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Abstract

Design of a fuzzy controller requires more design decisions than usual, for example
regarding rule base, inference engine, defuzzification, and data pre- and post processing.
Thistutorial paper identifies and describes the design choices related to single-loop fuzzy
control, based on an international standard which is underway. The paper contains also a
design approach, which uses a PID controller as a starting point. A design engineer can
view the paper as an introduction to fuzzy controller design.
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1. Introduction

While it is relatively easy to design a PID controller, the inclusion of fuzzy rules creates
many extradesign problems, and although many introductory textbooks explain fuzzy con-
trol, there are few genera guidelinesfor setting the parameters of asimplefuzzy controller.
The approach here is based on a three step design procedure, that builds on PID control:

1. Start with aPID controller.
2. Insert an equivaent, linear fuzzy controller.
3. Makeit gradually nonlinear.

Guidelines related to the different components of the fuzzy controller will be intro-
duced shortly. In the next three sections three simple realisations of fuzzy controllers are
described: a table-based controller, an input-output mapping and a Takagi-Sugeno type
controller. A short section summarisesthe main design choicesin asimple fuzzy controller
by introducing a check list. The terminology isbased on an international standard whichis
underway (IEC, 1996).

Fuzzy controllers are used to control consumer products, such as washing machines,
video cameras, and rice cookers, as well as industrial processes, such as cement kilns,
underground trains, and robots. Fuzzy control is a control method based on fuzzy logic.
Just asfuzzy logic can be described simply as’computing with words rather than numbers’,
fuzzy control can be described simply as "control with sentences rather than equations’.
A fuzzy controller can include empirical rules, and that is especially useful in operator
controlled plants.

Take for instance a typical fuzzy controller

1. If error is Neg and change in error is Neg then output is NB
2. If error is Neg and change in error is Zero then output is NM (1)

The collection of rules is calledrale base. The rules are in the familiar if-then format, and
formally the if-side is called theondition and the then-side is called thenclusion (more
often, perhaps, the pair is calledtecedent - consequent or premise - conclusion). The
input value "Neq’ is alinguistic term short for the wordVegative, the output value "NB’
stands fotVegative Big and 'NM’ for Negative Medium. The computer is able to execute
the rules and compute a control signal depending on the measuredanputandchange

in error.

The objective here is to identify and explain the various design choices for engineers.

In arule based controller the control strategy is stored in a more or less natural language.
The control strategy is isolated in a rule base opposed to an equation based description. A
rule based controller is easy to understand and easy to maintain for a non-specialist end-user.
An equivalent controller could be implemented using conventional techniguedact,
any rule based controller could be emulated in, Bayran — itis just that it is convenient
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Figure 1. Direct control.

to isolate the control strategy in arule base for operator controlled systems.

Fuzzy controllers are being used in various control schemes (IEC, 1996). The most
obviousoneisdirect control, wherethe fuzzy controller isin theforward path in afeedback
control system (Fig. 1). The process output is compared with a reference, and if thereis
adeviation, the controller takes action according to the control strategy. In the figure, the
arrows may be understood as hyper-arrows containing severa signals at atime for multi-
loop control. The sub-componentsin the figure will be explained shortly. The controller is
here afuzzy controller, and it replaces a conventional controller, say, a PID (proportional-
integral-derivative) controller.

In feedforward control (Fig. 2) a measurable disturbance is being compensated. It re-
quiresagood model, but if amathematical model isdifficult or expensiveto obtain, afuzzy
model may be useful. Figure 2 shows a controller and the fuzzy compensator, the process
and the feedback loop are omitted for clarity. The scheme, disregarding the disturbance in-
put, can be viewed as a collaboration of linear and nonlinear control actions; the controller
C may bealinear PID controller, while the fuzzy controller F is asupplementary nonlinear
controller

Fuzzy rules are also used to correct tuning parameters in parameter adaptive control
schemes (Fig. 3). If a nonlinear plant changes operating point, it may be possible to
change the parameters of the controller according to each operating point. Thisis called
gain scheduling since it was originally used to change process gains. A gain scheduling
controller contains a linear controller whose parameters are changed as a function of the
operating point in a preprogrammed way. It requires thorough knowledge of the plant, but
it is often a good way to compensate for nonlinearities and parameter variations. Sensor
measurements are used as scheduling variables that govern the change of the controller
parameters, often by means of atable look-up.

Whether a fuzzy control design will be stable is a somewhat open question. Stability
concerns the system’s ability to converge or stay close to an equilibrium.s#éble linear
system will converge to the equilibrium asymptotically no matter where the system state
variables start from. It is relatively straight forward to check for stability in linear systems,
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for example by checking that al eigenvalues are in the left half of the complex plane. For
nonlinear systems, and fuzzy systemsare most often nonlinear, the stability concept ismore
complex. A nonlinear system is said to be asymprotically stable if, when it starts close to
an equilibrium, it will convergeto it. Evenif it just stays close to the equilibrium, without
converging to it, it is said to be stable (in the sense of Lyapunov). To check conditions for
stability is much more difficult with nonlinear systems, partly because the system behav-
iour isaso influenced by the signal amplitudes apart from the frequencies. The literature
is somewhat theoretical and interested readers are referred to Driankov, Hellendoorn &
Reinfrank (1993) or Passino & Yurkovich (1998). They report on four methods (Lyapunov
functions, Popov, circle, and conicity), and they give several referencesto scientific papers.
It is characteristic, however, that the methods give rather conservative results, which trans-
late into unrealistically small magnitudes of the gain factorsin order to guarantee stability.

Another possibility is to approximate the fuzzy controller with a linear controller, and
then apply the conventional linear analysis and design procedures on the approximation. It
seemslikely that the stability margins of the nonlinear system would be closein some sense
to the stability margins of the linear approximation depending on how close the approxi-
mation is. This paper shows how to build such alinear approximation, but the theoretical
background is still unexplored.

There are at least four main sources for finding control rules (Takagi & Sugeno in Lee,
1990).

e FExpert experience and control engineering knowledge. One classical example is the
operator's handbook for a cement kiln (Holmblad & Ostergaard, 1982). The most com-
mon approach to establishing such a collection of rules of thumb, is to question experts
or operators using a carefully organised questionnaire.

e Based on the operator § control actions. Fuzzyif-then rules can be deduced from ob-
servations of an operator’s control actions or a log book. The rules express input-output
relationships.

e Based on a fuzzy model of the process. A linguistic rule base may be viewed as an
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inverse model of the controlled process. Thusthe fuzzy control rules might be obtained
by inverting a fuzzy model of the process. This method is restricted to relatively low
order systems, but it provides an explicit solution assuming that fuzzy models of the
open and closed loop systemsare available (Braae & Rutherfordin Lee, 1990). Another
approach is fuzzy identification (Tong; Takagi & Sugeno; Sugeno — all in Lee, 1990;
Pedrycz, 1993) or fuzzy model-based control (see later).

e Based on learning. The self-organising controller is an example of a controller that
finds the rules itself. Neural networks is another possibility.

There is no design procedure in fuzzy control such as root-locus design, frequency re-
sponse design, pole placement design, or stability margins, because the rules are often non-
linear. Therefore we will settle for describing the basic components and functions of fuzzy
controllers, in order to recognise and understand the various options in commercial soft-
ware packages for fuzzy controller design.

There is much literature on fuzzy control and many commercial software tools (MIT,
1995), but there is no agreement on the terminology, which is confusing. There are efforts,
however, to standardise the terminology, and the following makes use of a draft of a stan-
dard from the International Electrotechnical Committee (IEC, 1996). Throughout, letters
denoting matrices are in bold upper case, for exampleectors are in bold lower case,
for examplex; scalars are in italics, for example and operations are in bold, for example
min.

2. Structure of a fuzzy controller

There are specific components characteristic of a fuzzy controller to support a design pro-
cedure. In the block diagram in Fig. 4, the controller is between a preprocessing block and
a post-processing block. The following explains the diagram block by block.
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Figure 4: Blocks of afuzzy controller.

2.1 Preprocessing

The inputs are most often hard or crisp measurements from some measuring equipment,
rather than linguistic. A preprocessor, thefirst block in Fig. 4, conditionsthe measurements
before they enter the controller. Examples of preprocessing are:

Quantisation in connection with sampling or rounding to integers;
normalisation or scaling onto a particular, standard range;

filtering in order to remove noise;

averaging to obtain long term or short term tendencies;
acombination of several measurementsto obtain key indicators; and
differentiation and integration or their discrete equivaences.

A quantiser 1S necessary to convert the incoming values in order to find the best level
in adiscrete universe. Assume, for instance, that the variable error has the value 4.5, but
the universeisu = (—5,—4,...,0,...,4,5). The quantiser rounds to 5 to fit it to the
nearest level. Quantisation is a means to reduce data, but if the quantisation is too coarse
the controller may oscillate around the reference or even become unstable.

Nonlinear scaling isanoption (Fig. 5). Inthe FL Smidth controller theoperator isasked
to enter three typical numbers for a small, medium and large measurement respectively
(Holmblad & @stergaard, 1982). They become break-points on a curve that scales the
incoming measurements (circled in the figure). The overall effect can be interpreted as a
distortion of the primary fuzzy sets. It can be confusing with both scaling and gain factors
in a controller, and it makes tuning difficult.

When the input to the controller ésror, the control strategy is a static mapping between
input and control signal. A dynamic controller would have additional inputs, for example
derivatives, integrals, or previous values of measurements backwards in time. These are
created in the preprocessor thus making the controller multi-dimensional, which requires
many rules and makes it more difficult to design.

The preprocessor then passes the data on to the controller.

2.2  Fuzzification

The first block inside the controller ig:zzification, which converts each piece of input
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data to degrees of membership by alookup in one or several membership functions. The
fuzzification block thus matches the input data with the conditions of the rulesto determine
how well the condition of each rule matchesthat particular input instance. Thereisadegree
of membership for each linguistic term that applies to that input variable.

2.3 Rule Base

The rules may use several variables both in the condition and the conclusion of the rules.
Thecontrollerscan therefore be applied to both multi-input-multi-output (MIMO) problems
and single-input-single-output (SISO) problems. The typical SISO problem is to regulate
acontrol signal based on an error signal. The controller may actually need both the error,
the change in error, and the accumulated error as inputs, but we will call it single-loop
control, because in principle al three are formed from the error measurement. To simplify,
this section assumes that the control objective isto regulate some process output around a
prescribed setpoint or reference. The presentation is thus limited to single-loop control.

Rule formats  Basically alinguistic controller contains rules in the if~then format, but
they can be presented in different formats. In many systems, the rules are presented to the
end-user in aformat similar to the one below,

1. If error isNeg and change in error is Neg then output is NB

. If error is Neg and change in error is Zero then output is NM

. If error is Neg and change in error is Pos then output is Zero

. If error is Zero and change in error is Neg then output is NM

. If error is Zero and changein error is Zero then output is Zero 2
. If error is Zero and change in error is Pos then output is PM

. If error is Pos and change in error is Neg then output is Zero

. If error is Pos and change in error is Zero then output is PM

9. If error is Pos and change in error is Pos then output is PB

The names Zero, Pos, Neg are labels of fuzzy sets as well as NB, NM, PB and PM
(negative big, negative medium, positive big, and positive medium respectively). Thesame
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set of rules could be presented in arelational format, a more compact representation.
Error Changeinerror Output

Neg Pos Zero

Neg Zero NM

Neg Neg NB

Zero Pos PM 3)
Zero Zero Zero

Zero Neg NM

Pos Pos PB

Pos Zero PM

Pos Neg Zero

The top row is the heading, with the names of the variables. It is understood that the two
leftmost columns are inputs, the rightmost is the output, and each row represents a rule.
Thisformat is perhaps better suited for an experienced user who wants to get an overview
of therule base quickly. Therelationa format is certainly suited for storing in arelational
database. It should be emphasi sed, though, that therelational format implicitly assumesthat
the connective between the inputsis always logical and — or logical or for that matter as
long asitisthe sameoperation for all rules — and not amixture of connectives. Incidentally,

a fuzzy rule with an or combination of terms can be converted into an equivaent and
combination of termsusing laws of logic (DeMorgan’'s laws among others). A third format
is the tabular linguistic format.

Change in error
Neg Zero Pos
Neg | NB | NM | Zero 4)
Error Zero| NM | Zero | PM
Pos | Zero| PM | PB

This is even more compact. The input variables are laid out along the axes, and the output
variable is inside the table. In case the table has an empty cell, itis an indication of a missing
rule, and this format is useful for checking completeness. When the input variabdesare
andchange in error, as they are here, that format is also calléthguistic phase plane. In
case there are > 2 input variables involved, the table grows to@mimensional array;
rather usets friendly.

To accommodate several outputs, a nested arrangement is conceivable. A rule with
several outputs could also be broken down into several rules with one output.

Lastly, a graphical format which shows the fuzzy membership curves is also possible
(Fig. 7). This graphical user-interface can display the inference process better than the
other formats, but takes more space on a monitor.

Connectives  In mathematics, sentences are connected with the wekdsor, if-then

(or implies), andif and only if, or modifications with the wordor. These five are called
connectives. It also makes a difference how the connectives are implemented. The most
prominent is probably multiplication for fuzzyd instead of minimum. So far most of the
examples have only containadd operations, but a rule like “If error is very neg and not



zero or changein error iszero then ...” is also possible.
The connectiveand andor are always defined in pairs, for example,

aand b = min (a, b) minimum

aorb = max (a,b) maximum
or 5)
aandb=axb algebraic product

aorb=a+b—axb algebraic or probabilistic sum

There are other examples (e.g., Zimmermann, 1981 32), but they are more com-
plex.

Modifiers A linguistic modifier, is an operation that modifies the meaning of a term.
For example, in the sentence “very close to 0°, the weedy modifiesClose fo 0 which

is a fuzzy set. A modifier is thus an operation on a fuzzy set. The modiéier can be
defined as squaring the subsequent membership function, that is

very a = a’ (6)

Some examples of other modifiers are

extremely a = a°

slightly a = a3

somewhat a = moreorless a and not slightly a
A whole family of modifiers is generated P wherep is any power between zero and
infinity. With p = oo the modifier could be namegkactly, because it would suppress all
memberships lower than 1.0.

Universes Elements of a fuzzy set are taken fromvaverse of discourse or justuniverse.

The universe contains all elements that can come into consideration. Before designing the
membership functions it is necessary to consider the universes for the inputs and outputs.
Take for example the rule

If error is Neg and change in error is Pos then output is O

Naturally, the membership functions faleg and Pos must be defined for all possible
values oferror andchange in error, and a standard universe may be convenient.

Another consideration is whether the input membership functions should be continuous
or discrete. A continuous membership function is defined on a continuous universe by
means of parameters. A discrete membership function is defined in terms of a vector with
a finite number of elements. In the latter case it is necessary to specify the range of the
universe and the value at each point. The choice between fine and coarse resolution is a
trade off between accuracy, speed and space demands. The quantiser takes time to execute,
and if this time is too precious, continuous membership functions will make the quantiser
obsolete.

Example 1 (standard universes) Many authors and several commercial controllers use
standard universes.

o The FL Smidth controller, for instance, uses the real number interval [—1,1].



o Authors of the earlier papers on fuzzy control used the integers in [—6, 6].

e Another possibility is the interval [—100,100] corresponding to percentages of full
scale.

e Jet another is the integer range [0,4095] corresponding to the output from a 12 bit
analog to digital converter

o Avariant is [—2047,2048] , where the interval is shifted in order to accommodate neg-
ative numbers.

The choice of datatypes may govern the choice of universe. For example, the voltage
range [—5, 5] could be represented as an integer range [—50, 50|, or as a floating point
range [—5.0, 5.0], a signed byte datatype has an allowable integer range [—128,127.

A way to exploit the range of the universes better isscaling. If acontroller input mostly
uses just one term, the scaling factor can be turned up such that the whole range is used.
An advantage is that this allows a standard universe and it eliminates the need for adding
more terms.

Membership functions  Every element in the universe of discourse is a member of a
fuzzy set to some grade, maybe even zero. The grade of membership for all its members
describes afuzzy set, such as Neg. In fuzzy sets elements are assigned a grade of member-
ship, such that the transition from membership to non-membership is gradual rather than
abrupt. The set of elements that have a non-zero membership is caled the support of the
fuzzy set. The function that ties a number to each element = of the universe is called the
membership function p(z).

The designer isinevitably faced with the question of how to build the term sets. There
are two specific questions to consider: (i) How does one determine the shape of the sets?
and (ii) How many sets are necessary and sufficient? For example, theerror inthe position
controller uses the family of terms Neg, Zero, and Pos. According to fuzzy set theory the
choice of the shape and width is subjective, but afew rules of thumb apply.

e A term set should be sufficiently wide to allow for noise in the measurement.
e A certain amount of overlap is desirable; otherwise the controller may run into poorly
defined states, where it does not return awell defined output.

A preliminary answer to questions (i) and (ii) isthat the necessary and sufficient number
of setsin afamily depends on the width of the sets, and vice versa. A solution could be
to ask the process operators to enter their personal preferences for the membership curves,
but operators also find it difficult to settle on particular curves.

The manual for the TILShell product recommends the following (Hill, Horstkotte &
Teichrow, 1990).

e Start with triangular sets. All membership functions for a particular input or output
should be symmetrical triangles of the same width. The leftmost and the rightmost
should be shouldered ramps.

e The overlap should be at least 50 %. Thewidths should initially be chosen so that each
value of the universe is a member of at |east two sets, except possibly for elements at
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Figure 6: Examples of membership functions. Read from top to bottom, left to right: (a)
z—function, (b) =— function, (¢) s—function, (d-f) triangular versions, (g-i) trapezoida
versions, (j) flat w— function, (K) rectangle, (I) singleton.

the extreme ends. If, on the other hand, there is a gap between two sets no rulesfire for
valuesin the gap. Consequently the controller function is not defined.

Membership functions can be flat on thetop, piece-wiselinear and triangle shaped, rec-
tangular, or ramps with horizontal shoulders. Fig. 6 shows some typical shapes of mem-
bership functions.

Strictly speaking, afuzzy set A isacollection of ordered pairs

A= {(z, p(x))} ©

Item x belongs to the universe and w(z) is its grade of membership in A. A single pair
(x, u(x)) isafuzzy singleton; singleton output means replacing the fuzzy setsin the con-
clusion by numbers (scalars). For example

1. If error is Pos then output is 10 volts
2. If error is Zero then output is 0 volts
3. If error is Neg then output is — 10 volts
There are at |east three advantages to this:
e The computations are smpler;

e itispossibleto drivethe control signa to its extreme values; and
e it may actually be amore intuitive way to write rules.

The scalar can be a fuzzy set with the singleton placed in a proper position. For ex-

n



ample 10 volts, would be equivalent to the fuzzy set (0, 0,0, 0, 1) defined on the universe
(=10, -5,0,5,10) volts.

Example 2 (membership functions) Fuzzy controllers use a variety of membership func-
tions. A common example of a function that produces a bell curve is based on the exponen-
tial function,
2
—(x — xg)

() = exp [T 8
This is a standard Gaussian curve with a maximum value of 1, x is the independent variable
on the universe, x is the position of the peak relative to the universe, and o is the standard

deviation. Another definition which does not use the exponential is

r — X 2_1
1+( O)
ag

The FL Smidth controller uses the equation

p(x) =1—exp [— (xoa x)a] (10)

The extra parameter a controls the gradient of the sloping sides. It is also possible to use
other functions, for example the sigmoid known from neural networks.

A cosine function can be used to generate a variety of membership functions. The
s-curve can be implemented as

p(x) = ©

0 , T < a2y
s(xy, xp,x) = % + %cos (;_fw"l 7r) o<z <, (1)
,T > Ty

where x; is the left breakpoint, and x,. is the right breakpoint. The z-curve is just a reflec-
tion,

1 , T < Ty
z2(xy, T, ) = % + % cos (%W) o <z <a, (12)
0 ST > Ty

Then the m-curve can be implemented as a combination of the s-curve and the z-curve,
such that the peak is flat over the interval [z, x3]

(a1, T, 3, e, ) = min(s(x1, e, ), 2(T3, T4, T)) (13)

2.4 Inference Engine

Figures 7 and 8 are both a graphical construction of the algorithm in the core of the con-
troller. InFig. 7, each of the nine rows refersto one rule. For example, the first row says
that if the error is negative (row 1, column 1) and the change in error is negative (row
1, column 2) then the output should be negative big (row 1, column 3). The picture corre-
spondsto therule basein (2). Therulesreflect the strategy that the control signal should be
acombination of the reference error and the changein error, afuzzy proportional -derivative

12
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Figure 7: Graphical construction of the control signal in afuzzy PD controler (generated
in the Matlab Fuzzy Logic Toolbox).

controller. We shall refer to that figurein the following. The instances of the error and the
change in error are indicated by the vertical lines on the first and second columns of the
chart. For each rule, the inference engine looks up the membership values in the condition
of therule.

Aggregation  The aggregation operation is used when calculating the degree of fulfill-
ment Of firing strength oy, of the condition of arule k. A rule, say rule 1, will generate a
fuzzy membership value 1., coming from the error and amembership value y..; coming
from the change in error measurement. The aggregation is their combination,

e and Hee1 (14)
Similarly for the other rules. Aggregation is equivalent to fuzzification, when thereisonly
one input to the controller. Aggregation is sometimes also called fulfilment of the rule or
firing strength.

Activation  Theactivation of aruleisthe deduction of the conclusion, possibly reduced
by its firing strength. Thickened lines in the third column indicate the firing strength of
each rule. Only the thickened part of the singletons are activated, and min or product (*)
is used as the activation operator. 1t makes no difference in this case, since the output
membership functions are singletons, but in the general case of s—, 7—, and z— functions

13



in the third column, the multiplication scales the membership curves, thus preserving the
initial shape, rather than clipping them as the min operation does. Both methods work well
in general, although the multiplication resultsin a dightly smoother control signal. In Fig.
7, only rulesfour and five are active.

A rule k can be weighted a priori by aweighting factor wy, € [0, 1], which isits degree
of confidence. Inthat casethe firing strength is modified to

Q) = Wi * Q. (15)

The degree of confidence is determined by the designer, or alearning program trying
to adapt the rules to some input-output relationship.

Accumulation  All activated conclusions are accumulated, using the max operation,
to the final graph on the bottom right (Fig. 7). Alternatively, sum accumulation counts
overlapping areas morethan once (Fig. 8). Singleton output (Fig. 7) and sum accumulation
resultsin the simple output

a1 %81+ Qg *8y+ ...+, *s, (16)

The alphass are the firing strengths from therules ands; ... s,, are the output singletons.
Since this can be computed as a vector product, this type of inference is relatively fastin a
matrix oriented language.

There could actually have been several conclusion sets. An example of a one-input-
two-outputs rule is ‘“Ife, is a theno; is x andos isy”. The inference engine can treat
two (or several) columns on the conclusion side in parallel by applying the firing strength
to both conclusion sets. In practice, one would often implement this situation as two rules
rather than one, that is, ‘lif, is a theno, isx”, “If ¢, isathenos isy”.

2.5 Defuzzification

The resulting fuzzy set (Fig. 7, bottom right; Fig. 8, extreme right) must be converted
to a number that can be sent to the process as a control signal. This operation is called
defuzzification, and in Fig. 8 ther-coordinate marked by a white, vertical dividing line
becomes the control signal. The resulting fuzzy set is thus defuzzified into a crisp control
signal. There are several defuzzification methods.

Centre of gravity (COG)  The crisp output value (white line in Fig. 8) is the abscissa
under the centre of gravity of the fuzzy set,

PP TICHL (17)
Zi 1 ()
Herez; is a running point in a discrete universe, ang;) is its membership value in the
membership function. The expression can be interpreted as the weighted average of the
elements in the support set. For the continuous case, replace the summations by integrals.
It is a much used method although its computational complexity is relatively high. This
method is also calleckntroid of area.

Centre of gravity method for singletons (COGS) If the membership functions of the

14



conclusions are singletons (Fig. 7), the output valueis

Dok (si)si
R ST Ey (49
Here s; isthe position of singleton i inthe universe, and 1 (s;) isequal to thefiring strength
«; of rule 7. This method has arelatively good computational complexity, and u is differ-
entiable with respect to the singletons s;, which is useful in neurofuzzy systems.

Bisector of area (BOA)  This method picks the abscissa of the vertical line that divides
the area under the curve in two equal halves. In the continuous case,

u= {m | A;mu(x) dx = /mMax,u(:v) d:c} (19

Here x is the running point in the universe, 1 () isits membership, Min is the leftmost
value of the universe, and Max is the rightmost value. Its computational complexity is
relatively high, and it can be ambiguous. For example, if the fuzzy set consists of two
singletons any point between the two would divide the areain two halves; consequently it
is safer to say that in the discrete case, BOA is not defined.

Mean of maxima (MOM)  Anintuitiveapproachisto choosethe point with the strongest
possihility, i.e. maxima membership. It may happen, though, that several such pointsexist,
and acommon practice isto take the mean of maxima (MOM). This method disregards the
shape of the fuzzy set, but the computational complexity is relatively good.

Leftmost maximum (LM), and rightmost maximum (RM)  Another possibility isto
choose the leftmost maximum (LM), or the rightmost maximum (RM). In the case of a
robot, for instance, it must choose between left or right to avoid an obstacle in front of
it. The defuzzifier must then choose one or the other, not something in between. These
methods are indifferent to the shape of the fuzzy set, but the computational complexity is
relatively small.

2.6  Postprocessing

Output scaling isalsorelevant. In casethe output isdefined on astandard universethismust
be scaled to engineering units, for instance, volts, meters, or tons per hour. An exampleis
the scaling from the standard universe [—1, 1] to the physical units[—10, 10] volts.

The postprocessing block often containsan output gain that can betuned, and sometimes
also an integrator.

Example 3 (inference) How is the inference in Fig. 8 implemented using discrete fuzzy
sets?

Behind the scene all universes were divided into 201 points from —100 to 100. But for
brevity, let us just use five points. Assume the universe u, common to all variables, is the
vector

u=| —100 | =50 | 0 | 50 | 100 ]
A cosine function can be used to generate a variety of membership functions. The
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Figure 8: One input, one output rule base with non-singleton output sets.
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s-curve can be implemented as

0 , T < a2y
s(x, xp,x) = %+ 3 cos (f‘—fwlw) v <z <, (20)
T > Ty

where x; is the left breakpoint, and x.. is the right breakpoint. The z-curve is just a reflec-
tion,

1 ,x <
z(xy, xpy ) = % + %cos (f__lm’l 7r) o <z <a, (21)
0 , T > Xy

Then the m-curve (see for example Fig. 6(j)) can be implemented as a combination of the
s-curve and the z-curve, such that the peak is flat over the interval [xs, x3]
w(x1, T2, X3, T4, ) = min(s(x1, ze, ), 2(T3, T4, T)) (22)
A family of terms is defined by means of the w—function, such that
neg = 7 (—100, —100, —60, 10,u) =| 1 [ 0.95 [ 0.05 [ 0 [ O |

zero = 1 (—90, —20,20,90,u) =| 0 [ 0.61 | 1 [ 0.61 | 0 ]
pos = 7 (—10,60,100,100,u) =[ 0 [ 0 [ 0.05 [ 0.95 [ 1 |
Above we inserted the whole vector u in place of the running point x; the result is thus
avector. The figure assumes that error = —50 (the unit is percentages of full range). This
corresponds to the second position in the universe, and the first rule contributes with a
membership neg(2) = 0.95. This firing strength is propagated to the conclusion side of the
rule using min, such that the contribution from this rule is

0.95 min neg =[ 0.95 [ 0.95 [ 0.05 [ 0 [ 0 |

The activation operation was min here. Apply the same procedure to the two remaining
rules, and stack all three contributions on top of each other;

0.95 1 0.95 | 0.05 010
0(061]061[061 |0
0 0 0 010

10 find the accumulated output set, perform a max operation down each column. The
result is the vector

[0.95]0.95]0.61]061]0 |
The centre of gravity method yields

DY ACHES 23)
095+ (-100) 4 0.95 % (50) + 0,610 406150 40100
- 0.95+0.95+0.614+0.614+0

— _359 (25)

which is the control signal (before postprocessing).
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3. Table Based Controller

If the universes are discrete, it is always possible to calculate al thinkable combinations of
inputs before putting the controller into operation. In arable based controller the relation
between al input combinations and their corresponding outputs are arranged in a table.
With two inputs and one output, the table is a two-dimensional |ook-up table. With three
inputs the table becomes a three-dimensiona array. The array implementation improves
execution speed, as the run-time inference is reduced to a table look-up which is a lot
faster, at least when the correct entry can be found without too much searching. Below is
asmall example of alook-up table corresponding to the rulebase (2) with the membership
functionsin Fig. 7,

changein error
-100  -50 0 50 100
-100 | -200 | -160 | -100 | -40 0
-50 | -160 | -121 | -61 0| 40 (26)
error Of-100 | -61 0] 61] 100
50 | -40 0 61 | 121 | 160
100 0 40 | 100 | 160 [ 200

A typical application areafor the table based controller is where the inputs to the con-
troller are the error and the change in error. The controller can be embedded in a larger
system, a car for instance, where the table is downloaded to a table look-up mechanism.

Table regions  Referring to the look-up table (26), a negative value of error implies
that the process output y is above the reference Ref, because the error is computed as
error = Ref — y. A positive value implies a process output below the reference. A
negative value of change in error means that the process output increases while a positive
value means it decreases.

Certain regions in the table are especidly interesting. The centre of the table corre-
spondsto the case where the error iszero, the processis on the reference. Furthermore, the
change in error is zero here, so the process stays on the reference. This position isthe sta-
ble point where the process has settled on the reference. The anti-diagonal (orthogonal to
the main diagonal) of thetableis zero; those are all the pleasant states, where the processis
either stable on the reference or approaching the reference. Should the process move away
alittle from the zero diagonal, due to noise or a disturbance, the controller will make small
corrections to get it back. In case the processis far from the reference and a'so moving
away from it, we are in the upper left and lower right corners. Here the controller calls for
drastic changes.

The numerical values on the two sides of the zero diagonal do not have to be anti-
symmetric; they can be any values, reflecting asymmetric control strategies. During are-
sponse with overshoot after apositive step inthereference, aplot of the point (error ,change
in error) Will follow atrgjectory in the table which spirals clockwise from the lower left
corner of thetabletowardsthe centre. It issimilar to aphase plane trajectory, where avari-
able is plotted against its derivative. A clever designer may adjust the numbers manually
during atuning session to obtain a particular response.
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Bilinear interpolation  If the resolution in the table is too coarse it will cause /imit cy-
cling, that is, oscillations around the reference. The table allows the error to drift away
from zero until it jumps into a neighbouring cell with a nonzero control action. This can
be avoided with bilinear interpolation between the cellsinstead of rounding to the nearest
point. In the case of atwo-dimensional table, an error F satisfiestherelation £; < E <
FEs, where F; and E» are the two neighbouring points. The change-in-error C'E will like-
wise satisfy CEy < CE < CFEs. Theresulting table value is then found by interpolating
linearly in the E axis direction between the first pair u; = (F(F1,CE4), F(E2, CEy))
and the second pair us = (F(E1,CEs), F(E,, CE,)), and then in the C' E-axis direction
between the pair (uq, usz).

n-Dimensional Tables A three input controller has a three-dimensional look-up table.
Assuming aresolution of, say, 13 pointsin each universe, the table holds 2197 elements. It
would be atremendous task to fill these in manually, but it is manageable with rules.

A three dimensional table can be represented as a two-dimensional table using a re-
lational representation. Rearrange the table into three columns one for each of the three
inputs (E1, F», E3) and one for the output (U) , for example Table 1. Each input can take
five values, and the table thus has 5 x 5 x 5 = 125 rows. The table look-up is how a
question of finding the right row, and picking the corresponding U value.

Ey E, E; U
—100 —100 —100 | —100
—-100 —-100 —-67| -89
—100 —100 0| —67
—100 —100 67 | —44
—100 —100 100 [ —33
—-100 —67 —100| -89
—-100 —67 —67| -—T78
—-100  —67 0| —56

100 100 100 100

Table 1: Equivalent of a3D look-up table.

4. Input-Output Mapping

Two inputs and one output results in a two dimensional table, which can be plotted as a
surface for visual inspection. The relationship between one input and one output can be
plotted as a graph. These plots are a design aid when selecting membership functions and
constructing rules.

The shape of the surface can be controlled to acertain extent by manipulating the mem-
bership functions. In order to see this clearly, we will use the one-input-one-output case
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IF THEN QUTPUT vs INPUT
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Figure 9: Input-output maps of proportional controllers. Each row is a controller.

(without loss of generality). The fuzzy proportional rule base
1. If error is Neg then output is Neg
2. If error is Zero then output is Zero 27
3. If error is Pos then output is Pos

produced the six different mappingsin Fig. 9. The rightmost column is the input-output
mapping, and each row is a different controller. The controllers have the input familiesin
the if-column and the output familiesin the then column. The results depend on the choice
of design parameters, which inthis case arethefollowing: the * (product ) operation for ac-
tivation becauseit is continuous, the max operation for accumulation sinceit corresponds
to set union, and centre of gravity for defuzzification sinceit is continuous, unambiguous,
and it degeneratesto COGS in the case of singleton output. If there had been two or more
inputs, the * operation for and would be chosen since it is continuous. These choices are
also necessary and sufficient for alinear mapping (appendix).

The following comments relate to the figure, row by row:

1. Triangular setsin both condition and conclusion result in a winding input-output map-
ping. Comparedtoalinear controller (dotted line) the gain of thefuzzy controller varies.
A dlight problem with this controller is that it does not use the full output range; it is
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Control Output, U

Figure 10: Example of a control surface.

impossibleto drive the output to 100%. Another problemisthat thelocal gainisalways
equal or lower than the linear controller.

2. Singleton outputs eliminate the problem with the output range. The set pos corresponds
to 100, zero to O, and neg to -100. The input terms are the same as before. Now the
input-output mapping is linear.

3. Flat input sets produce flat plateaus and large gains far away from the reference. This
issimilar to adeadzone with saturation. Increasing the width of the middle term results
in awider plateau around the reference. Less overlap between neighbouring sets will
result in steeper slopes.

4. If the sharp corners cause problems, they are removed by introducing nonlinear input

sets. The input-output relationship is now smooth.

Adding more sets only makes the mapping more bumpy.

6. On the other hand with more setsit is easier to stretch the reference plateau by moving
the singletons about.

ol

The experiment shows that depending on what the design specifications are, it is possi-
ble to controal, to a certain extent, the variation of the gain. Using singletons on the output
side makes it easier. The results can easily be generaised to three dimensiona surfaces.
In al cases the activation operator was * (product), the accumulation operator was max,
and the defuzzification method was COG or COGS — other operations may give dightly
different results.

Control Surface  With two inputs and one output the input-output mapping is asurface.
Figure 10 is amesh plot of an example relationship between error E and change in error
CF on the input side, and controller output « on the output side. The plot results from a
rule base with ninerules, and the surfaceis more or less bumpy. The horizontal plateausare
due to flat peaks on the input sets. The plateau around the origin implies alow sensitivity
towards changesin either error or change in error near thereference. Thisisan advantage
if noise sensitivity must be low when the processis near the reference. On the other hand,
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if the process is unstable in open loop it is difficult to keep the process on the reference,
and it will be necessary to have alarger gain around the origin.

There are three sources of nonlinearity in afuzzy controller.

e The rule base. The position, shape and number of fuzzy sets aswell as nonlinear input

scaling cause nonlinear transformations. The rules often express a nonlinear control
strategy.

e The inference engine. If the connectives and and or are implemented as for example

min and max respectively, they are nonlinear.

o The defuzzification. Several defuzzification methods are nonlinear.

It is possible to construct a rule base with alinear input-output mapping (Siler & Ying,

1989; Mizumoto, 1992; Qiao & Mizumoto; 1996). Thefollowing checklist summarisesthe
general design choices for achieving afuzzy rule base equivaent to a summeation (details
in the appendix):

O
O
O
d

O

Use triangular input sets that cross at » = 0.5;

use the algebraic product (*) for the and connective;

the rule base must be the complete and combination (cartesian product) of all input
families;

use output singletons, positions determined by the sum of the peak positions of theinput
sets;

use COGS defuzzification.

With these design choices the control surface degeneratesto adiagonal plane (Fig. 11).

A flexible fuzzy controller, that allows these choices, istwo controllersin one so to speak.
When linear, it has atransfer function and the usual methods regarding tuning and stability
of the closed loop system apply.

Figure 11: Linear surface with trgjectory of atransient response.
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5. Takagi-Sugeno Type Controller

We saw that the output sets can be singletons, but they can also be linear combinations of
the inputs, or even afunction of the inputs (Takagi & Sugeno, 1985). The general Takagi-
Sugeno rule structureis

If f(e1i1SA1,e2iSAq,... e, iSAL)theny = g(er,e1...)

Here f is alogica function that connects the sentences forming the condition, y is the
output, and g is afunction of theinputs. A simple exampleis

If error is Zero and changein error is Zero then output y = ¢

where cisacrisp constant. Thisisazero-order model, anditisidentical to singleton output
rules. A slightly more complex ruleis

If error is Zero and changein error is Zero then
u = axerror+bx* (change in error) + ¢

where a,b and ¢ are al constants. This is a first-order model. Inference with severa
rules proceeds as usua, with a firing strength associated with each rule, but each output
is linearly dependent on the inputs. The output from each rule is a moving singleton, and
the defuzzified output is the weighted average of the contributions from each rule. The
controller interpolates between linear controllers; each controller is dominated by arule,
but there is aweighting depending on the overlap of the input membership functions. This
is useful in a nonlinear control system, where each controller operates in a subspace of
the operating envelope. One can say that the rulesinterpolate smoothly between the linear
gains. Higher order models are also possible.

Example 4 (Sugeno) Suppose we have two rules
1. If error is Large then output is Linel
2. If error is Small then output is Line2
Line 1 is defined as 0.2 x error + 90 and line 2 is defined as 0.6 x error + 20. The rules
interpolate between the two lines in the region where the membership functions overlap

(Fig. 12). Outside of that region the output is a linear function of the error. This type of
model is used in neurofuzzy systems.

In order to train amodel to incorporate dynamics of atarget system, the input is aug-
mented with signals corresponding to past inputs « and outputs y. In the time discrete
domain the output of the model ™, with superscript * referring to the model and P to the
plant, is

Y4+ 1) =TP0), .. Pt —n+1)u(t), ..., ult —m+1)] (28)

Heref represents the nonlinear input-output map of the model (i.e. the approximation of
the target system f). Notice that the input to the model includes the past values of the plant
output y? and the plant input w.
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Figure 12: Interpolation between two lines (a), and overlap of rules (b).

6. Summary

In a fuzzy controller the data passes through a preprocessing block, a controller, and a
postprocessing block. Preprocessing consists of alinear or non-linear scaling aswell asa
guantisation in case the membership functions are discretised (vectors); if not, the mem-
bership of the input can just be looked up in an appropriate function. When designing the
rule base, the designer needs to consider the number of term sets, their shape, and their
overlap. The rules themselves must be determined by the designer, unless more advanced
means like self-organisation or neural networks are available. There is a choice between
multiplication and minimum in the activation. There is also a choice regarding defuzzifi-
cation; centre of gravity is probably most widely used. The postprocessing consists in a
scaling of the output. In case the controller isincremental, postprocessing also includes an
integration. The following is a checklist of design choices that have to be made:

O Rule base related choices. Number of inputs and outputs, rules, universes, continuous
/ discrete, the number of membership functions, their overlap and width, singleton
output;

O Inference engine related choices. Connectives, modifiers, activation operation, aggre-
gation operation, and accumulation operation.

O Defuzzification method. COG, COGS, BOA, MOM, LM, and RM.

O Pre- and post-processing. Scaling, gain factors, quantisation, and sampling time.

Some of these items must always be considered, others may not play arole in the par-
ticular design.

Theinput-output mappings provide an intuitive insight which may not be relevant from
atheoretical viewpoint, but in practice they are well worth using. The analysis represented
by plots is limited, though, to three dimensions. Various input-output mappings can be
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obtained by changing the fuzzy membership functions, and the chapter shows how to obtain
alinear mapping with only afew adjustments.
Thelinear fuzzy controller may be used in adesign procedure based on PID control:

Tune aPID controller.

Replace it with alinear fuzzy controller.
Transfer gains.

Make the fuzzy controller nonlinear.
Fine-tuneit.

gk wbdhpE

It seems sensible to start the controller design with acrisp PID controller, maybe even
just a P controller, and get the system stabilised. From there it is easier to go to fuzzy
control.
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Appendix A. Additive Rule Base (draft)

The input universes must be large enough for the inputs to stay within the limits (no saru-
ration). Each input family should contain a number of terms, designed such that the sum
of membership valuesfor each input is 1. This can be achieved when the setsare triangular
and cross their neighbour sets at the membership value ;. = 0.5; their peaks will thus be
equidistant. Any input value can thus be amember of at most two sets, and the membership
of eachisalinear function of theinput value. Take for example the rule base

1. If EisPosand CFE isPosthen v is s; (A-1)
2. If FisPosand CF isNegthen v is so
3. If EisNegand C'E isPosthen u is s3
4. If EisNegand CE isNegthen v issy

Assume both inputs, F and C'E, are defined on a standard universe [—100, 100] , that Pos
isatriangle with its peak at 100 and left base vertex in -100, and that Neg is atriangle with
its peak at -100 and right base vertex in 100. For thefirst rule in (A-1) the membership of
agiveninput valueof E in Posis up,,(E). The aggregation p, of thefirst ruleis

M1 = Hpos (E) A Hpos (CE) (A-Z)
where the symbol A denotes the fuzzy and operation.
The number of terms in each family determines the number of rules, as they must be the
and combination (outer product) of al terms to ensure completeness. The output sets
should preferably be singletons s; equal to the sum of the peak positions of the input sets.
The output sets may also be triangles, symmetric about their peaks, but singletons make
defuzzification smpler.
To ensure linearity, we must choose the algebraic product for the connective and. Using
theweighted average of rule contributionsfor the control signal (corresponding to centre of
gravity defuzzification, COG), the denominator does not affect the calculations, because
all firing strengths add up to 1.
What has been said can be generalised to input families with more than two input sets per
input, because only two input sets will be active at atime.
Proof. Additive rule base. Returning to the rule base (A-1), the contribution to the control
signal from thefirst ruleis

M1 *81 = Hpos (E) A NPOS(CE) * 81 (A'S)
= Hpos (E) * MPOS(CE) * 81 (A_4)
The combination of al contributions, using COG defuzzification is

u:u1*51+u2*32+u3*33+ﬂ4*84 (A-5)
Myt o + g+ iy
To keep the notation simple we will substitute
T = fipes(E) (A-6)
Yy = 1pos(CE) (A-7)
L=2 = fiyeg(B) (A-8)
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1- Yy = l”'Neg(CE) (A'g)
Observethat if we add thetermsfrom rule 1 and rule 3 in the denominator of (A-5), we get
prtps = zy+(1l-z)y (A-10)
=y (A-11)
This is because of the specia setup of the triangular membership functions. Similarly we
get
Bo+ s =1-y (A-12)
Therefore
p T g A pg g =1 (A-13)
That explains why the denominator in (A-5) vanishes. Its numerator N(FE, CE) is adif-
ferent story,
N(E,CE) = [ %81+ g * So + fig * 53+ 1y * Sa (A-14)
= zysitx(l—y)se+ (1 —x)yss+ (1 —x) (1 —y)ss (A-15)
Clearly x, y € [0, 1] sincethey arereally fuzzy membership functions, and (A-15) issimply
abilinear interpolation between the four scalars sy, . . ., s4. Since z isalinear function in
FE and y isalinear function in CE, the numerator N (E, C'E), and thereby the controller
output U,,, isabilinear functionin E and CE. When (x,y) = (1,1) al other terms but the
oneholding s; arezero, and when (z, y) = (1, 0) dl other termsbut the one holding s- are
zero, etc. Since (z,y) = (1,1) when (E, CE) = (100, 100) , then s; should be chosen to
be 200 in order to obtain the sought equivalence with the summation £/ + C'E. Therest of
the singletons should be chosen in asimilar way, yielding

(s1, 52, s3, s4) = (200, 0,0, —200)
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