Intelligenza Artificiale I

Logica del primo ordine: predicati e relazioni

Marco Piastra

Soluzione di un'equazione algebrica

$$x^{2} + ax + b = 0$$

$$x^{2} + 2(a/2)x + a^{2}/4 - a^{2}/4 + b = 0$$

$$(x + a/2)^{2} - a^{2}/4 + b = 0$$

$$(x + a/2)^{2} = a^{2}/4 - b$$

$$x = -a/2 \pm (a^{2}/4 - b)^{1/2}$$

Domande:

Quali sono le componenti del linguaggio usato nelle espressioni?

Qual'è la semantica (il significato) delle componenti del linguaggio?

Qual'è la relazione tra le formule nella sequenza ovvero, in base a quale principio siamo sicuri della *correttezza* dei passaggi?

Soluzione di un'equazione algebrica

$$x^{2} + ax + b = 0$$

$$x^{2} + 2(a/2)x + a^{2}/4 - a^{2}/4 + b = 0$$

$$(x + a/2)^{2} - a^{2}/4 + b = 0$$

$$(x + a/2)^{2} = a^{2}/4 - b$$

$$x = -a/2 \pm (a^{2}/4 - b)^{1/2}$$

Domande:

Quali sono le componenti del linguaggio usato nelle espressioni?

- Costanti (numeri e lettere): 2, 4, a, b
- Variabili : x
- Funzioni binarie: ^, +, ·, /, -
- Funzioni unarie: –
- Relazione binarie: =

Dubbio: che cos'è \pm ?

Possibile soluzione: riscrivere l'ultima riga usando un <u>connettivo</u> $(x = -a/2 + (a^2/4 - b)^{1/2}) \vee (x = -a/2 - (a^2/4 - b)^{1/2})$

Soluzione di un'equazione algebrica

$$x^{2} + ax + b = 0$$

$$x^{2} + 2(a/2)x + a^{2}/4 - a^{2}/4 + b = 0$$

$$(x + a/2)^{2} - a^{2}/4 + b = 0$$

$$(x + a/2)^{2} = a^{2}/4 - b$$

$$(x = -a/2 + (a^{2}/4 - b)^{1/2}) \lor (x = -a/2 - (a^{2}/4 - b)^{1/2})$$

Domande:

Quali sono le componenti del linguaggio usato nelle espressioni? Qual'è la semantica (il significato) delle componenti del linguaggio?

- Costanti (numeri e lettere): numeri reali
- Variabili: numeri reali
- Funzioni binarie: funzioni binarie definite sui numeri reali
- Funzioni unarie: funzioni binarie definite sui numeri reali
- Relazione binarie: relazioni binarie definite sui numeri reali
- Connettivi: come in logica proposizionale funzioni sui valori di verità

Soluzione di un'equazione algebrica

$$x^{2} + ax + b = 0$$

$$x^{2} + 2(a/2)x + a^{2}/4 - a^{2}/4 + b = 0$$

$$(x + a/2)^{2} - a^{2}/4 + b = 0$$

$$(x + a/2)^{2} = a^{2}/4 - b$$

$$(x = -a/2 + (a^{2}/4 - b)^{1/2}) \lor (x = -a/2 - (a^{2}/4 - b)^{1/2})$$

Domande:

Quali sono le componenti del linguaggio usato nelle espressioni? Qual'è la semantica (il significato) delle componenti del linguaggio?

Qual'è la relazione tra le formule nella sequenza ovvero, in base a quale principio siamo sicuri della correttezza dei passaggi?

- Le equazioni (formule ben formate) sono logicamente equivalenti
- Ciascun passaggio è giustificato da *formule valide* nell'ambito dei numeri reali

$$ax = 2(a/2)x + a^{2}/4 - a^{2}/4$$

$$x^{2} + 2(a/2)x + a^{2}/4 = (x + a/2)^{2}$$

$$(x - y + z = 0) \leftrightarrow (x = y - z)$$

$$(x^{2} = y) \leftrightarrow ((x = y^{1/2}) \lor (x = -y^{1/2}))$$

Relazioni e predicati

Semantica di

$$x = y^2$$

tutte le coppie di numeri reali che soddisfano <u>la relazione</u> descritta:

Predicati

La relazione può essere descritta in modo simbolico come

SquareOf/2

vale a dire un **predicato** binario.

Il predicato binario può essere definito nei termini di un altro predicato

$$\forall x \ \forall y \ (SquareOf(x, y) \leftrightarrow (x = power(y, 2))$$

La *semantica* del predicato è formata da tutte le coppie di numeri reali di cui sopra In logica del primo ordine si usano formule dove i predicati descrivono relazioni, nel senso che le relazioni sono la *semantica* dei predicati

Non necessariamente relazioni definite su un campo numerico ...

Logica del primo ordine

Strutture semantiche proposizionali (già viste)

Mondi possibili descritti tramite affermazioni atomiche

II mondo descritto da una struttura <{0,1}, P, v>

 $\{0,1\}$ è l'insieme dei valori di verità

Pè un'insieme di simboli proposizionali (segnatura)

v è una funzione: $P \rightarrow \{0,1\}$ che assegna valori di verità ai simboli proposizionali

Simboli proposizionali

Ciascuno indica una frase affermativa (proposizioni)

Per convezione usiamo i simboli A, B, C, D, ...

Mondi possibili

Possiamo considerare diverse strutture:

• • •

Notare che le strutture condividono i simboli P e l'insieme dei valori di verità $\{0,1\}$

Differiscono solo per le funzioni v: i valori di verità assegnati sono in generale diversi

Strutture semantiche del primo ordine

Mondi possibili fatti di oggetti, insiemi e relazioni

Il mondo descritto da una struttura $\langle \mathbf{U}, \Sigma, \nu \rangle$

U è un insieme di oggetti di base, detto anche *universo del discorso* o *dominio* (*domain*)

 Σ è un'insieme di simboli, detto *segnatura* (*signature*)

v è una *funzione* che definisce il significato dei simboli di Σ in relazione al dominio ${f U}$

Segnatura Σ

- costanti individuali: a, b, c, d, ...
- simboli funzionali: f/n, g/p, h/q, ...
- simboli predicativi (o relazionali): P/k, Q/l, R/m, ...

Strutture semantiche del primo ordine

Mondi possibili fatti di oggetti, insiemi e relazioni

Il mondo descritto da una struttura $\langle \mathbf{U}, \Sigma, \nu \rangle$

U è un insieme di oggetti di base, detto anche *universo del discorso* o *dominio* (*domain*)

 Σ è un'insieme di simboli, detto *segnatura* (*signature*)

v è una funzione che definisce il significato dei simboli di Σ in relazione al dominio ${f U}$

Termine

Ogni costante individuale è un termine

Se f è un simbolo funzionale a n argomenti e t_1, \ldots, t_n sono **termini**, allora $f(t_1, \ldots, t_n)$ è un **termine**

Atomo

Se P è un simbolo predicativo a n argomenti e t_1, \ldots, t_n sono **termini**, allora $P(t_1, \ldots, t_n)$ è un **atomo** o **formula atomica**

Strutture semantiche del primo ordine

Mondi possibili fatti di oggetti, insiemi e relazioni

Il mondo descritto da una struttura $\langle \mathbf{U}, \Sigma, \nu \rangle$

U è un insieme di oggetti di base, detto anche *universo del discorso* o *dominio* (*domain*)

 Σ è un'insieme di simboli, detto *segnatura* (*signature*)

v è una *funzione* che un significato ai simboli di Σ in relazione al dominio ${f U}$

Funzione *v* (interpretazione)

- L'interpretazione di una costante individuale è un oggetto di \mathbf{U} $v(a) = obj \in \mathbf{U}$ (a costante individuale)
- L'interpretazione di un *simbolo funzionale* è una *funzione* definita su \mathbf{U} $v(f/n) = fun : \mathbf{U}^n \to \mathbf{U}$ (f simbolo <u>funzionale</u> avente arità n)
- L'interpretazione di un *simbolo predicativo* è una *relazione* definita su \mathbf{U} $v(P/m) = rel \subseteq \mathbf{U}^m \ (P \text{ simbolo predicativo} \text{ avente arità } m)$

Ditelo con gli atomi

• Esempio di struttura $\langle \mathbf{U}, \Sigma, \nu \rangle$

Dominio U

Insieme di <u>oggetti</u>: { <u>a</u>, <u>b</u>, <u>c</u>, <u>d</u>, <u>e</u>, <u>green</u>, <u>orange</u>, <u>red</u>, <u>rose</u>, <u>violet</u> }

Costanti individuali: a, b, c, d, e, green, orange, red, rose, violet

Simboli funzionali: colorOf/1

Simboli predicativi: *Pyramid/*1, *Parallelepiped/*1, *Sphere/*1, *Ontable/*1, *Clear/*1, *Above/*2, =/2

Una struttura $\langle \mathbf{U}, \Sigma, v \rangle$ soddisfa un insieme di atomi

Esempio: appartenenza a insiemi

$$<$$
U, Σ , $v>$ \models $Pyramid(a)$
 $Parallelepiped(b)$, $Parallelepiped(c)$, $Parallelepiped(e)$
 $Sphere(d)$
 $Ontable(c)$, $Ontable(e)$
 $Clear(a)$, $Clear(d)$

Valori di funzioni

$$\langle \mathbf{U}, \Sigma, v \rangle \models (colorOf(a) = green), (colorOf(b) = orange), (colorOf(c) = red), (colorOf(d) = rose)$$

Relazioni

 $\langle \mathbf{U}, \Sigma, v \rangle \models Above(a,b), Above(b,c), Above(a,c), Above(d,e)$

e

Non confondere gli <u>oggetti</u> di **U**

con i simboli di Σ

Ditelo con gli atomi

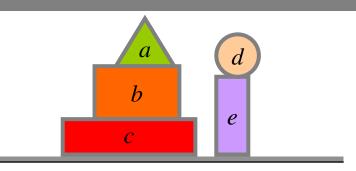
Diverse interpretazioni, stessa segnatura Σ e dominio ${f U}$

Le diverse interpretazioni soddisfano atomi diversi

- $<\mathbf{U}, \Sigma, v_2> \models Parallelepiped(a), Parallelepiped(b), Parallelepiped(c), Sphere(d), Pyramid(e),\\ (color Of(a) = red), (color Of(b) = violet), (color Of(c) = pink),\\ (color Of(d) = green), (color Of(e) = orange)\\ Ontable(a), Ontable(c), Ontable(e), Clear(a), Clear(b), Clear(d)\\ Above(b,c), Above(d,e) \\ \end{matrix}$
- <U, Σ , $v_3>$ \models Pyramid(a), Parallelepiped(b), Parallelepiped(c), Parallelepiped(e) Sphere(d) (colorOf(a) = green), (colorOf(b) = orange), (colorOf(c) = red), (colorOf(d) = rose), (colorOf(e) = violet) Ontable(c), Ontable(e), Clear(a), Clear(d)Above(a,b), Above(b,c), Above(a,c), Above(d,e)

Astrazione: variabili e quantificatori

(semantica intuitiva, per ora)



- Proprietà di carattere generale
 - $\neg \forall x \exists y (Above(x,y))$
 - $\neg \forall y \exists x (Above(x,y))$
- Definizioni di nuovi predicati

$$\forall x \forall y (On(x,y) \leftrightarrow (Above(x,y) \land \neg \exists z (Above(x,z) \land Above(z,y)))$$

$$\forall x (Ontable(x) \leftrightarrow \neg \exists z \, Above(x,z))$$

$$\forall x (Clear(x) \leftrightarrow \neg \exists z \ Above(z,x))$$

Astrazione: variabili e quantificatori

"Essere fratelli significa essere parenti"

$$\forall x \forall y (Fratello(x, y) \rightarrow Parente(x, y))$$

"La relazione di parentela è simmetrica"

```
\forall x \forall y \ (Parente(x,y) \leftrightarrow Parente(y,x))
```

"Una madre è un genitore di sesso femminile"

$$\forall x \forall y (Madre(x, y) \leftrightarrow (Genitore(x, y) \land Femmina(x)))$$

"Un cugino è figlio di un fratello o una sorella di uno dei genitori"

$$\forall x \forall y (Cugino(x, y))$$

$$\leftrightarrow \exists z \exists w \ (Genitore(z, x) \land Genitore(w, y) \land (Fratello(z, w) \lor Sorella(z, w))))$$

"Ciascuno ha una madre"

$$\forall x \exists y \, Madre(y, x)$$

Occorre fare attenzione all'ordine dei quantificatori:

$$\exists y \forall x \, Madre(y, x)$$

"Esiste una madre di tutti"

L'ordine dei quantificatori non può essere modificato senza alterare il significato

Linguaggio di L_{PO}

• Simboli del linguaggio L_{PO}

```
Costanti individuali (Indicate come: a, b, c, ...)
    Esempi: 1, 2000, Socrate, Sfera1, MickeyMouse, Amelia, ...
Variabili (Indicate come: x, y, z, ...)
Simboli funzionali con numero di argomenti prestabilito (arità)
  Indicati come: f/n, g/m, h/p, ...
    Esempi: sqrt/1, colorOf/1, greatestCommonDivisor/2
Simboli predicativi con numero di argomenti prestabilito (arità)
  Indicati come: P/n, Q/m, R/p, ...
    Esempi: Red/1, Large/1, GreaterThan/2, =/2
Connettivi
  Gli stessi della logica proposizionale: \neg, \rightarrow, \wedge, \vee, \leftrightarrow
Quantificatori
```

 \forall (universale), \exists (esistenziale)

Linguaggio di L_{PO}

Termini

Ogni variabile o costante individuale è un termine

Se f è un simbolo funzionale a n argomenti e t_1, \ldots, t_n sono **termini**, allora $f(t_1, \ldots, t_n)$ è un **termine**

Un termine **base** (*ground*) non contiene variabili

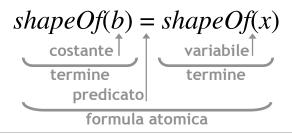
Atomo o formula atomica

Se P è un simbolo predicativo a n argomenti e t_1, \ldots, t_n sono **termini**, allora $P(t_1, \ldots, t_n)$ è un **atomo** o **formula atomica**Un atomo **base** (ground) non contiene variabili

Esempi: Sorella(Amelia, Alba)

predicato costante termine termine

formula atomica



Linguaggio di L_{PO}

Regole di buona formazione

Ogni formula atomica è una fbf

$$\begin{split} \varphi &\in \mathrm{fbf}(L_{PO}) \ \Rightarrow \ (\neg \varphi) \in \mathrm{fbf}(L_{PO}) \\ \varphi, \psi &\in \mathrm{fbf}(L_{PO}) \ \Rightarrow \ (\varphi \to \psi) \in \mathrm{fbf}(L_{PO}) \\ \varphi &\in \mathrm{fbf}(L_{PO}) \ \Rightarrow \ (\forall x \, \varphi) \in \mathrm{fbf}(L_{PO}) \\ \varphi, \psi &\in \mathrm{fbf}(L_{PO}), \qquad (\varphi \lor \psi) \ \Leftrightarrow \ ((\neg \varphi) \to \psi) \\ \varphi, \psi &\in \mathrm{fbf}(L_{PO}), \qquad (\varphi \land \psi) \ \Leftrightarrow \ (\neg (\varphi \to (\neg \psi))) \\ \varphi, \psi &\in \mathrm{fbf}(L_{PO}), \qquad (\varphi \leftrightarrow \psi) \ \Leftrightarrow \ ((\varphi \to \psi) \land (\psi \to \varphi)) \\ \varphi &\in \mathrm{fbf}(L_{PO}) \qquad (\exists x \, \varphi) \Leftrightarrow \ (\neg \forall x \, \neg \varphi) \end{split}$$

Si dice linguaggio **del primo ordine** in quanto i quantificatori agiscono solo sugli **oggetti**, vale a dire sulle variabili x, y, z ..., e non sulle **relazioni** e **funzioni** (In una logica del secondo ordine si hanno formule del tipo: $\exists F F(a,b)$)

Formule aperte, enunciati

Variabili libere e vincolate

Una variabile (in una fbf) è **vincolata** se si trova nel raggio di azione di un **quantificatore** per quella variabile

Una variabile è **libera** se non è *vincolata*

```
esempi di variabile vincolata: \forall x \ P(x) \exists x \ (P(x) \rightarrow (A(x) \land B(x)) esempi di variabile libera: P(x) \exists y \ (P(y) \rightarrow (A(x,y) \land B(y)))
```

Formule aperte e chiuse

Una fbf è aperta se in essa vi è almeno una variabile libera

Una fbf è chiusa (anche enunciato - sentence) in caso contrario

Solo le fbf *chiuse*, cioè gli *enunciati*, hanno un valore di verità (vedi oltre) (in quanto rappresentano delle *affermazioni* ...)

Strutture, interpretazioni e assegnazioni

■ Una struttura <U, v> per L_{PO} contiene:

Un insieme di oggetti U (l'universo del discorso)

Si omette da ora in poi il riferimento a Σ

Un'interpretazione v che associa

ad ogni costante c un oggetto di \mathbf{U}

 $v(c) \in \mathbf{U}$

ad ogni **predicato** P a n argomenti una **relazione** n-aria in \mathbf{U}^n $v(P) \subseteq \mathbf{U}^n$

ad ogni **funzione** f a n argomenti una **funzione** da \mathbf{U}^n a \mathbf{U} $v(f) \in \mathbf{U}^n \to \mathbf{U}$

La funzione v non assegna un significato alle variabili

Assegnazione

Data una struttura $\langle \mathbf{U}, v \rangle$, un'assegnazione (valuation) s

è una funzione che associa ad ogni variabile x un oggetto di \mathbf{U} $s(x) \in \mathbf{U}$

La combinazione di una <U, v> e di una s determina univocamente gli oggetti associati a ciascun elemento di L_{PO}

Soddisfacimento

■ Data una struttura $\langle \mathbf{U}, v \rangle$ un'assegnazione s

Se
$$\varphi$$
 è una formula atomica, $\langle \mathbf{U}, v \rangle [s] \models \varphi$ sse se φ ha la forma $P(t_1, ..., t_n)$ allora $\langle v(t_1)[s], ..., v(t_n)[s] \rangle \in v(P)[s]$

L'assegnazione s serve a poter definire una semantica anche per le fbf aperte

Se φ e ψ sono fbf qualsiasi

$$<$$
U, $v > [s] \models (\neg \varphi)$ sse $<$ U, $v > [s] \not\models \varphi$
 $<$ U, $v > [s] \models (\varphi \land \psi)$ sse $<$ U, $v > [s] \models \varphi$ e $<$ U, $v > [s] \models \psi$
 $<$ U, $v > [s] \models (\varphi \lor \psi)$ sse $<$ U, $v > [s] \models \varphi$ o $<$ U, $v > [s] \models \psi$
 $<$ U, $v > [s] \models (\varphi \rightarrow \psi)$ allora non $<$ U, $v > [s] \models \varphi$ o $<$ U, $v > [s] \not\models \psi$

Formule con quantificatori

$$<$$
U, $v>[s] \models \forall x \varphi$ sse per ogni $\underline{d} \in \mathbf{U}$ si ha $<$ **U**, $v>[s](x:\underline{d}) \models \varphi$ $<$ **U**, $v>[s] \models \exists x \varphi$ sse esiste un $\underline{d} \in \mathbf{U}$ per cui si ha $<$ **U**, $v>[s](x:\underline{d}) \models \varphi$

Modelli

Validità in un'interpretazione, modello

Una fbf φ tale per cui si ha $\langle \mathbf{U}, v \rangle [s] \models \varphi$ per qualsiasi assegnazione s è detta **valida** in $\langle \mathbf{U}, v \rangle$

Si dice anche che <U, v> è un **modello** di φ si scrive <U, v> $\models \varphi$ (si elimina il riferimento a s)

Una struttura <U, v> è detta **modello** di un *insieme di fbf* Γ sse è un modello di tutte le fbf in Γ

si scrive allora $\langle \mathbf{U}, v \rangle \models \Gamma$

Verità

Un enunciato ψ si dice vero in $\langle \mathbf{U}, v \rangle$ se è valido in $\langle \mathbf{U}, v \rangle$

Validità

Validità e verità logiche

```
Una fbf (aperta o chiusa) è valida (o logicamente valida) se è valida in qualsiasi < U, v> Esempi: (P(x) \lor \neg P(x)) (tautologia proposizionale tradotta in formula aperta) Un enunciato \psi è vero (o logicamente vero) se è vero in qualsiasi < U, v> si scrive allora \models \psi (si elimina il riferimento a < U, v>) Esempi: \forall x (P(x) \lor \neg P(x)) (generalizzazione di una tautologia) \forall x \forall y (G(x,y) \to (H(x,y) \to G(x,y))) (generalizzazione di assioma – vedi oltre)
```

Inconsistenza

Una fbf (aperta o chiusa) è **inconsistente** se non è soddisfacibile Un enunciato ψ è **inconsistente** se non ha un *modello*

Esempi:

$$\forall x (P(x) \land \neg P(x))$$

(generalizzazione di una contraddizione)

Conseguenza logica

Definizione

Dato un insieme di fbf Γ ed una fbf φ di L_{PO} si ha

$$\Gamma \models \varphi$$

sse tutte le $\langle U, v \rangle$ [s] che soddisfano Γ soddisfano anche φ

Osservazioni

La definizione si estende a tutte le possibili $\langle \mathbf{U}, v \rangle [s]$

Quindi, a tutti i possibili insiemi U, alle relazioni e funzioni in U ed alle associazioni di oggetti di U a variabili e costanti

Il calcolo diretto della conseguenza logica in L_{PO} è impossibile anche nelle forme più semplici

*Ditelo con le funzioni o con i predicati?

Semanticamente, funzioni e predicati sono molto simili: si può fare a meno delle funzioni?

 Le funzioni si possono rappresentare anche tramite predicati ad esempio, la validità dell'enunciato:

$$\forall x \forall y \forall z \ ((\varphi(x,y) \land \varphi(x,z)) \rightarrow (y=z))$$
 indica che l'interpretazione di $\varphi(..)$ (in generale, una relazione $v(\varphi) \subseteq \mathbf{U}^2$) è anche una funzione $\mathbf{U} \rightarrow \mathbf{U}$

Ma solo le funzioni si possono nidificare

La presenza delle funzioni arricchisce il linguaggio in modo sostanziale: a differenza dei predicati, le funzioni si possono nidificare (nei termini)

Di conseguenza, viene grandemente aumentata la portata del calcolo logico-simbolico (con un corrispondente aumento della complessità di calcolo ...)

*Many-sorted or nil (dedicato agli informatici)

Tornando alla segnatura dell'esempio mondo dei blocchi

 $green, \ colorOf(green), \ colorOf(colorOf(green)), \ colorOf(colorOf(green))), \ \dots$

Sono tutti termini sintatticamente corretti, in base alla definizione.

Peccato che, intuitivamente, non abbiano senso: un colore non è un oggetto ...

Per le applicazioni pratiche, le segnature dovrebbero avere un *tipo* (*sort*)

Per descrivere un dominio che contiene oggetti di tipo diverso (segnatura many-sorted)

Il tipo si applica alle costanti ed agli argomenti di simboli funzionali e predicativi *Complicazione notevole*: si riflette in tutte le definizioni sintattiche e semantiche

Comodità del *nil*

Una costante particolare: nil

cui corrisponde un interpretazione (canonica) di un non-oggetto

In questo modo, funzioni e relazioni possono essere definite in modo parziale:

 $(colorOf(a) = green) \land (colorOf(green) = nil)$

 $Above(a,b) \land Above(c,nil)$

Possono essere fbf vere in una struttura

In questo modo, si evita l'uso esplicito del tipo