Intelligenza Artificiale

Breve introduzione alla logica classica (Parte 1)

Marco Piastra

Introduzione alla logica formale

Parte 1. Preambolo: l'algebra di Boole e la logica

Parte 2. Logica proposizionale

Parte 3. Logica predicativa del primo ordine

Testi consigliati

- Magnani, L., Gennari, R.
 Manuale di Logica
 Guerini Scientifica, 1997
- Lolli, G. *Introduzione alla logica formale* il Mulino, 1988
- Asperti, A., Ciabattoni, A.
 Logica a informatica
 McGraw-Hill, 1997
- Crossley et al.
 Che cos'è la logica matematica?
 Boringhieri, 1972

Parte 1

Preambolo: l'algebra di Boole e la logica

Algebra di Boole

- Un'algebra di Boole è formata da:
 - un insieme di base V
 - due operazioni binarie ∨ e ∧:
 - commutative: A ∨ B = B ∨ A
 - associative: (A \vee B) \vee C = A \vee (B \vee C)
 - distributive: $A \lor (B \land C) = (A \lor B) \land (A \lor C)$
 - dotate di elementi identità ⊥ e ⊤:
 - $-A \lor \bot = A$
 - $-A \wedge T = A$
 - una operazione unaria ¬ tale per cui:
 - $A \lor \neg A = T$
 - $A \wedge \neg A = \bot$

 $(A, B, C \in X)$

Proposizioni e connettivi

• L'insieme V è costituito dai valori di verità

{VERO, FALSO}
$$V = \{0, 1\}$$

Le operazioni binarie sono OR (∨) e AND (∧)

Α	В	$A \lor B$
1	1	1
0	1	1
1	0	1
0	0	0

Α	В	$A \wedge B$
1	1	1
0	1	0
1	0	0
0	0	0

Le tavole di verità

L'operazione unaria è il NOT (¬)

Α	$\neg A$
1	0
0	1

Formule e significato

- Elementi fondamentali dell'algebra delle proposizioni:
 - un insieme di proposizioni atomiche {a, b, c, d, ...}
 - a ciascuna proposizione atomica viene attribuito un significato, inteso come valore di verità:

$$v: X \rightarrow V$$
 cioè $v: X \rightarrow \{0, 1\}$

• Le **formule** sono espressioni costruite per composizione di proposizioni, connettivi e parentesi

$$(A \lor B) \land C$$

- ("Giorgio è un essere umano" OR "Silvia è la genitrice di Giorgio")
 AND "Giorgio è un bipede senza piume"
- Il **significato** delle **formule composite** viene determinato componendo algebricamente il significato delle proposizioni atomiche

Α	В	$A \vee B$
v(A) = 1	v(B) = 1	$v(A \vee B) = 1$
v(A) = 0	v(B) = 1	$v(A \vee B) = 1$
v(A) = 1	v(B) = 0	$v(A \vee B) = 1$
v(A) = 0	v(B) = 0	$v(A \lor B) = 0$

vero-funzionalità

Per ogni formula di *n* proposizioni si hanno 2ⁿ combinazioni possibili

Interpretazioni e soddisfacimento

Esempio:

$$\varphi$$
: (a v b) \wedge c

• ("Giorgio è umano" OR "Silvia è madre di Giorgio") AND "Giorgio è un bipede senza piume"

а	b	С	a v b	(a ∨ b) ∧ c
1	1	1	1	1
0	1	1	1	1
1	0	1	1	1
0	0	1	0	0
1	1	0	1	0
0	1	0	1	0
1	0	0	1	0
0	0	0	0	0

- Un'interpretazione v è una assegnazione di significato a <u>tutte</u> le proposizioni atomiche nell'ambito discorsivo X
- Una interpretazione **soddisfa** una formula φ sse $v(\varphi) = 1$

Tautologie e contraddizioni

- Una **tautologia** è una formula φ tale per cui $v(\varphi) = 1$ per qualsiasi interpretazione v
 - Esempio: $(\neg A \lor B) \lor (\neg B \lor A)$

Α	В	$\neg A \lor B$	$\neg B \lor A$	$(\neg A \lor B) \lor (\neg B \lor A)$
1	1	1	1	1
0	1	1	0	1
1	0	0	1	1
0	0	1	0	1

- Una contraddizione è una formula φ tale per cui $v(\varphi) = 0$ per qualsiasi interpretazione v
 - Esempio: $(A \land \neg A)$

Α	¬Α	$A \wedge \neg A$
1	0	0
0	1	0

Algebra delle proposizioni

- L'algebra delle proposizioni è definita su un insieme di proposizioni atomiche X = {a, b, c, d, ...}
 - sono 'atomiche' in quanto non consideriamo la struttura interna ma solo il valore di verità
- Gli operatori sono: ∧ (AND), ∨ (OR), ¬ (NOT)
- Gli elementi identità sono: ⊤ (tautologia), ⊥ (contraddizione)
- La semantica degli operatori è definita in funzione delle interpretazioni v
- Il valore delle formule composite può essere determinato a partire dalla interpretazione delle affermazioni atomiche
- L'algebra delle proposizioni interpretate è un'algebra di Boole

Tutto qui? Ed il **ragionamento**?

Relazione tra affermazioni

• Premesse:

$$\varphi_1$$
: \neg (a $\land \neg$ b) \lor c

NOT ("Giorgio è umano" AND NOT "Silvia è madre di Giorgio") OR "Giorgio è un bipede senza piume"

$$\varphi_2$$
: $\neg c \lor b \lor d$

NOT "Giorgio è un bipede senza piume" OR "Silvia è madre di Giorgio" OR "Giorgio è contento"

$$\varphi_3$$
: d \vee a

"Giorgio è contento" OR "Giorgio è umano"

$$\varphi_4$$
: $\neg b$

NOT "Silvia è madre di Giorgio"

Affermazione:

 ψ : d

"Giorgio è contento"

Qual'è il **legame logico** tra le premesse?
E tra le premesse e l'affermazione finale?

Conseguenza logica

• Eseguendo il calcolo diretto per l'esempio precedente:

а	b	С	d	$arphi_1$	$arphi_2$	$arphi_3$	$arphi_4$	ψ
1	1	1	1	1	1	1	0	1
0	1	1	1	1	1	1	0	1
1	0	1	1	1	1	1	1	1
0	0	1	1	1	1	1	1	1
1	1	0	1	1	1	1	0	1
0	1	0	1	1	1	1	0	1
1	0	0	1	0	1	1	1	1
0	0	0	1	1	1	1	1	1
1	1	1	0	1	1	1	0	0
0	1	1	0	1	1	0	0	0
1	0	1	0	1	0	1	1	0
0	0	1	0	1	0	0	1	0
1	1	0	0	1	1	1	0	0
0	1	0	0	1	1	0	0	0
1	0	0	0	0	1	1	1	0
0	0	0	0	1	1	0	1	0

- Tutte le interpretazioni v che soddisfano $\{\varphi_1, \ \varphi_2, \ \varphi_3, \ \varphi_4\}$ soddisfano anche ψ
- Relazione di conseguenza logica : φ_1 , φ_2 , φ_3 , $\varphi_4 \models \psi$

Due altri connettivi

Implicazione \rightarrow ed equivalenza \leftrightarrow

Α	В	$A \to B$
1	1	1
0	1	1
1	0	0
0	0	1

Α	В	$A \leftrightarrow B$
1	1	1
0	1	0
1	0	0
0	0	1

E` la stessa di $(\neg A \lor B)$ E` la stessa di $(\neg A \lor B) \land (\neg B \lor A)$

Si legge anche "se A allora B" Si legge anche "A equivale a B"

• Il problema di prima potrebbe essere riscritto così:

$$\varphi_1$$
: (a $\land \neg b$) $\rightarrow c$

$$\varphi_2: C \to (b \lor d)$$
 Regole

$$\varphi_3$$
: $\neg d \rightarrow a$

$$\psi$$
: d

Fatti

Logica in generale

- La conseguenza logica è una relazione tra formule (o insiemi di formule)
- In generale, in logica si studia la relazione tra le formule di un *sistema logico-simbolico* in cui:
 - il *linguaggio* delle formule è definito con precisione
 - il *significato* delle formule è stabilito in modo non ambiguo
- Le relazioni studiate riguardano la struttura dei ragionamenti e non il 'senso' comune delle formule nell'ambito discorsivo di riferimento (logica formale)
- Quindi, il significato delle formule viene stabilito in riferimento ad una struttura astratta (p. es. {0, 1}) e non ad una situazione effettiva (p.es. Giorgio e Silvia, bipedi)

Obiettivi

- Rappresentazione esatta della conoscenza
 - dato che in un sistema logico-simbolico :
 - il linguaggio è definito con precisione
 - la semantica è chiara e non ambigua
 - la relazione tra le formule descrive il legame logico
 - possiamo distinguere i *ragionamenti* corretti da quelli fallaci
 - (ammesso di riuscire a formalizzarli)
- Tecniche di calcolo
 - il calcolo diretto della relazione di conseguenza tramite le tavole è scomodo (e non è sempre possibile)
 - occorre trovare tecniche più comode e pratiche
- Automatizzazione
 - se poi queste tecniche di calcolo sono deterministiche (cioè non richiedono particolare ingegno)
 - si può pensare di far 'ragionare' le macchine