Intelligenza Artificiale

Calcolo evolutivo

Marco Piastra

Evoluzione secondo Darwin

- Individui e popolazione
 - Un popolazione consiste di un insieme di individui diversificati
 - La ricombinazione (riproduttiva) di caratteristiche individuali che risultano più adatte all'ambiente tende a diventare prevalente nella popolazione

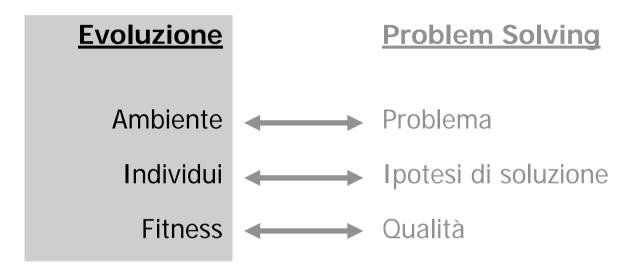
Gli individui sono le "unità di selezione"

- Ricombinazione e caso
 - Le variazioni casuali, dovute alle mutazioni spontanee, garantiscono una sorgente costante di diversità e preservano il potenziale evolutivo della popolazione

Le popolazioni sono le "unità di evoluzione"

- Si noti l'assenza di una supervisione esterna
 - l'evoluzione è una sorta di processo spontaneo

Evoluzione biologica come algoritmo



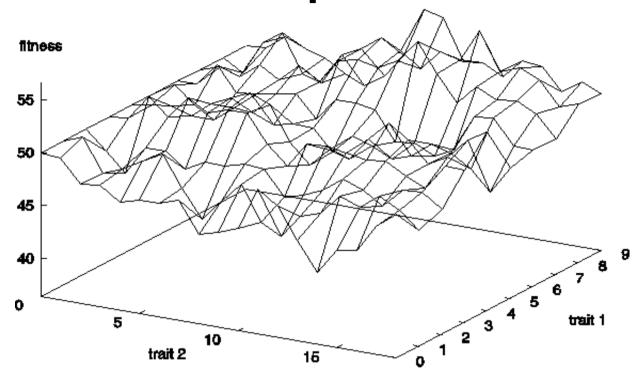
Analogie

- Fitness → possibilità di sopravvivenza e riproduzione
- Qualità → bontà della soluzione

Differenze

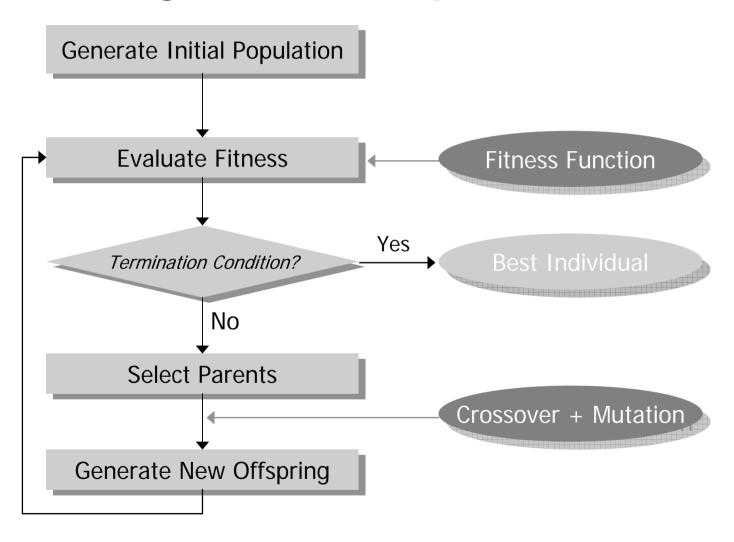
- Popolazione (di *individui*) → insieme di ipotesi di soluzione
- Processo evolutivo (della popolazione)
 - → migrazione progressiva della *popolazione* verso più alti livelli di **fitness**

EC – Fitness landscape

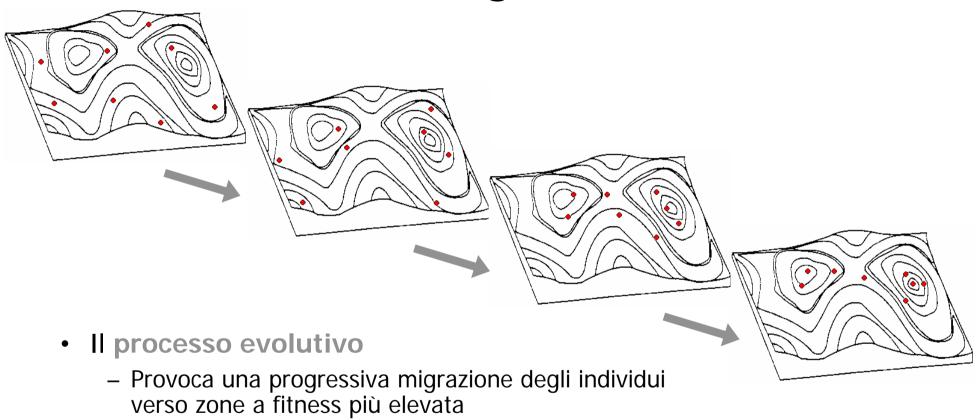


- Ambiente come 'fitness landscape'
 - Descritto dai valori della funzione di fitness in funzione delle caratteristiche delle possibili soluzioni (individui)
 - A ciascun individuo corrisponde un punto nel 'landscape'

Struttura generale del processo



Evoluzione come migrazione

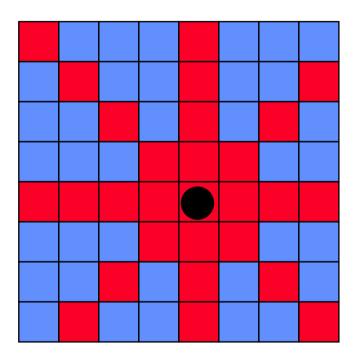


- Attenzione: è la popolazione che migra, non gli individui
 - EC vs. Learning

Cenni storici

- 1948, Turing:
 - propone la "genetical or evolutionary search"
- 1962, Bremermann
 - ottimizzazione tramite evoluzione e ricombinazione
- 1964, Rechenberg
 - introduce le evolution strategies
- 1965, L. Fogel, Owens and Walsh
 - introduce lo evolutionary programming
- 1975, Holland
 - introduce i genetic algorithms
- 1992, Koza
 - introduce il genetic programming

Esempio: le 8 regine



Problema

 Piazzare 8 regine su una scacchiera 8 x 8 in modo che nessuna possa attaccare l'altra

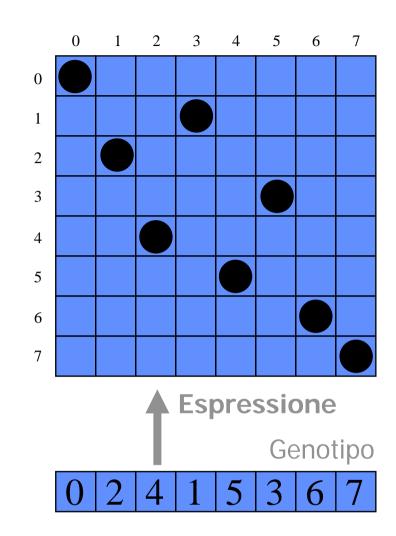
Genotipo e fenotipo

Fenotipo

- L'individuo completo che interagisce con l'ambiente
- Di cui si può valutare la fitness
 - In questo caso, una disposizione delle 8 regine sulla scacchiera

Genotipo

- II 'progetto genetico' dell'individuo
 - In questo caso, una sequenza di otto cifre, da 0 a 7
- Su cui agiscono gli operatori genetici



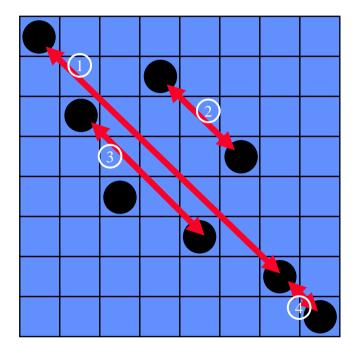
(Rappresentazione binaria)

000 010 100 001 101 011 110 111

Fitness

Problema

- Prevenire i possibili attacchi
- Penalità singola (di un'ipotesi di soluzione)
 - · Un possibile attacco di due regine
- Penalità complessiva
 - Somma di tutte le penalità singole



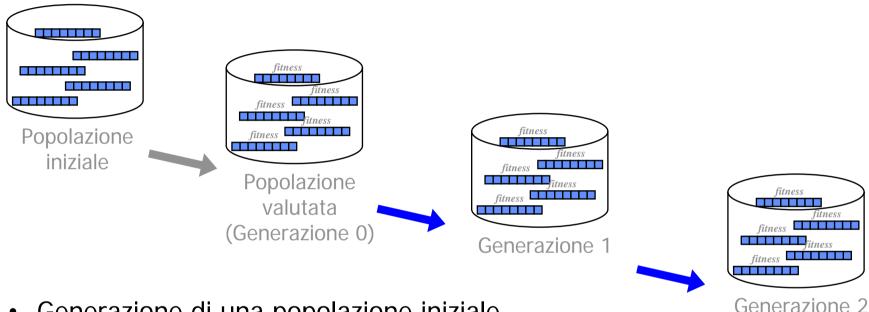
Fitness

- Di una possibile soluzione (individuo):
 f = 8 la penalità complessiva
 - Nel caso in figura, la fitness del genotipo è 4

fitness: 8 – 4 = 4

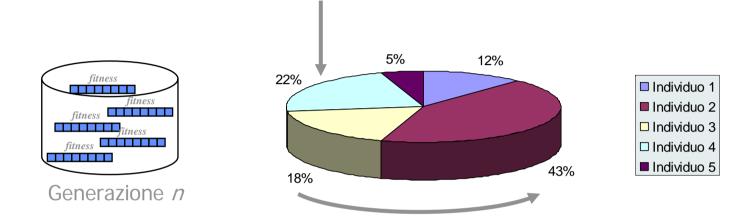
0 2 4 1 5 3 6 7

Popolazioni e generazioni



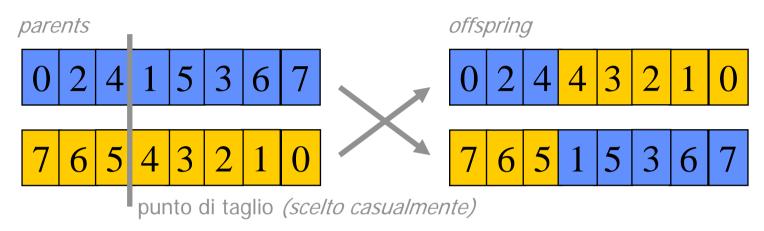
- Generazione di una popolazione iniziale
 - M permutazioni generate a caso (anche con duplicazioni)
- Valutazione della *fitness* di ciascun individuo
 - Si ottiene la generazione 0
- Attivazione del processo evolutivo
 - Produzione iterativa di ulteriori generazioni

Selezione

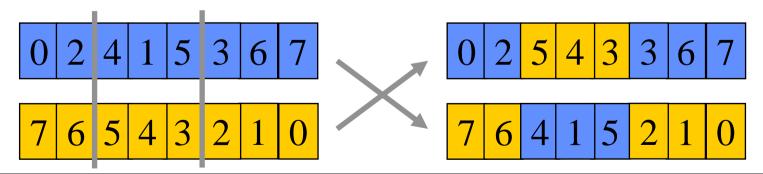


- Ruota della roulette (Roulette wheel)
 - A ciascun individuo si assegna un settore della roulette
 - L'ampiezza del settore è proporzionale alla fitness
 - Tipicamente, ampiezza \sim f / f_{avg}
 - Migliore è la *fitness*, più largo il settore
 - La probabilità di selezione è quindi più alta quanto migliore è la fitness

Ricombinazione (Crossover)



- Generazione di due nuovi individui a partire da due individui esistenti
 - Si seleziona un punto di crossover
 - Si incrociano le parti dei genotipi
 - Alternativa: due punti di taglio

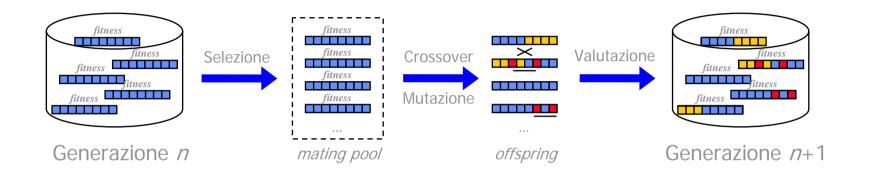


Mutazione

- Variazione casuale di un singolo individuo
 - alterazione di una cifra
 - Alternativa: inversione di due cifre

- Altra alternativa: ciascuna cifra viene mutata con probabilità $p_{\scriptscriptstyle m}$

Mating pool



Pseudo-algoritmo:

- 1) INPUT: Generazione *n* (di *M* individui)
- 2) Selezione di *M* individui (*roulette wheel*)
- 3) Per ciascuna coppia di individui (parents)
 - applicazione del $\mathit{crossover}$ con probabilità $p_{\mathbb{C}}$
 - applicazione della $\it mutazione$ (all' $\it offspring$) con probabilità $\it p_{\rm M}$
 - inserimento dei risultati nella Generazione n+1
- 4) Valutazione della Generazione *n*+1 (*fitness*)

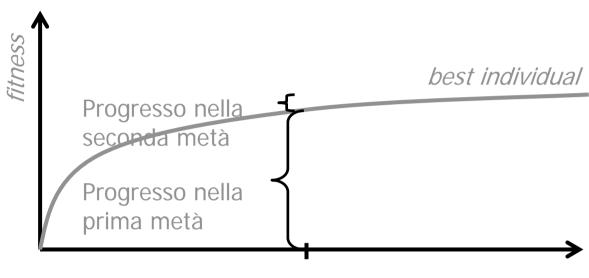
Processo evolutivo

- Un processo stocastico
 - Selezione casuale degli individui come *parents*
 - Identificazione casuale del punto di crossover
 - Applicazione casuale della mutazione all' offspring
- Cui si aggiunge un effetto 'deriva' causato dalla *fitness*
 - L'unico elemento condizionante è la selezione
 - Nella selezione si 'bilancia' il caso (*roulette*) ed il determinismo (*fitness*)
 - Si determina così una tendenza migratoria della popolazione verso i picchi del *fitness landscape*

Tipico andamento del processo evolutivo

- L'effetto 'deriva' produce un miglioramento progressivo
 - best fitness, cioè del miglior individuo della generazione
 - · migliora rapidamente
 - fitness media della generazione
 - migliora molto più lentamente
- Supervisione: fitness + criterio di terminazione
 - raramente, nella pratica, si ottiene un individuo ottimo

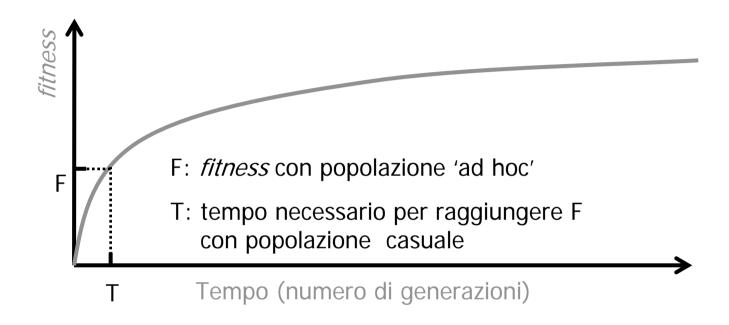
Condizioni di terminazione



Tempo (numero di generazioni)

- Quando non si trova un individuo ottimo
 - Attendere ulteriormente (aumento del numero di generazioni) non sempre porta miglioramenti significativi dei risultati

Popolazione iniziale



- In generale, la generazione *casuale* della popolazione iniziale è una buona scelta
 - L'iniziale miglioramento della fitness è rapido
 - Spesso lo sforzo di creare popolazioni iniziali più specifiche non è compensato da risultati apprezzabili

Varianti del calcolo evolutivo

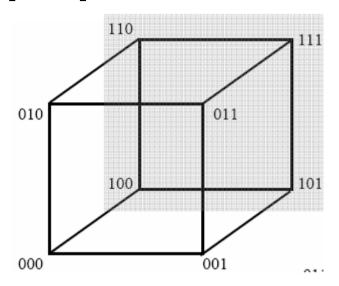
- Rappresentazione degli individui
 - · vettori di bit, di interi di numeri reali
 - grafi
 - alberi
 - dimensione fissa, limitata o variabile
- Operatori genetici
 - · mutazione, crossover
 - operatori speciali (dipendenti dalla rappresentazione)
- Metodi di selezione
 - Roulette (fitness proportionate)
 - Tournament
- Processo evolutivo
 - Generation-based
 - Steady state
- Fitness
 - scalare
 - multi-valore (multi-obiettivo)

Come funziona: schemi e iperpiani

- Spazi di ricerca
 - Si consideri una popolazione di stringhe binarie di lunghezza tre
 - Lo spazio di ricerca (tutti i possibili individui) può essere rappresentato come un cubo

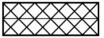
Schemi

- uno schema come "1**" descrive tutti gli individui aventi un 1 al primo posto
- vale a dire, un piano del cubo
- il piano complementare è "0**"



- Ordine degli schemi e generalizzazione
 - "1**" descrive un piano di ordine 1, mentre p.es. "*01" descrive un piano di ordine 2 (ordine = numero di bit definiti)
 - generalizzando, stringhe binarie di lunghezza qualsiasi corrispondono ad un ipercubo di pari dimensioni
 - ogni schema descrive un iperpiano

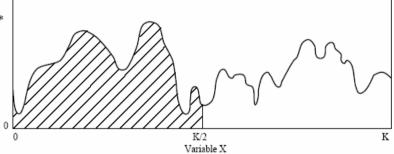
Schemi, campionamento e fitness

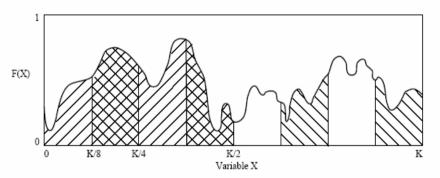


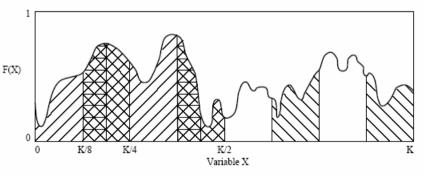
0*10*...*

F(X)

- Schemi e campionamento
 - Una popolazione contiene un campione di ciascuno schema
 - Si immagina che la ricerca avvenga su più iperpiani in parallelo
- Fitness di uno schema
 - E` il valor medio delle fitness del campione (i.e. tutti gli individui appartenenti all'iperpiano)
- Selezione
 - La strategia di selezione premia (con una maggiore presenza nel mating pool) i campioni a fitness più elevata







Campioni e selezione

Esempio

Schemata and Fitness Values										
Schema	Mean	Count	Expect	Obs		Schema	Mean	Count	Expect	Obs
101**	1.70	2	3.4	3		*0***	0.991	11	10.9	9
111**	1.70	2	3.4	4		00***	0.967	6	5.8	4
1*1**	1.70	4	6.8	7		0****	0.933	12	11.2	10
*01**	1.38	5	6.9	6		011**	0.900	3	2.7	4
1	1.30	10	13.0	14		010**	0.900	3	2.7	2
*11**	1.22	5	6.1	8		01***	0.900	6	5.4	6
11***	1.175	4	4.7	6		0*0**	0.833	6	5.0	3
001**	1.166	3	3.5	3		*10**	0.800	5	4.0	4
1****	1.089	9	9.8	11		000**	0.767	3	2.3	1
0*1**	1.033	6	6.2	7		**0**	0.727	11	8.0	7
10***	1.020	5	5.1	5		*00**	0.667	6	4.0	3
*1***	1.010	10	10.1	12		110**	0.650	2	1.3	2
****	1.000	21	21.0	21		1*0**	0.600	5	3.0	4
						100**	0.566	3	1.70	2

In generale

$$M(H, t + intermediate) = M(H, t) \frac{f(H, t)}{\bar{f}}$$

M(H, t) è la dimensione del campione dell'iperpiano H alla generazione t t + intermediate è la selezione (mating pool) f(H, t) è la fitness media del campione di H alla generazione t \bar{f} è la fitness media del campione

Crossover, mutazione e schemi

- Crossover e vulnerabilità degli schemi
 - Un crossover che 'taglia a metà' uno schema lo sconvolge
 - Schemi più lunghi sono quindi più vulnerabili
 - La *defining length* $\Delta(H)$ di uno schema è la distanza massima tra i bit definiti
 - △(H) di "**10****" è 2
 - ∠(H) di "**10*0**" è 4
 - △(H) di "1*10**0*" è 7
 - La probabilità che il crossover 'tagli' uno schema è quindi $p_c \frac{\Delta(H)}{L-1}$
 - dove L è la lunghezza degli individui e p_c la probabilità di occorrenza del crossover
- Mutazione e schemi
 - Detto o(H) l'ordine dello schema H (il numero di bit predefiniti)
 - La probabilità che lo schema sopravviva intatto è $(1-p_m)^{o(H)}$
 - dove p_m è la probabilità che uno dei bit definenti lo schema venga mutato (per comodità di definizione)

Schema Theorem (Holland, 1975)

- Probabilità e generazioni
 - Definita come P(H,t) la frequenza relativa dei campioni di H nella generazione t (i.e. una probabilità)
 - Il teorema stabilisce una relazione tra P(H,t) e P(H,t+1)

Frequenza relativa alla generazione t+1 $P(H,t+1) \geq P(H,t) \frac{f(H,t)}{\bar{f}} \left[1 - p_c \frac{\Delta(H)}{L-1} (1 - P(H,t) \frac{f(H,t)}{\bar{f}}) \right] (1 - p_m)^{o(H)}$ Probabilità di sopravvivenza a crossover e mutazione Proporzione attesa per la selezione Frequenza relativa alla generazione t

Caratteristiche del calcolo evolutivo

- Processo evolutivo
 - Convergente (nel senso di crescita degli schemi a fitness più alta)
 - data una ragionevole scelta di p_c e p_m
 - Non c'è garanzia di convergenza verso un ottimo globale
 - Esistono risultati più precisi dello Schema Theorem
 - Ma nessuno comporta la convergenza ad una soluzione
 - Metodo di ottimizzazione
 - Approssimato: manca la garanzia di convergenza
 - Anytime: in qualsiasi momento si può ottenere una soluzione approssimata
 - Robusto: poco influenzato dai massimi locali
- Operatori genetici ed individui
 - Gli schemi corti e compatti 'sopravvivono' meglio
 - Minore probabilità di 'taglio' da parte del crossover
 - Minore probabilità di sconvolgimento da parte della mutazione
 - Gli schemi devono avere una lunghezza sufficiente
 - Che permetta loro di esprimere un carattere significativo