Intelligenza Artificiale

Breve introduzione alla logica classica (Parte 2)

Marco Piastra

Introduzione alla logica formale

Parte 1. Preambolo: algebra di Boole, proposizioni, conseguenza logica

Parte 2. Logica proposizionale

Parte 3. Logica predicativa del primo ordine

Parte 2

Logica proposizionale

Logica proposizionale – Linguaggio

- Un linguaggio proposizionale \mathcal{L}_{p} contiene:
 - un insieme non vuoto P di lettere proposizionali: a, b, c, ...
 - due connettivi principali: ¬, →
 - due simboli ausiliari: (,) (le parentesi)
 - tre connettivi derivati: ∧, ∨, ↔
 - regole sintattiche per la composizione di formule, dette formule ben formate - fbf
 - l'insieme di tutte le fbf di \mathcal{L}_{P} si indica con fbf (\mathcal{L}_{P})
 - $P \in fbf(\mathcal{L}_P)$
 - $\varphi \in fbf(\mathcal{L}_p) \Rightarrow (\neg \varphi) \in fbf(\mathcal{L}_p)$
 - φ , $\psi \in fbf(\mathscr{L}_{P}) \Rightarrow (\varphi \to \psi) \in fbf(\mathscr{L}_{P})$
 - $\varphi, \psi \in fbf(\mathcal{L}_p), (\varphi \vee \psi) \Leftrightarrow ((\neg \varphi) \to \psi)$
 - $\varphi, \psi \in fbf(\mathcal{L}_p), \quad (\varphi \wedge \psi) \Leftrightarrow (\neg(\varphi \rightarrow (\neg\psi)))$
 - φ , $\psi \in fbf(\mathscr{L}_{P})$, $(\varphi \leftrightarrow \psi) \Leftrightarrow ((\varphi \to \psi) \land (\psi \to \varphi))$

LP – Regole semantiche

• Un' interpretazione di \mathscr{L}_{P} è una funzione

$$v: fbf(\mathcal{L}_p) \to \{0, 1\}$$

$$-\varphi, \psi \in fbf(\mathscr{L}_{P})$$

• $\varphi \in P$, $v(\varphi)$ = valore assegnato alla lettera proposizionale

•
$$v(\neg \varphi) = 1$$
 sse $v(\varphi) = 0$

•
$$v(\varphi \land \psi) = 1$$
 sse $v(\varphi) = 1$ e $v(\psi) = 1$

•
$$v(\varphi \lor \psi) = 1$$
 sse $v(\varphi) = 1$ o $v(\psi) = 1$

•
$$v(\varphi \rightarrow \psi) = 1$$
 sse non $v(\varphi) = 1$ e $v(\psi) = 0$

•
$$v(\varphi \leftrightarrow \psi) = 1$$
 sse $v(\varphi) = v(\psi)$

– in sintesi, un'interpretazione v di \mathcal{L}_{P} è coerente con le tavole di verità viste in precedenza

LP - Modelli e soddisfacibilità

- Data una fbf φ ed un'interpretazione v tale per cui
 - $v(\varphi) = 1$
- Si dice che:
 - -v soddisfa φ
 - -v è un modello di φ
 - si scrive anche $v \models \varphi$
- La definizione è facilmente estesa agli insiemi di fbf $\Gamma = \{\varphi_1, \dots \varphi_n\}$ $v \models \Gamma$ sse per $\forall \varphi_i \in \Gamma, v \models \varphi_i$
- Una fbf è una tautologia (o una fbf valida) se è soddisfatta da qualsiasi interpretazione
 - $-\varphi$ è una tautologia si scrive anche $\models \varphi$
- Una fbf φ è una contraddizione se non ha un modello

LP - Conseguenza, decidibilità

- Una fbf ψ è una *conseguenza logica* di un insieme di fbf Γ sse qualsiasi modello di Γ è anche modello di ψ
 - si scrive anche:

$$\Gamma \models \psi$$

• Il problema della **decidibilità** in LP: esistenza di un algoritmo per stabilire se:

$$\models \varphi$$
$$\Gamma \models \psi$$

- LP è decidibile
 - basta usare il metodo delle tavole di verità

LP - Derivazione

- Una regola di derivazione (anche regola di inferenza) permette di derivare fbf da altre fbf
- In logica proposizionale si ha una sola regola di derivazione
 - modus ponens (mp): $\varphi \rightarrow \psi$ ψ
 - si può scrivere anche così:

$$\varphi \to \psi$$
, $\varphi \vdash \psi$ (da $\varphi \to \psi \in \varphi \in derivabile \psi$)

- Esempio di applicazione:
 - dalle due formule

$$(\neg a \rightarrow b) \rightarrow (c \rightarrow \neg d)$$

 $(\neg a \rightarrow b)$

si può derivare(c → ¬d)

Una regola di derivazione è di tipo *sintattico* in quanto opera sulla struttura delle fbf

LP - Assiomi

- Gli assiomi di un sistema logico esprimono leggi logiche di validità generale (nel sistema stesso)
- In logica proposizionale si usano degli *schemi di assioma* :

 - ogni istanziazione di Ax1, Ax2, Ax3 è un assioma
- Esempi

$$a \rightarrow (a \rightarrow a) \quad [Ax1, \varphi/a, \psi/a]$$

 $(\neg(b \lor c) \rightarrow \neg d) \rightarrow (d \rightarrow (b \lor c)) \quad [Ax3, \varphi/(b \lor c), \psi/d]$

Notare che ogni istanziazione è anche una fbf valida (o tautologia)

LP - Derivazioni

- Una *dimostrazione* (o *derivazione*) di una fbf ψ da un insieme di fbf Γ
 - è una successione *finita* di passi $<\alpha_1, ..., \alpha_n>$
 - per ogni passo α_i si hanno tre alternative:
 - 1) $\alpha_i \in \text{istanza di } Axn$
 - 2) $\alpha_i \in \Gamma$
 - 3) α_i è ottenibile dalle fbf dei passi precedenti, tramite *modus ponens*
 - $-\alpha_n = \psi$
 - quando la derivazione esiste, si scrive $\Gamma \models \psi$ " ψ è derivabile da Γ "
- Ne segue che:

```
\vdash Ax (un assioma è derivabile anche da un \Gamma vuoto)

\Gamma \vdash Ax (un assioma è derivabile da qualsiasi \Gamma)

\{\varphi, ...\} \vdash \varphi (qualsiasi \varphi è derivabile da un \Gamma che già la contiene)
```

Vale il teorema di deduzione (ded)

```
\Gamma \cup \{\varphi\} \vdash \psi equivale a \Gamma \vdash (\varphi \rightarrow \psi) (dimostrazione sul testo)
```

LP - Derivazioni, esempio 1

Doppia negazione implica affermazione

$$\vdash \neg \neg \varphi \rightarrow \varphi$$

1:
$$\neg\neg\varphi \vdash \neg\neg\neg\neg\varphi \rightarrow \neg\neg\varphi$$
 (Ax1, Ded)
2: $\neg\neg\varphi \vdash (\neg\neg\neg\neg\varphi \rightarrow \neg\neg\varphi) \rightarrow (\neg\varphi \rightarrow \neg\neg\neg\varphi)$ (Ax3)
3: $\neg\neg\varphi \vdash \neg\varphi \rightarrow \neg\neg\neg\varphi$ (mp 2,1)
4: $\neg\neg\varphi \vdash (\neg\varphi \rightarrow \neg\neg\neg\varphi) \rightarrow (\neg\neg\varphi \rightarrow \varphi)$ (Ax3)
5: $\neg\neg\varphi \vdash \neg\neg\varphi \rightarrow \varphi$ (mp 4,3)
6: $\neg\neg\varphi \vdash \neg\varphi$
7: $\neg\neg\varphi \vdash \varphi$ (mp 5,6)
8: $\vdash \neg\neg\varphi \rightarrow \varphi$

LP – Derivazioni, esempio 2

"Ex absurdo sequitur quodlibet":

$$\vdash \varphi \to (\neg \varphi \to \psi) \qquad (\text{cioè } \varphi, \neg \varphi \vdash \psi)$$
1: $\varphi, \neg \varphi \vdash \neg \varphi \to (\neg \psi \to \neg \varphi)$ (Ax1, Γ arbitrario)
2: $\varphi, \neg \varphi \vdash \neg \varphi$
3: $\varphi, \neg \varphi \vdash \neg \psi \to \neg \varphi$ (mp 1,2)
4: $\varphi, \neg \varphi \vdash (\neg \psi \to \neg \varphi) \to (\varphi \to \psi)$ (Ax3)
5: $\varphi, \neg \varphi \vdash \varphi \to \psi$ (mp 4,3)
6: $\varphi, \neg \varphi \vdash \varphi$
7: $\varphi, \neg \varphi \vdash \psi$ (mp 5,6)
8: $\varphi \vdash \neg \varphi \to \psi$ (Ded)
9: $\vdash \varphi \to (\neg \varphi \to \psi)$

LP - Correttezza e completezza

- Correttezza
 - la regola del *modus ponens* preserva la conseguenza logica $\Gamma \models \{\varphi \rightarrow \psi, \varphi\} \Rightarrow \Gamma \models \psi$
 - le fbf φ derivabili da un insieme di fbf Γ sono una conseguenza logica di Γ (sono soddisfatte dai modelli di Γ)

$$\Gamma \vdash \varphi \Rightarrow \Gamma \models \varphi$$

 tutte le fbf *derivabili* dagli assiomi Axn assiomi sono *valide* (cioè sono *tautologie*)

$$\vdash \varphi \Rightarrow \models \varphi$$

- Completezza
 - le *conseguenze logiche* di Γ sono le fbf φ *derivabili*

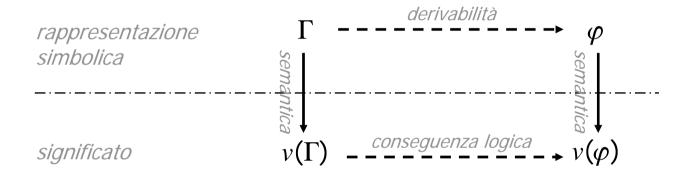
$$\Gamma \vdash \varphi \Leftrightarrow \Gamma \models \varphi$$

le fbf valide sono tutte e sole le fbf derivabili dagli assiomi Axn

$$\vdash \varphi \Leftrightarrow \models \varphi$$

LP - Calcolo simbolico

 Per la proprietà di completezza, la derivazione simbolica è rappresentativa delle relazioni tra i significati



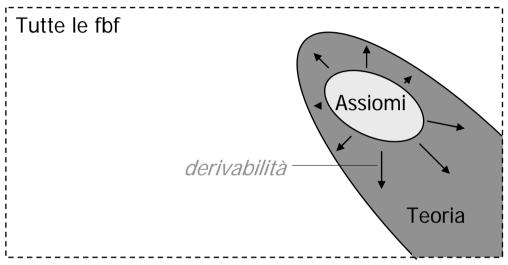
- Nel caso della logica proposizionale, la relazione di conseguenza logica può essere determinata in modo diretto
- In molti altri casi, la derivazione simbolica è l'unica possibilità

LP - Teorie, assiomatizzazione

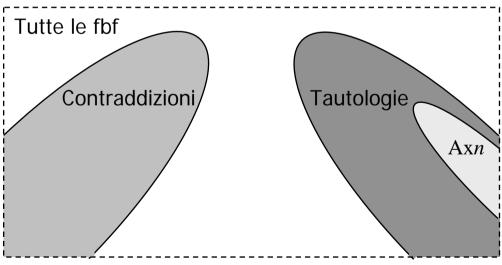
- Un qualsiasi insieme di fbf Σ può essere detto una teoria
- Dato un insieme di fbf Γ, l'insieme dei teoremi di Γ
 è l'insieme di tutte le fbf derivabili a partire da Γ
 teoremi(Γ) = {φ : Γ | φ}
- Un insieme di fbf Γ è un'assiomatizzazione di Σ sse $\Sigma \equiv \textit{teoremi}(\Gamma)$
- Il sistema di assiomi Axn descrive la teoria delle fbf valide del calcolo proposizionale classico (LP)
 - le fbf valide si applicano a qualsiasi 'ragionamento' in LP (sono 'leggi logiche' nel senso di leggi di LP)

LP – fbf e teorie

- Una teoria può essere definita tramite assiomi
 - In questo caso, la teoria coincide con i teoremi (fbf derivabili dagli assiomi)



- Nel caso di Axn per LP
 - L'insieme di assiomi è infinito (esistono assiomatizzazioni finite)
 - La teoria è l'insieme delle tautologie (o fbf valide)



LP - Logica, teorie ed applicazioni

- In generale, l'assiomatizzazione di una logica
 è la descrizione concisa dell'insieme delle fbf valide di quella logica
 - Il sistema di assiomi Axn in LP è la descrizione dell'insieme delle tautologie
- La teoria delle fbf valide di una logica (p.es. LP) rappresenta l'insieme delle leggi logiche generali (di quella logica) e non contiene alcuna rappresentazione specifica
- Ai fini dell'applicazione a problemi pratici (non solo logici), le teorie devono rappresentare conoscenze specifiche
 - ad esempio il funzionamento di un dispositivo o di un impianto
- Esistono quindi anche assiomatizzazioni di teorie specifiche
 - cioè le applicazioni pratiche ...

LP – Esempio di teoria specifica

"La macchina non parte", proposizioni atomiche:

A: "La batteria è carica"
L: "Le luci si accendono"
R: "L'autoradio funziona"
M: "Il motorino d'avviamento gira"
G: "Il motorino d'avviamento è guasto"
P: "Il motore parte"

Assiomi della Teoria K

AxK₁: $\neg A \rightarrow (\neg L \land \neg R \land \neg M)$ AxK₂: $G \rightarrow \neg M$ AxK₃: $\neg M \rightarrow \neg P$

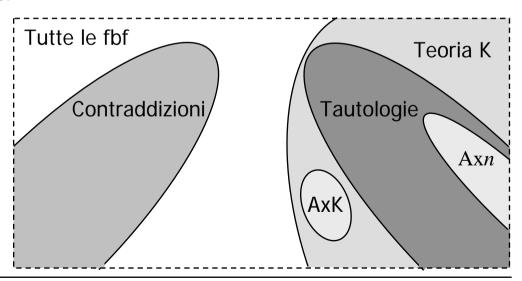
Esempi di derivazione

 $\neg A \vdash \neg P$ applicando $AxK_1 e AxK_3$ $G \vdash \neg P$ applicando $AxK_2 e AxK_3$

LP – Tautologie e teorie specifiche

- La Teoria K è definita dagli assiomi AxK
 - coincide con l'insieme di fbf derivabili da AxK
 - l'assiomatizzazione è finita, la teoria no
- La Teoria K include Axn e tutte le tautologie (o fbf valide)
 - si rammenti la definizione di derivazione
 - non può contenere contraddizioni
 - altrimenti include tutte le fbf

 Tutte le teorie specifiche si comportano come K



LP – Decidibilità e derivazione

 Un sistema logico è detto decidibile se esiste un algoritmo di validità generale per stabilire se

$$\Gamma \models \varphi$$

In LP ciò equivale a dire (per la completezza)

$$\Gamma \vdash \varphi$$

- La logica proposizionale è senz'altro decidibile
 - alla peggio, si provano tutte le 2^n possibili interpretazioni per stabilire se $\Gamma \models \varphi$
- Il procedimento di *derivazione* non è un algoritmo deterministico
 - ad ogni passo occorre scegliere 'la mossa giusta'
 - quale formula o quale assioma introdurre, derivare per MP
 - si tratta di una tecnica per la derivazione manuale

LP – Forme normali (1)

- Forma normale congiuntiva (FNC)
 - Una formula in cui il connettivo \land appare solo al livello più esterno $\alpha_1 \land \alpha_2 \land \dots \land \alpha_n$ dove le α_i sono fbf in cui si usa solo \lor e \lnot ed il \lnot compare solo davanti alle lettere
 - Esempio: $(A \lor \neg B) \land (\neg C \lor \neg D \lor A) \land D$ $A_{i} \neg B_{i} \neg D_{i} D_{i} ... \text{ sono detti } \textit{letterali}$
 - Qualsiasi fbf di LP può essere tradotta in una fbf equivalente in FNC (dimostrazione sul testo)
 - Algoritmo per la traduzione:
 - 1) Si eliminano \rightarrow e \leftrightarrow in base alle regole di abbreviazione (vedi pag. 5)
 - 2) Si muove \neg all'interno con le "leggi De Morgan": $(\varphi \land \psi) \leftrightarrow \neg (\neg \varphi \lor \neg \psi)$ $(\varphi \lor \psi) \leftrightarrow \neg (\neg \varphi \land \neg \psi)$
 - 3) Si distribuisce V proprietà del connettivo: $((\varphi \land \psi) \lor \chi) \leftrightarrow ((\varphi \lor \chi) \land (\psi \lor \chi))$

LP – Forme normali (2)

- Forma normale congiuntiva (FNC)
 - Esempio:

$$A \rightarrow \neg (B \lor C)$$

 $\neg A \lor \neg (B \lor C)$ (eliminazione di \rightarrow)
 $\neg A \lor (\neg B \land \neg C)$ (De Morgan)
 $(\neg A \lor \neg B) \land (\neg A \lor \neg C)$ (distribuzione di \land)

- Forma normale disgiuntiva (FND)
 - Una formula in cui il connettivo \vee appare solo al livello più esterno $\alpha_1 \vee \alpha_2 \vee ... \vee \alpha_n$ dove le α_i sono fbf in cui si usa solo \wedge e \neg ed il \neg compare solo davanti alle lettere
 - Qualsiasi fbf di LP può essere tradotta in una fbf equivalente in FND

LP – Forma a clausole

- Forma a clausole (FC)
 - Un qualunque <u>insieme di fbf</u> Γ in cui le fbf sono formate solo da **disgiunzioni di letterali** $\alpha_1 \vee \alpha_2 \vee ... \vee \alpha_n$ dove le α_i sono del tipo A o $\neg A$
 - Esempio:

$$\Gamma = \{A \lor \neg B, \neg C \lor \neg D \lor A, D\}$$

si può scrivere anche $\Gamma = \{\{A, \neg B\}, \{\neg C, \neg D, A\}, \{D\}\}$

- Qualunque insieme di fbf Γ di LP può essere tradotto in un'equivalente FC (dimostrazione sul testo)
- Algoritmo, a partire da un Γ qualsiasi:
 - 1) Si traduce ciascuna le fbf di Γ in FNC si otterranno fbf del tipo $\beta_1 \wedge \beta_2 \wedge ... \wedge \beta_n$, dove ogni β_i è una disgiunzione di letterali
 - 2) Si 'spezza' ciascuna fbf in FNC in un insieme di fbf disgiuntive da $\beta_1 \wedge \beta_2 \wedge ... \wedge \beta_n$ si ottiene $\{\beta_1, \beta_2, ..., \beta_n\}$
 - 3) L'insieme Γ' (in FC) è l'unione degli insiemi di fbf così ottenute

LP – Inferenza per risoluzione

- Regola di inferenza per risoluzione
 - a partire da due formule $\varphi \lor \chi$ e $\neg \chi \lor \psi$ si deriva $\varphi \lor \psi$ risolvente
 - sulla base del fatto che $\varphi \lor \chi$, $\neg \chi \lor \psi \models \varphi \lor \psi$

	arphi	ψ	χ	$\varphi \vee \chi$	$\neg \chi \lor \psi$	$\varphi \vee \psi$
	1	1	1	1	1	1
	0	1	1	1	1	1
	1	0	1	1	0	1
	0	0	1	1	0	0
	1	1	0	1	1	1
	0	1	0	0	1	1
`	1	0	0	1	1	1
,	0	0	0	0	1	0

Si può verificare direttamente

• Il *modus ponens* è un caso particolare di *risoluzione*

$$\chi \to \psi$$
, $\chi \vdash \psi$ può essere riscritto come χ , $\neg \chi \lor \psi \vdash \psi$

LP - Derivazione per risoluzione

- Derivazione per risoluzione:
 - Procedimento per stabilire se $\Gamma \vdash \varphi$:
 - 1) Si traduce Γ in un equivalente Γ' in FC
 - 2) Si traduce φ in un equivalente Φ in FC
 - 3) Si applica a Γ' in modo esaustivo la regola di risoluzione *in forma ristretta* (cioè si risolve un letterale alla volta: $\varphi \lor A$, $\neg A \lor \psi \vdash \varphi \lor \psi$)
 - 4) al termine si ottiene un insieme Σ (di fbf in FC), dove $\Sigma \supseteq \Gamma'$
 - 5) Se $\Phi \subseteq \Sigma$, allora $\Gamma \vdash \varphi$
- Vantaggi:
 - esiste un'unica operazione di derivazione (la risoluzione)
 - non necessita di assiomi logici
- Purtroppo:
 - questo metodo è corretto ma non è completo
 - non è possibile derivare tutte le conseguenze logiche di un insieme di premesse

LP – Refutazione e risoluzione

Conseguenza logica e insoddisfacibilità

 $\Gamma \models \varphi$ sse $\Gamma \cup \{\neg \varphi\}$ è insoddisfacibile

φ	ψ	А	$\varphi \lor A$	$\neg A \lor \psi$	$\neg(\varphi \lor \psi)$
1	1	1	1	1	0
0	1	1	1	1	0
1	0	1	1	0	0
0	0	1	1	0	1
1	1	0	1	1	0
0	1	0	0	1	0
1	0	0	1	1	0
0	0	0	0	1	1

- Una clausola vuota è testimone di insoddisfacibilità per $\Gamma \cup \{\neg \varphi\}$
 - da $\{\{\neg A\}, \{A\}\}\$ si deriva per risoluzione $\{\}$ (i.e. una contraddizione)
- Risoluzione per refutazione
 - dovendo dimostrare $\Gamma \models \varphi$
 - si parte da $\Gamma \cup \{\neg \varphi\}$ tradotte in FC
 - e si cerca di derivare { } (insoddisfacibilità)

LP – Risoluzione come algoritmo

- Il metodo della risoluzione per refutazione:
 - è corretto
 - è anche completo (si può derivare qualsiasi conseguenza logica)
- Come algoritmo:
 - è sempre terminante (in LP)
 - infatti, dato un generico problema $\Gamma \cup \{\neg \varphi\}$
 - a) si deriva la clausola vuota { }
 - b) oppure l'algoritmo si arresta quando non sono possibili ulteriori risoluzioni
 - ha una complessità esponenziale $O(2^n)$ dove n è il numero delle *lettere*

LP – Clausole di Horn

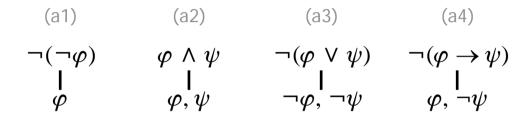
- Una clausola di Horn
 - è una fbf in cui compaiono solo ∨ e ¬
 - in cui si ha al massimo un letterale in forma positiva
- Tre tipi di clausole di Horn:
 - singoli letterali (o fatti): A, ¬B, C
 - implicazioni (o regole): $(A \land B \land ...) \rightarrow C$ cioè $\neg A \lor \neg B \lor ... \lor C$
 - obiettivi o goal: $(C \land D \land ...)$, la cui forma <u>negata</u> è $\neg C \lor \neg D \lor ...$
- Tecnica generale
 - si esprimono le premesse come fatti e regole
 - si definisce il risultato atteso ("Giorgio è contento"?) come goal
 - si applica la tecnica della *risoluzione per refutazione*
- Limitazioni e vantaggi
 - non tutte i problemi LP sono esprimibili come clausole di Horn
 - ma molti problemi pratici lo sono
 - la risoluzione diretta ha complessità lineare O(n)

LP – Metodo a tableau

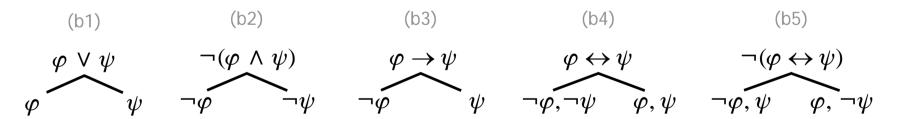
- Anche detto tableau semantici o a "tableaux"
- E` un metodo basato sulla refutazione:
 - per stabilire che $\Gamma \models \varphi$ si tenta di mostrare che $\Gamma \cup \{\neg \varphi\}$ è inconsistente
- Caratteristiche generali:
 - l'insieme $\Gamma \cup \{\neg \varphi\}$ viene completamente espanso in forma di *albero*
 - si usano diverse regole di inferenza (9 per LP) per l'espansione
 - ogni nodo dell'albero rappresenta una congiunzione di fbf
 - ogni biforcazione rappresenta una disgiunzione
 - un ramo è chiuso non appena si incontra una contraddizione $\{\varphi, \neg \varphi\}$
 - $-\Gamma \cup \{\neg \varphi\}$ è inconsistente (o insoddisfacibile) se tutti i rami dell'albero sono **chiusi**
 - $-\Gamma \cup \{\neg \varphi\}$ non è inconsistente se almeno un ramo che non si chiude
 - non è necessario che $\Gamma \cup \{\neg \varphi\}$ sia espresso in una forma normale

LP – Regole di inferenza per i tableau

Regole alfa (o di espansione)

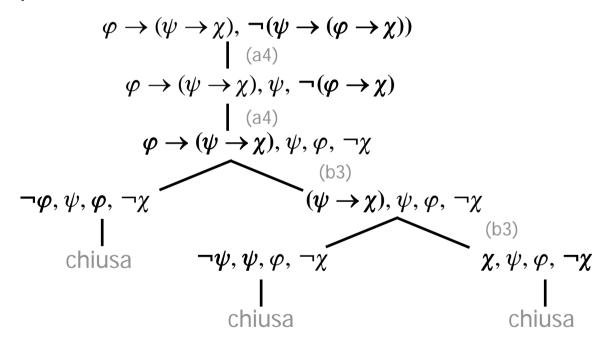


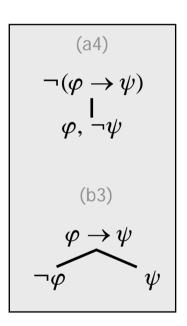
Regole beta (o di biforcazione)



LP – Esempio del metodo a tableau

- Obiettivo
 - stabilire che $\varphi \to (\psi \to \chi) \vdash \psi \to (\varphi \to \chi)$
- Espansione





LP – Algoritmo del metodo a tableau

- Procedura per $\Gamma \models \varphi$
 - 1) Definire il nodo iniziale $\Gamma \cup \{\neg \varphi\}$
 - 2) Per ogni ramo, in modalità *depth first*
 - 3) Se il nodo contiene solo letterali, allora se il nodo contiene una contraddizione, chiudere altrimenti il procedimento è fallito, uscire
 - 4) Se il nodo contiene formule applicare le regole alfa applicare le regole beta
- Notare che le regole alfa vengono applicate prima delle regole beta

LP - Caratteristiche del metodo a tableau

Efficienza

- anche se la complessità worst case è sempre O(2ⁿ)
- l'efficienza del metodo dipende in generale dalla struttura delle fbf, più che dal numero di letterali
- in molti casi pratici, il metodo a tableau è estremamente efficace

Leggibilità

- si applica a fbf in forma qualsiasi
- non richiede forme normali né assiomi logici

Generalità

 modificando opportunamente le regole di inferenza si possono costruire versioni del metodo anche per altre logiche (anche non classiche, come le logiche modali e multivalenti)