Intelligenza Artificiale

Logica proposizionale: calcolo simbolico

Marco Piastra

Parte 2

Calcolo logico
Assiomi
Derivazioni
Derivazioni e conseguenza logica
Completezza

Conseguenza, decidibilità

- Una fbf φ è conseguenza logica di un insieme di fbf Γ sse qualsiasi modello di Γ è anche modello di φ
 - Si scrive anche:

$$\Gamma \models \varphi$$

 Una logica formale è decidibile se esiste una procedura effettiva per stabilire se:

$$\Gamma \models \varphi$$

- Per *procedura effettiva* si intende un algoritmo che fornisce la risposta corretta in ogni caso
- L_P è decidibile
 - Basta usare il metodo delle tavole di verità (= 2^n prove)
 - Esistono altri metodi?

Fatti, regole e procedure

- Esempio: "La macchina non parte"
 - Codifica:

```
C = "La batteria è carica" 
 L = "Le luci si accendono"
A = "L'autoradio funziona"
M = "Il motorino d'avviamento gira" G = "Il motorino d'avviamento è guasto"
```

P = "Il motore parte"

– Regole:

```
r_1: \neg C \to (\neg L \land \neg A \land \neg M)
r_2: G \rightarrow \neg M

r_3: \neg M \rightarrow \neg P
```

- Cosa accade se:
 - (utilizzando lo schema $\varphi \to \psi, \varphi \models \psi$ visto in precedenza)

```
\neg C applicando r_1 si ottiene: \neg L \land \neg A \land \neg M
```

G applicando r_2 si ottiene: $\neg M$ applicando r_3 si ottiene: $\neg P$

Assiomi

- Gli assiomi (di una logica) sono fbf che ne riassumono le caratteristiche
 - Descrivono (in forma compatta) gli schemi di ragionamento
 - Costituiscono un punto di partenza
- *Schemi di assioma* per L_p :

$$\begin{array}{ll} -\varphi, \psi, \chi \in \mathrm{fbf}(L_P) \\ \mathrm{Ax1} & \varphi \to (\psi \to \varphi) \\ \mathrm{Ax2} & (\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi)) \\ \mathrm{Ax3} & (\neg \varphi \to \neg \psi) \to (\psi \to \varphi) \end{array}$$

- Ogni sostituzione delle variabili in Ax1, Ax2, Ax3 con una fbf è un assioma
- Gli schemi di assioma sono tautologie, così come ogni singola sostituzione
- Esempi di fbf ottenute per sostituzione:

$$A \to (\neg A \to A)$$
 [Ax1: φ/A , $\psi/\neg A$]
 $(\neg (B \lor C) \to \neg D) \to (D \to (B \lor C))$ [Ax3: $\varphi/(B \lor C)$, ψ/D]

Regole di inferenza

- Si rammenti lo schema $\varphi \to \psi$, $\varphi \models \psi$, di validità generale
- In una logica formale, il calcolo (simbolico) si basa regole di **derivazione** (o di **inferenza**) che operano sulle <u>fbf</u>
 - Vale a dire sul linguaggio, non sui valori di verità
- In L_P si ha <u>una sola</u> regola di derivazione

- Modus Ponens (MP):
$$\varphi \to \psi$$
 φ ψ

– Si scrive anche così:

$$\varphi \to \psi$$
, $\varphi \vdash \psi$ (da $\varphi \to \psi$ e φ è *derivabile* ψ – attenti alla notazione!)

- Ogni fbf derivata tramite MP da due tautologie è una tautologia
- Qualsiasi fbf derivata tramite MP dagli assiomi Ax_1 , Ax_2 , Ax_3 è una tautologia

Derivazioni (o dimostrazioni)

- Una *dimostrazione* (o *derivazione*) di una fbf φ da un insieme di fbf Γ
 - E` una successione *finita* di passi $<\alpha_1, \alpha_2, ..., \alpha_n>$
 - Ciascun passo α_i può essere di tre tipi:
 - 1) Si ricava una fbf per sostituzione da uno degli assiomi Ax,
 - 2) Si importa una fbf presente nelle ipotesi Γ
 - 3) Si ottiene una nuova fbf dalle fbf ai passi precedenti, tramite *Modus Ponens*
 - Nel passo finale, si ottiene la formula da dimostrare: $\alpha_n = \varphi$
 - In generale, si scrive allora $\Gamma \vdash \varphi$ " φ è derivabile da Γ "
 - La dimostrazione non è necessariamente unica (anzi)
 - Notare che:

```
\vdash Axn (un assioma, o sostituzione, è derivabile anche da un \Gamma vuoto)
\Gamma \models Axn (un assioma, o sostituzione, è derivabile da qualsiasi \Gamma)
\{\varphi, ...\} \models \varphi (qualsiasi \varphi è derivabile da un \Gamma che già la contiene)
\Gamma \models \varphi \implies \Gamma \cup \Delta \models \varphi (monotonia sintattica)
```

Derivazioni, esempio

Il problema visto in precedenza ("Giorgio è contento")

$$B \lor D \lor \neg (A \land C), B \lor C, A \lor D, \neg B \vdash D$$

Nella versione riscritta usando ¬ e →

$$C \to (\neg B \to (A \to D)), \ \neg B \to C, \neg A \to D, \ \neg B \vdash D$$

Per comodità

$$\Gamma \vdash D$$

Qualsiasi fbf implica se stessa

$$\vdash \varphi \rightarrow \varphi$$

$$1: \vdash (\varphi \to ((\varphi \to \varphi) \to \varphi)) \to ((\varphi \to (\varphi \to \varphi)) \to (\varphi \to \varphi))$$

$$2: \vdash (\varphi \to ((\varphi \to \varphi) \to \varphi))$$

$$3: \vdash (\varphi \to (\varphi \to \varphi)) \to (\varphi \to \varphi)$$

$$4: \vdash (\varphi \to (\varphi \to \varphi))$$

$$5: \vdash \varphi \to \varphi$$

$$(Ax2)$$

$$(Ax1)$$

$$(MP 1,2)$$

$$(Ax1)$$

$$(MP 3,4)$$

Teorema di deduzione

$$\Gamma \cup \{\varphi\} \models \psi \quad \Leftrightarrow \quad \Gamma \models \varphi \rightarrow \psi$$

- Perché:
 - Sia $\alpha_1, \alpha_2, \dots, \alpha_{n-1}, \psi$ una derivazione di ψ da $\Gamma \cup \{\varphi\}$
 - Per α_1 sono dati due casi:
 - a) $\alpha_1 \in \Gamma$ oppure α_1 è ottenuto da un assioma Usando Ax1, $\Gamma \vdash \alpha_1 \rightarrow (\varphi \rightarrow \alpha_1)$ ma anche $\Gamma \vdash \alpha_1$ e quindi $\Gamma \vdash \varphi \rightarrow \alpha_1$
 - b) $\alpha_1 = \varphi$ Per il Teorema 0, $\vdash \varphi \rightarrow \varphi$ e quindi $\Gamma \vdash \varphi \rightarrow \alpha_1$
 - Per α_n , assumendo che la tesi valga per α_{n-1} , sono dati ancora due casi:
 - $\alpha_j \in \Gamma$ oppure α_j è ottenuto da un assioma oppure $\alpha_j = \varphi$ Vedi il caso di α_1
 - α_j è ottenuto per MP da due passi precedenti α_i e $\alpha_i \rightarrow \alpha_j$ Se la tesi vale fino a n-1, allora si ha $\Gamma \vdash \varphi \rightarrow \alpha_i$ e $\Gamma \vdash \varphi \rightarrow (\alpha_i \rightarrow \alpha_j)$ Usando Ax2, $\vdash (\varphi \rightarrow (\alpha_i \rightarrow \alpha_j)) \rightarrow ((\varphi \rightarrow \alpha_i) \rightarrow (\varphi \rightarrow \alpha_j))$ ed applicando due volte il MP si ottiene $\Gamma \vdash \varphi \rightarrow \alpha_j$

L'ordine delle ipotesi non è rilevante

$$\vdash (\varphi \to (\psi \to \chi)) \to (\psi \to (\varphi \to \chi))$$

1:
$$(\varphi \to (\psi \to \chi)), \psi, \varphi \vdash (\varphi \to (\psi \to \chi))$$

2: $(\varphi \to (\psi \to \chi)), \psi, \varphi \vdash \varphi$
3: $(\varphi \to (\psi \to \chi)), \psi, \varphi \vdash \psi \to \chi$ (MP 1,2)
4: $(\varphi \to (\psi \to \chi)), \psi, \varphi \vdash \chi$ (MP 3,4)
6: $(\varphi \to (\psi \to \chi)), \psi \vdash \varphi \to \chi$ (Ded)
7: $(\varphi \to (\psi \to \chi)) \vdash \psi \to (\varphi \to \chi)$ (Ded)
8: $\vdash (\varphi \to (\psi \to \chi)) \to (\psi \to (\varphi \to \chi))$ (Ded)

Doppia negazione implica affermazione

$$\vdash \neg \neg \varphi \rightarrow \varphi$$

• Una regola è falsa se la premessa è vera e la conseguenza non lo è

$$\vdash \varphi \to (\neg \psi \to \neg (\varphi \to \psi))$$

1:
$$\varphi$$
, $(\varphi \to \psi) \vdash \psi$ (Regola MP)
2: $\varphi \vdash (\varphi \to \psi) \to \psi$ (Ded)
3: $\varphi \vdash ((\varphi \to \psi) \to \psi) \to (\neg \psi \to \neg (\varphi \to \psi))$ (Ax3)
4: $\varphi \vdash \neg \psi \to \neg (\varphi \to \psi)$ (MP 3,2)
5: $\vdash \varphi \to (\neg \psi \to \neg (\varphi \to \psi))$ (Ded)

• Da un assurdo si deriva qualsiasi cosa ("*Ex absurdo sequitur quodlibet*"): $\vdash \varphi \rightarrow (\neg \varphi \rightarrow \psi)$ (vale a dire $\varphi, \neg \varphi \vdash \psi$)

1:
$$\varphi, \neg \varphi \vdash \neg \varphi \rightarrow (\neg \psi \rightarrow \neg \varphi)$$
 (Ax1)
2: $\varphi, \neg \varphi \vdash \neg \varphi$
3: $\varphi, \neg \varphi \vdash \neg \psi \rightarrow \neg \varphi$ (MP 1,2)
4: $\varphi, \neg \varphi \vdash (\neg \psi \rightarrow \neg \varphi) \rightarrow (\varphi \rightarrow \psi)$ (Ax3)
5: $\varphi, \neg \varphi \vdash \varphi \rightarrow \psi$ (MP 4,3)
6: $\varphi, \neg \varphi \vdash \varphi$
7: $\varphi, \neg \varphi \vdash \psi$ (MP 5,6)
8: $\varphi \vdash \neg \varphi \rightarrow \psi$ (Ded)
9: $\vdash \varphi \rightarrow (\neg \varphi \rightarrow \psi)$ (Ded)

Se la falsità implica una contraddizione, allora dev'esser vero:

$$\vdash (\neg \varphi \rightarrow \varphi) \rightarrow \varphi$$

Regola di risoluzione (il risultato cercato per il primo esempio):

$$\vdash (\neg \varphi \rightarrow \psi) \rightarrow ((\varphi \rightarrow \psi) \rightarrow \psi)$$

1:
$$(\neg \varphi \rightarrow \psi), (\varphi \rightarrow \psi) \vdash (\neg \varphi \rightarrow \psi)$$

2: $(\neg \varphi \rightarrow \psi), (\varphi \rightarrow \psi) \vdash (\neg \varphi \rightarrow \psi) \rightarrow (\neg \psi \rightarrow \varphi)$
3: $(\neg \varphi \rightarrow \psi), (\varphi \rightarrow \psi) \vdash (\neg \psi \rightarrow \varphi)$
4: $(\neg \varphi \rightarrow \psi), (\varphi \rightarrow \psi), \neg \psi \vdash \varphi$
5: $(\neg \varphi \rightarrow \psi), (\varphi \rightarrow \psi), \neg \psi \vdash \psi$
6: $(\neg \varphi \rightarrow \psi), (\varphi \rightarrow \psi), \neg \psi \vdash \psi$
7: $(\neg \varphi \rightarrow \psi), (\varphi \rightarrow \psi) \vdash (\neg \psi \rightarrow \psi)$
8: $(\neg \varphi \rightarrow \psi), (\varphi \rightarrow \psi) \vdash ((\neg \psi \rightarrow \psi) \rightarrow \psi)$
9: $(\neg \varphi \rightarrow \psi), (\varphi \rightarrow \psi) \vdash \psi$
10: $(\neg \varphi \rightarrow \psi) \vdash ((\varphi \rightarrow \psi) \rightarrow \psi)$
11: $\vdash (\neg \varphi \rightarrow \psi) \rightarrow ((\varphi \rightarrow \psi) \rightarrow \psi)$
11: $\vdash (\neg \varphi \rightarrow \psi) \rightarrow ((\varphi \rightarrow \psi) \rightarrow \psi)$
(Ax3)
(MP 1,2)
(Ded)
(Teorema 5)

Proprietà delle derivazioni

- Monotonia sintattica
 - Dati $\Gamma \in \Delta$, se $\Gamma \vdash \varphi$ allora $\Gamma \cup \Delta \vdash \varphi$
 - Qualsiasi derivazione di φ da Γ rimane valida anche estendendo Γ
- Compattezza sintattica
 - Se $\Gamma \vdash \varphi$ allora esiste un insieme Σ finito, con $\Sigma \subseteq \Gamma$, per cui $\Sigma \vdash \varphi$
 - Una derivazione di φ da Γ prevede un numero *finito* di passi, quindi può coinvolgere al più un numero *finito* di fbf in Γ
- Transitività
 - $\quad \text{Se per ogni } \varphi \in \Sigma \text{ si ha che } \Gamma \models \varphi \ \text{ e } \Sigma \models \psi \ \text{ allora } \Gamma \models \psi$
 - Basta applicare ripetutamente il teorema di deduzione ed il MP

Proprietà delle derivazioni (2)

- Correttezza
 - Le fbf φ derivabili da un insieme di fbf Γ sono una conseguenza logica di Γ Γ $\vdash φ$ ⇒ Γ $\models φ$
 - In una derivazione, l'unico passo in cui si derivano nuove fbf è il *MP* che preserva la conseguenza logica
- Coerenza sintattica
 - Un insieme Γ è coerente se da Γ non è derivabile qualsiasi φ
 - Si veda il teorema 3: da una contraddizione si deriva qualsiasi fbf
 - Inoltre, per la correttezza, solo le conseguenze logiche sono derivabili
- Riduzione all'assurdo (refutazione)
 - $-\Gamma \cup \{\neg \varphi\}$ è incoerente $\Leftrightarrow \Gamma \vdash \varphi$
 - Per la correttezza $\Gamma \vdash \varphi \Rightarrow \Gamma \models \varphi$ quindi $\Gamma \cup \{\neg \varphi\}$ è contraddittorio
 - Il che significa che, per qualsiasi ψ , $\Gamma \cup \{\neg \varphi\} \vdash \psi$
 - Incluse le ψ palesemente false (p.es. $\neg(\varphi \to \varphi)$, cioè $\neg \varphi \land \varphi$)

Completezza

- Completezza
 - Le *tautologie* (fbf *valide*) sono fbf *derivabili* dagli assiomi Axn $\models \varphi \Rightarrow \vdash \varphi$
 - Perché:
 - Si consideri la tavola di verità di φ e dell'insieme di lettere A_i che vi occorrono
 - Per ciascuna riga si costruisca un insieme di fbf $\{B_1, B_2, ..., B_n\}$ dove $B_i = A_i$ se A_i ha valore 1 e $B_i = \neg A_i$ se A_i ha valore 0
 - Si prenda inoltre $\psi = \varphi$ se φ ha valore 1 e $\psi = \neg \varphi$ se φ ha valore 0
 - Allora $B_1, B_2, ..., B_n \vdash \psi$
 - Chiaramente, la cosa è vera quando φ è una fbf atomica
 - Infatti, se $\psi = \varphi = A_1$ si ha $A_1 \vdash A_1$
 - Se invece $\psi = \neg \varphi = \neg A_1$ si ha $\neg A_1 \vdash \neg A_1$

	A_1	A_2	•••	A_n	φ
	0	0	•••	0	V_1
le	0	0	•••	1	V_2
righe	•••	•••	•••	•••	•••
z_n	•••	•••	•••	•••	•••
	1	1	•••	1	V_{2^n}

Completezza (2)

- Per mostrare che $B_1, B_2, ..., B_n \vdash \psi$ in generale si procede per induzione sulla composizione di φ assumendo che il fatto valga per le componenti più semplici
- Primo caso: $\varphi = \neg \alpha$
 - Quando α ha valore 1, φ ha valore 0. Per l'ipotesi induttiva $B_1, B_2, ..., B_n \vdash \alpha$ Quindi (variante del Teorema 2), $B_1, B_2, ..., B_n \vdash \alpha \rightarrow \neg \neg \alpha$ e dunque $B_1, B_2, ..., B_n \vdash \neg \neg \alpha$ (MP). Ma $\neg \neg \alpha = \neg \varphi = \psi$
 - Quando α ha valore 0, φ ha valore 1. Per l'ipotesi induttiva $B_1, B_2, ..., B_n \vdash \neg \alpha$ Ma $\neg \alpha = \varphi = \psi$
- Secondo caso: $\varphi = \alpha \rightarrow \beta$
 - Quando α ha valore 0, φ ha valore 1. Per l'ipotesi induttiva $B_1, B_2, ..., B_n \vdash \neg \alpha$ Quindi (variante del Teorema 4), $B_1, B_2, ..., B_n \vdash \neg \alpha \rightarrow (\alpha \rightarrow \beta)$ e dunque $B_1, B_2, ..., B_n \vdash (\alpha \rightarrow \beta)$ (MP). Ma $(\alpha \rightarrow \beta) = \varphi = \psi$
 - Quando β ha valore 1, φ ha valore 1. Per l'ipotesi induttiva $B_1, B_2, ..., B_n \vdash \beta$ Quindi (Ax1), $B_1, B_2, ..., B_n \vdash \beta \rightarrow (\alpha \rightarrow \beta)$ e dunque $B_1, B_2, ..., B_n \vdash (\alpha \rightarrow \beta)$ (MP)
 - Quando α ha valore 1 e β ha valore 0, φ ha valore 0. Per l'ipotesi induttiva $B_1, B_2, ..., B_n \vdash \alpha$ e $B_1, B_2, ..., B_n \vdash \neg \beta$. Quindi (Teorema 3), $B_1, B_2, ..., B_n \vdash \alpha \rightarrow (\neg \beta \rightarrow \neg (\alpha \rightarrow \beta))$ e dunque $B_1, B_2, ..., B_n \vdash \neg (\alpha \rightarrow \beta)$ (doppio MP). Ma $\neg (\alpha \rightarrow \beta) = \neg \varphi = \psi$

Completezza (3)

- Per mostrare che: $\models \varphi \implies \vdash \varphi$
 - Se φ è una tautologia, allora si ha $B_1, B_2, ..., B_n \vdash \varphi$
 - In particolare, considerando A_1 , $A_1, B_2, ..., B_n \vdash \varphi$ e $\neg A_1, B_2, ..., B_n \vdash \varphi$ Quindi si ha $B_2, ..., B_n \vdash A_1 \rightarrow \varphi$ (Ded) e $B_2, ..., B_n \vdash \neg A_1 \rightarrow \varphi$ (Ded)
 - Dal Teorema "X", B_2 , ..., $B_n \vdash (\neg A_1 \rightarrow \varphi) \rightarrow ((A_1 \rightarrow \varphi) \rightarrow \varphi)$ e dunque B_2 , ..., $B_n \vdash \varphi$ (doppio MP).
 - Iterando il procedimento per tutte le A_i si ottiene $\vdash \varphi$

Completezza

– Le *conseguenze logiche* di un Γ qualsiasi sono fbf φ *derivabili*

$$\Gamma \models \varphi \Rightarrow \Gamma \vdash \varphi$$

- Perché:
 - Si consideri un insieme Σ finito, con $\Sigma \subseteq \Gamma$, per cui $\Sigma \vdash \varphi$ (Compattezza)
 - Applicando ripetutamente il teorema di deduzione, si ottiene una tautologia e si ritorna al caso precedente

Teorie, assiomatizzazione

- Definizioni e terminologia
 - Un insieme di fbf Σ (comunque definito) può essere detto una **teoria**
 - Dato un insieme di fbf Γ , l'insieme dei **teoremi** di Γ è l'insieme di tutte le fbf *derivabili* a partire da Γ

$$Teo(\Gamma) = \{ \varphi : \Gamma \vdash \varphi \}$$

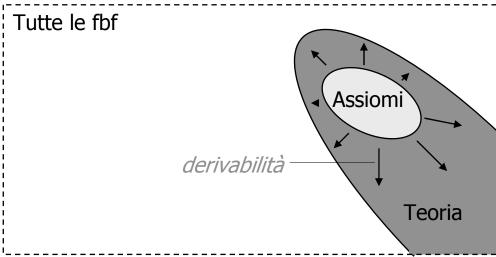
- Un insieme di fbf Γ è un'assiomatizzazione di una teoria Σ sse $\Sigma \equiv Teo(\Gamma)$
- Il sistema di assiomi Axn descrive la *teoria* delle fbf *valide* della **logica proposizionale classica** L_p
 - La formalizzazione di una logica basata su l'assiomatizzazione delle fbf valide è anche detta 'a la Hilbert'

Indipendenza degli schemi Axn

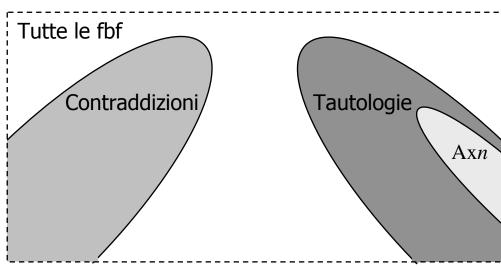
- Insieme minimo
 - Per provare la completezza di Axn sono stati usati tutti e tre gli schemi
- Indipendenza
 - I tre schemi sono logicamente indipendenti:
 - Non è possibile derivare uno di essi dai restanti due
- ullet Esistono altre assiomatizzazioni di L_P
 - Si può avere anche uno schema solo
 - Non si può invece evitare di usare schemi di assioma
 - Avendo, di fatto, un insieme di assiomi infinito
 - In alternativa, si può usare un insieme finito introducendo una nuova regola di inferenza che permette di 'clonare' gli assiomi per sostituzione (cioè si tratta della stessa cosa in forma diversa)

fbf e teorie

- Una teoria può essere assiomatizzata
 - In questo caso, la teoria coincide con i **teoremi** (fbf derivabili dagli assiomi)

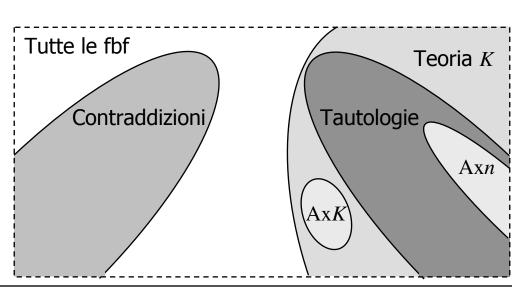


- Nel caso di Axn per L_p
 - L'insieme di assiomi è infinito
 - La teoria è l'insieme delle tautologie (o fbf valide)



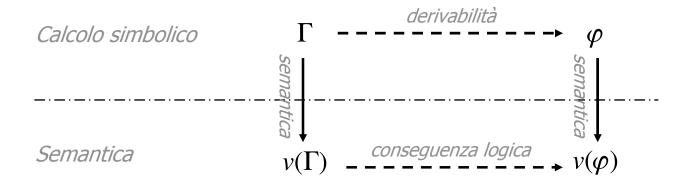
Teorie specifiche

- Qualsiasi teoria K (p.es. "la macchina non parte") può essere definita da assiomi AxK
 - La teoria K coincide con l'insieme di fbf derivabili da AxK
 - L'assiomatizzazione può essere finita, la teoria assiomatizzata no
- Qualsiasi teoria K include Axn e tutte le tautologie (o fbf valide)
 - Si rammenti la definizione di derivazione
 - Non può contenere contraddizioni
 - Altrimenti include tutte le fbf



Calcolo simbolico

 Per la proprietà di completezza, la derivazione simbolica è rappresentativa delle relazioni semantiche (conseguenza)



- Nel caso della logica proposizionale, la relazione di conseguenza logica può essere determinata in modo diretto
- Nei sistemi più complessi, la derivazione simbolica è l'unica possibilità