|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: INNER | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Object | +--ec.BreedingSource | +--ec.BreedingPipeline | +--ec.vector.breed.VectorCrossoverPipeline
VectorCrossoverPipeline is a BreedingPipeline which implements a simple default crossover for VectorIndividuals. Normally it takes two individuals and returns two crossed-over child individuals. Optionally, it can take two individuals, cross them over, but throw away the second child (a one-child crossover). VectorCrossoverPipeline works by calling defaultCrossover(...) on the first parent individual.
Typical Number of Individuals Produced Per produce(...) call
2 * minimum typical number of individuals produced by each source, unless tossSecondParent
is set, in which case it's simply the minimum typical number.
Number of Sources
2
Parameters
base.toss bool = true or false (default)/td> | (after crossing over with the first new individual, should its second sibling individual be thrown away instead of adding it to the population?) |
Default Base
vector.xover
Field Summary | |
static int |
NUM_SOURCES
|
static java.lang.String |
P_CROSSOVER
|
static java.lang.String |
P_TOSS
|
boolean |
tossSecondParent
Should the pipeline discard the second parent after crossing over? |
Fields inherited from class ec.BreedingPipeline |
DYNAMIC_SOURCES, mybase, P_NUMSOURCES, P_SOURCE, sources, V_SAME |
Fields inherited from class ec.BreedingSource |
CHECKBOUNDARY, DEFAULT_PRODUCED, NO_PROBABILITY, P_PROB, probability, UNUSED |
Constructor Summary | |
VectorCrossoverPipeline()
|
Method Summary | |
Parameter |
defaultBase()
Returns the default base for this prototype. |
int |
numSources()
Returns 2 |
int |
produce(int min,
int max,
int start,
int subpopulation,
Individual[] inds,
EvolutionState state,
int thread)
Produces n individuals from the given subpopulation and puts them into inds[start...start+n-1], where n = Min(Max(q,min),max), where q is the "typical" number of individuals the BreedingSource produces in one shot, and returns n. |
java.lang.Object |
protoClone()
Creates a new individual cloned from a prototype, and suitable to begin use in its own evolutionary context. |
void |
setup(EvolutionState state,
Parameter base)
Sets up the BreedingPipeline. |
int |
typicalIndsProduced()
Returns 2 * minimum number of typical individuals produced by any sources, else 1* minimum number if tossSecondParent is true. |
Methods inherited from class ec.BreedingPipeline |
individualReplaced, maxChildProduction, minChildProduction, preparePipeline, prepareToProduce, produces, sourcesAreProperForm |
Methods inherited from class ec.BreedingSource |
getProbability, pickRandom, protoCloneSimple, setProbability, setupProbabilities |
Methods inherited from class java.lang.Object |
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Field Detail |
public static final java.lang.String P_TOSS
public static final java.lang.String P_CROSSOVER
public static final int NUM_SOURCES
public boolean tossSecondParent
Constructor Detail |
public VectorCrossoverPipeline()
Method Detail |
public Parameter defaultBase()
Prototype
public int numSources()
numSources
in class BreedingPipeline
public java.lang.Object protoClone() throws java.lang.CloneNotSupportedException
Prototype
The question here is whether or not this means to perform a "deep" or "light" ("shallow") clone, or something in-between. You may need to deep-clone parts of your object rather than simply copying their references, depending on the situation:
Implementations.
public Object protoClone() throws CloneNotSupportedException
{
return super.clone();
}
public Object protoClone() throws CloneNotSupportedException
{
myobj = (MyObject) (super.clone());
// put your deep-cloning code here...
// ...you should use protoClone and not
// protoCloneSimple to clone subordinate objects...
return myobj;
}
public Object protoClone() throws CloneNotSupportedException
{
MyObject myobj = (MyObject)(super.protoClone());
// put your deep-cloning code here...
// ...you should use protoClone and not
// protoCloneSimple to clone subordinate objects...
return myobj;
}
If you know that your superclasses will never change their protoClone() implementations, you might try inlining them in your overridden protoClone() method. But this is dangerous (though it yields a small net increase).
In general, you want to keep your deep cloning to an absolute minimum, so that you don't have to call protoClone() but one time.
The approach taken here is the fastest that I am aware of while still permitting objects to be specified at runtime from a parameter file. It would be faster to use the "new" operator; but that would require hard-coding that we can't do. Although using java.lang.Object.clone() entails an extra layer that deals with stripping away the "protected" keyword and also wrapping the exception handling (which is a BIG hit, about three times as slow as using "new"), it's still MUCH faster than using java.lang.Class.newInstance(), and also much faster than rolling our own Clone() method.
protoClone
in class BreedingPipeline
public void setup(EvolutionState state, Parameter base)
BreedingSource
The most common modification is to normalize it with some other set of probabilities, then set all of them up in increasing summation; this allows the use of the fast static BreedingSource-picking utility method, BreedingSource.pickRandom(...). In order to use this method, for example, if four breeding source probabilities are {0.3, 0.2, 0.1, 0.4}, then they should get normalized and summed by the outside owners as: {0.3, 0.5, 0.6, 1.0}.
setup
in class BreedingPipeline
ec.BreedingSource
Prototype.setup(EvolutionState,Parameter)
public int typicalIndsProduced()
typicalIndsProduced
in class BreedingPipeline
public int produce(int min, int max, int start, int subpopulation, Individual[] inds, EvolutionState state, int thread) throws java.lang.CloneNotSupportedException
BreedingSource
produce
in class BreedingSource
|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: INNER | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |