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Symbolic cognitive models are theories of human cognition that take the form of working
computer programs. A cognitive model is intended to be an explanation of how some
aspect of cognition is accomplished by a set of primitive computational processes. A
model performs a specific cognitive task or class of tasks and produces behavior that
constitutes a set of predictions that can be compared to data from human performance.
Task domains that have received considerable attention include problem solving,
language comprehension, memory tasks, and human-device interaction.

The scientific questions cognitive modeling seeks to answer belong to cognitive
psychology, and the computational techniques are often drawn from artificial
intelligence. Cognitive modeling differs from other forms of theorizing in psychology in
its focus on functionality and computational completeness. Cognitive modeling produces
both a theory of human behavior on a task and a computational artifact that performs the
task.

The theoretical foundation of cognitive modeling is the idea that cognition is a kind
of COMPUTATION (see also COMPUTATIONAL THEORY OF MIND). The claim is
that what the mind does, in part, is perform cognitive tasks by computing.  (The claim is
not that the computer is a metaphor for the mind, or that the architectures of modern
digital computers can give us insights into human mental architecture.) If this is the case,
then it must be possible to explain cognition as a dynamic unfolding of computational
processes. A cognitive model cast as a computer program is a precise description of what
those processes are and how they develop over time to realize some task.

A cognitive model is considered to be a symbolic cognitive model if it has the
properties of a symbolic system in the technical sense of Newell and Simon’s (1976)
Physical Symbol System Hypothesis (PSSH). The PSSH provides a hypothesis about the
necessary and sufficient conditions for a physical system to realize intelligence. It is a
reformulation of Turing computation (see CHURCH-TURING THESIS) that identifies
symbol processing as the key requirement for complex cognition. The requirement is that
the system be capable of manipulating and composing symbols and symbol
structures—physical patterns with associated processes that give the patterns the power to
denote either external entities or other internal symbol structures (Newell, 1980; Newell,
1990; Pylyshyn, 1989; Simon, 1996). One of the distinguishing characteristics of symbols
systems is that novel structures may be composed and interpreted, including structures
that denote executable processes.



The extent to which symbolic processing is required for explaining cognition, and
the extent to which connectionist (see COGNITIVE MODELING, CONNECTIONIST)
models have symbolic properties, has been the topic of ongoing debates in cognitive
science (Fodor & Pylyshyn, 1988; Rumelhart, 1989; Simon, 1996). Much of the debate
has turned on the question of whether or not particular connectionist systems are able to
compose and interpret novel structures. In particular, Fodor & Pylyshyn argue that any
valid cognitive theory must have the properties of productivity and systematicity.
Productivity refers to the ability to produce and entertain an unbounded set of novel
propositions with finite means. Systematicity is most easily seen in linguistic processing,
and refers to the intrinsic connection between our ability to produce or comprehend
certain linguistic forms. For example, no speaker of English can understand the utterance
“John loves the girl” without also being able to understand “the girl loves John”, or any
other utterance from the unbounded set of utterances of the form “X loves Y”. Both
productivity and systematicity point to the need to posit underlying abstract structures
that can be freely composed, instantiated with novel items, and interpreted on the basis of
their structure.

A variety of empirical constraints may be brought to bear on cognitive models.
These include: basic functionality requirements (a model must actually perform the task
to some approximation if it is to be veridical); data from verbal protocols of human
subjects thinking aloud while PROBLEM SOLVING (these reveal intermediate cognitive
steps that may be aligned with the model’s behavior (Newell & Simon, 1972; Ericsson &
Simon, 1980)); chronometric data (such data can constrain a cognitive model once
assumptions are made about the time course of the component computational processes
(Newell, 1990)); eye movement data (eye fixation durations are a function of cognitive, as
well as perceptual, complexity; Carpenter & Just, 1987; Rayner 1977); error patterns;
and data on learning rates and transfer of cognitive skill (such data constrain the
increasing number of cognitive models that are able to change behavior over time;
Singley & Anderson, 1990).

Though the problem of under-constraining data is a universal issue in science, it is
sometimes thought to be particularly acute in computational cognitive modeling, despite
the variety of empirical constraints described above. There are two related sides to the
problem. First, cognitive models are often seen as making many detailed commitments
about aspects of processing for which no data distinguishes among alternatives. Second,
because of the universality of computational frameworks (see CHURCH-TURING
THESIS), an infinite number of programs can be created that mimic the desired behavior
(Anderson, 1978).

Theorists have responded to these problems in a variety of ways. One way is to adopt
different levels of abstraction in the theoretical statements: in short, not all the details of
the computer model are part of the theory. Newell (Newell 1990; Newell et al., 1991),
Marr (1982), Pylyshyn (1984) and others have developed frameworks for specifying
systems at multiple levels of abstraction. The weakest possible correspondence between a
model and human cognition is at the level of input/output only: if the model only
responds to functionality constraints, it is intended only as a sufficiency demonstration
and formal task definition (Pylyshyn, 1984; Pylyshyn, 1989). The strongest kind of
correspondence requires that the model execute the same algorithm---take the same



intermediate computational steps---as human processing. (No theoretical interpretation of
a cognitive model, not even the strongest, depends on the hardware details of the host
machine.)

An important method for precisely specifying the intended level of abstraction is the
use of programming languages designed for cognitive modeling, such as PRODUCTION
SYSTEMS. Production systems were introduced by Newell (1973) as a flexible model of
the control structure of human cognition. The flow of processing is not controlled by a
fixed program or procedure laid out in advance, as is the case in standard procedural
programming languages. Instead, production systems posit a set of independent
production rules (condition-action pairs) that may fire anytime their conditions are
satisfied.  The flow of control is therefore determined at run-time, and is a function of the
dynamically evolving contents of the working memory that triggers the productions. A
cognitive model written in a production system makes theoretical commitments at the
level of the production rules, and defines a computationally complete system at that level.
The particular underlying implementation (e.g., LISP or Java) is theoretically irrelevant.

A complementary approach to reducing theoretical degrees of freedom is to apply
the same model with minimal variation to a wide range of tasks. Each new task is not an
unrelated pool of data to be arbitrarily fitted with a new model or with new parameters.
For example, a computational model of short-term memory that accounts for immediate
serial recall should also apply, with minimal strategy variations, to free recall tasks and
recognition tasks as well (Anderson & Matessa, 1997).

Recent cognitive modeling research combines these approaches by building and
working with COGNITIVE ARCHITECTURES. A cognitive architecture posits a fixed
set of computational mechanisms and resources that putatively underlie a wide range of
human cognition. Since these cognitive architectures never correspond to the
architectures of modern computers (for example, they may demand a higher degree of
parallelism), the architectures must first be emulated on computers before cognitive
models can be built within them for specific tasks.  Such architectures, together with the
variety of empirical constraints outlined above, place considerable constraint on task
models.

Examples of the architectural approach include ACT-R (Anderson, 1993), CAPS
(Just & Carpenter, 1992), Soar (Newell, 1990), EPAM (Feigenbaum & Simon, 1984),
and Epic (Meyer & Kieras, 1997) (all are production systems, with the exception of
EPAM). These architectures have collectively been applied to a broad set of phenomena
in cognitive psychology. For example, Anderson and colleagues (Anderson, 1993,
Singley & Anderson. 1989) have demonstrated that a production rule analysis of
cognitive skill, along with the learning mechanisms posited in the ACT architecture,
provide detailed and explanatory accounts of a range of regularities in cognitive skill
acquisition in complex domains such as learning to program Lisp. ACT also provides
accounts of many phenomena surrounding the recognition and recall of verbal material
(e.g., the fan effect), and regularities in problem solving strategies (Anderson, 1993;
Anderson & Lebiere, 1998). EPAM is one of the earliest computational models in
psychology and accounts for a significant body of data in the learning and high-level
perception of verbal material. It has been compared in some detail to related
connectionist accounts (Richman & Simon, 1989). Soar is a learning architecture that has



been applied to domains ranging from rapid, immediate tasks such as typing and video
game interaction (John, Vera & Newell, 1994) to long stretches of problem solving
behavior (Newell, 1990), building on the earlier analyses by Newell & Simon (1972).
Soar has also served as the foundation for a detailed theory of sentence processing, which
models both the rapid on-line effects of semantics and context, as well as subtle effects of
syntactic structure on processing difficulty across several typologically distinct languages
(Lewis, 1996; Lewis, in preparation). EPIC is a recent architecture that combines a
parallel production system with models of peripheral and motor components, and
accounts for a substantial body of data in the performance of dual cognitive tasks (Meyer
& Kieras, 1997). CAPS is a good example of recent efforts in symbolic modeling to
account for individual differences in cognitive behavior. CAPS explains differences in
language comprehension performance by appeal to differences in working memory
capacity (Just & Carpenter, 1992). Polk & Newell (1995) developed a constrained
parametric model of individual differences in syllogistic reasoning that provides close fits
to particular individuals by making different assumptions about the way they interpret
certain linguistic forms (see also Johnson-Laird & Byrne, 1992).

In short, modern symbolic cognitive modeling is characterized by detailed accounts
of chronometric data and error patterns; explorations of the explanatory role of the same
basic architectural components across a range of cognitive tasks; attempts to clearly
distinguish the contributions of relatively fixed architecture and more plastic task
strategies and background knowledge; and attempts to explicitly deal with the problem of
theoretical degrees of freedom. The underlying goal of all these approaches is to produce
more unified accounts of cognition explicitly embodied in computational mechanisms.
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