126
proof procedure 117
regular ...l 131
restart ...l 162
SErict oo 162
satisfaction 113
semantic semantic 140
subsumptiono 145
weak connection 131
with merging 151
with regressive merging 151
with unification 111
tableau calculus 111
tautology ... 105
term ... 104
ground ...l 104
truth ... 106
U
unifier ... 105, 115
unit extension step 163
unit near-Horn Prolog 159
\%
validity ... 107
variable i 104
bound ... 105
free .o 105
rigid ..o 114
universal il 115
variable assignment 106
variant ... 106
W
well-order oo 144

