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ABSTRACT

Grammatical Evolution (GE) is a
grammar based GA to generate com-
puter programs which has been shown
to be comparable with GP when applied
to a diverse array of problems. GE has
the distinction that its input is a BNF,
which permits it to generate programs
in any language, of arbitrary complex-
ity, including loops, multiple line func-
tions etc. Part of the power of GE is that
it is closer to natural DNA than GP, and
thus can benefit from natural phenom-
ena such as a separation of search and
solution spaces through a genotype to
phenotype mapping, and a genetic code
degeneracy which can give rise to silent
mutations(Mutations that have no effect
on the phenotype).

We have previously shown how runs
of GE are competitive with GP, and
in this paper we analyse characteristics
such as genotypic diversity, and individ-
ual genotypic length, in an attempt to
shed light on the power of the system.
Results indicate that GE can use certain
features of the system to its benefit if and
when necessary.

1 Introduction
Grammatical Evolution (GE) is a grammar based, variable

length, linear genome system which is capable of generating
code in any language. Rather than the functions and termi-
nals associated with GP, GE takes a BNF specification of a
language, or subset thereof, from which it can subsequently
generate compilable code. In order to produce code using the
BNF a genotype to phenotype mapping process is employed
which produces a program from the genotypic binary string.

GE has been successfully applied to a number of
diverse problem domains such as, Symbolic Regres-
sion, Finding Trigonometric Identities, and the Santa Fe
Trail [Ryan et al. 98a] [Ryan et al. 98b] [Ryan, O’Neill 98]
[O’Neill, Ryan 99]. The results compared favorably with sys-
tems such as GP, and in the case of the Santa Fe Trail problem
have been shown to outperform GP [O’Neill, Ryan 99].

This paper analyses some of the distinctive features of GE,
which draw inspiration from molecular biology, to examine
their effect on the system, and how the system as a whole
may benefit from the modeling of further biological princi-
ples. Features such as the extent of wrapping, which in-
volves re-using parts of the genome which have already be-
ing expressed, actual genome length in comparison with the
effective genome length, and the genotypic diversity main-
tained during a run will be analysed. Before a description of
the problem domains tackled, and results obtained thereon, a
brief description of GE follows.

2 Grammatical Evolution
When tackling any problem with GE a suitable BNF defi-

nition must first be decided upon. The BNF can be either the
specification of an entire language, or perhaps more usefully a
subset of a language geared towards the problem at hand. For
example, the BNF for the Santa Fe Ant Trail is as follows;

N = {<code>,<line>,<if-statement>,
<op>,<if-true>,<if-false>}

T = {left(),right(),move(),food_ahead(),
else,if,{,},(,),;}

S = <code>

And
�

can be represented as:

(1) <code> :: = <line> (A)
|<code><line> (B)

(2) <line> :: = <if-statement> (A)
|<op> (B)



(3) <if-statement> :: =
if(food_ahead()){<line>} else{<line>}

(4) <op> :: = left(); (A)
| right(); (B)
| move(); (C)

where the operations,
����������	

, 
����� ����	 , ����� ����	 , and� ����� ��� � ��� ��	 , are all functions written in the C program-
ming language, and � is the set of non-terminals, � , the set
of terminals,

�
, a set of production rules that map the ele-

ments of � to � , and � is a start symbol which is a member
of � .

The genotype is then used to map the start symbol onto ter-
minals by reading codons of 8 bits to generate a correspond-
ing integer value, from which an appropriate production rule
is selected. A rule is selected by using the following, (In-
teger Codon Value) MOD (Number of Production Rules for
the current non-terminal). Considering rule #5 from above,
i.e. given the non-terminal ����� � there are three production
rules to select from. If we assume the codon being read pro-
duces the integer 6, then !#"%$'&)(+*-, would select rule��./	0�1��������	

. Each time a production rule has to be selected to
map from a non-terminal, another codon is read, and in this
way, the system traverses the genome.

During the genotype to phenotype mapping process it is
possible for individuals to run out of codons, and in this case
we wrap the individual, and reuse the codons. This is quite
an unusual approach in EA’s, as it is entirely possible for cer-
tain codons to be used two or more times. This technique
of wrapping the individual draws inspiration from the gene
overlapping phenomenon which has been observed in many
organisms in nature [Elseth 95]. In GE, each time the same
codon is expressed it will always generate the same integer
value but, depending on the current non-terminal, may have
a different effect, that is, it may select a different production
rule. What is crucial, however, is that each time a particular
individual is mapped from its genotype to its phenotype, the
same output is generated. This is because the same choices
are made each time. It is possible that an incomplete map-
ping could occur, even after wrapping, and in this event the
individual in question is given the lowest fitness value pos-
sible, then the selection and replacement mechanisms should
operate accordingly to increase the likelihood that this indi-
vidual is removed from the population. An incomplete map-
ping could arise if the integer codon values expressed by the
genotype were applying the same production rules over and
over. For example given an individual with three codons, if
the first codon specified rule B from below,

(1) <code> :: = <line> (A)
|<code><line> (B)

and the second, and third also specified this same rule, even

after wrapping the mapping process would be incomplete and
would carry on indefinitely unless stopped. Those individuals
that do not undergo a complete mapping after a predetermined
time are given the lowest possible fitness value, and in order
to reduce the number of invalid individuals being passed from
generation to generation a Steady State replacement mecha-
nism is employed. A consequence of the Steady State method
is its tendency to maintain fit individuals at the expense of less
fit, and in particular, invalid individuals.

An overview of how GE operates in comparison with a bio-
logical genetic system can be seen in Figure 1. It can be seen
that genes are expressed as proteins which produce a pheno-
type. More than one protein may be responsible for produc-
ing any one phenotype, and a similar situation occurs in GE.
Here a codon results in the selection of rules which map non-
terminals onto either more non-terminals, or terminals, it is
a combination of these terminals and non-terminals that pro-
duce the phenotype, or program.
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Figure 1 A comparison between Grammatical Evolution
and Biological System.

3 The Problem Spaces
In order to obtain useful data to allow an effective analy-

sis of GE, two problem domains were tackled at which GE
was previously found to be successful, namely a Symbolic
Regression problem [Ryan et al. 98a], and the Santa Fe Ant
Trail [O’Neill, Ryan 99]. A brief description of these prob-
lem domains follows.

3.1 Symbolic Regression
GE was applied to a symbolic regression problem sum-

marised in Table 1, which had been previously solved in
[Ryan et al. 98a]. The system is given a set of input and out-
put pairs, and must determine the function that maps one onto
the other. The particular function examined is

�2�13#	 * 35406735896:35;96:3



with the input values in the range
��������� 6 �	�

. As the target
function has no constant values, only the variable X, it was
decided to use only one terminal operand, i.e. X. So as not to
unduly bias the system towards the correct solution, the ter-
minal operators set consisted of more than the binary addition
and multiplication operators, which alone would be sufficient
to reach the target function. To determine the fitness of an
individual program 20 test points were applied in the input
range, and the fitness was taken as the sum of the error.

Objective : Find a function of one independent
variable and one dependent
variable,in symbolic form that fits
a given sample of 20 ( 
������� )
data points, where the target
function is the quartic polynomial3 4 6:3 8 6:3 ; 6:3

Terminal Operands:
3

(the independent variable)
Terminal Operators The binary operators

6 ����
and, the unary operators

Sin, Cos, Exp and Log
Fitness cases The given sample of 20 data points

in the interval [
���  6 � ]

Raw Fitness The sum, taken over the 20 fitness
cases, of the error

Standardised Fitness Same as raw fitness
Hits The number of fitness cases for

which the error is less than 0.01
Wrapper Standard productions to generate

C functions
Parameters " = 500, � = 21

Table 1 Grammatical Evolution Tableau for Symbolic
Regression

3.2 Santa Fe Ant Trail

The Santa Fe Ant Trail is a standard problem tackled in the
area of Genetic Programming, and can be considered a de-
ceptive planning problem with many local and global optima
[Langdon, Poli 98]. GE has been previously shown to outper-
form GP on this problem [O’Neill, Ryan 99]. The objective is
to find a computer program to control an artificial ant so that it
can find all 89 pieces of food located on a non-continuous trail
within a specified number of time steps. The code evolved is
then executed in a loop until the number of time steps allowed
has elapsed. The ant can only turn left, right, move forward
one square, and may also look ahead one square in the direc-
tion it’s facing to determine if that square contains a piece of
food. The actions left, right, and move each take one time
step to execute.

While there are many possible fitness cases to the Santa Fe
trail only one case was taken for the purposes of this exper-
iment. The ant started in the top left hand corner of the grid
facing the first piece of food on the trail. A summary of the
problem can be seen in Table 2.

Objective : Find a computer program to control
an artificial ant so that it can
find all 89 pieces of food located on
the Santa Fe Trail.

Terminal Operators: left(), right(), move(), food ahead()
Fitness cases One fitness case
Raw Fitness Number of pieces of food before the

ant times out with 615 operations.
Standardised Fitness Total number of pieces of

food less the raw fitness.
Hits Same as raw fitness.
Wrapper Standard productions to generate

C functions
Parameters " = 500, � = 21

Table 2 Grammatical Evolution Tableau for the Santa
Fe Trail

4 Results
In order to establish the effects that wrapping may be hav-

ing on the system, two sets of experiments were carried out
where the wrapping feature was turned on and off. Twenty
runs for each experiment set on both problem domains were
carried out, and the results produced now follow.

4.1 Symbolic Regression
Cumulative frequency measures in the case where wrap-

ping is turned on and off can be seen in Figure 2. In the case
where wrapping is disabled, there is a slight increase in per-
formance of the system on this problem.

The average number of individuals undergoing wrapping at
each generation can be seen in Figure 4.

A genotypic diversity measure which we have termed the
mean variety, was carried out for the twenty runs. This mea-
sure was obtained by calculating the average of the variances
at each bit locus on the genome, and is given by the following
formula:

" � ����� � 
�� � � � *
����

�����! #"�$ ��%'&)(�*+,
Where

3 � is the locus value at position � , - is the mean of3 � at locus � , � is the sample population size, and
,

is the
number of loci analysed.

With a population size of 500 this meant that the greater the
variance in a population the closer the mean variety measure
is to 0.25. The aim of this measure is to attempt to estab-
lish how different the individual genotypes in any given pop-
ulation are, see Figure 8 for these results. Another measure
of variety has also been given in Figure 7, which is simply
the number of unique individuals in a population, and can be
used to some extent to illustrate the genetic diversity within a
population[Langdon 98]. From these results it would appear
that wrapping is having very little effect on the number of



unique individuals, with the mean variety measure decreasing
when wrapping is absent.

A comparison of the average actual genome lengths to the
average effective genome lengths is given in Figure 3. The
effective genome length is a measure of the number of ex-
pressed genes during the genotype to phenotype mapping pro-
cess, the actual length being the number of genes on the chro-
mosome. The actual length is on average longer than the ef-
fective length for this problem, and when wrapping is turned
off the actual genome lengths increase significantly.
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Figure 2 Cumulative frequency measures for the Sym-
bolic Regression problem.
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Figure 3 Actual versus Effective Genome Length for
Symbolic Regression.

4.2 Santa Fe Ant Trail
Cumulative frequency measures in the case where wrap-

ping is turned on and off can be seen in Figure 5. In the case
where wrapping is disabled there are no successful individu-
als created within the 20 generations examined.

The average number of individuals undergoing wrapping at
each generation is significantly greater than for the Symbolic
Regression problem, see Figure 4.

The mean variety measure described earlier is given for this
problem in Figure 8, and the number of unique individuals
at each generation can be seen in Figure 7. The number of
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Figure 4 Number of individuals wrapped.

unique individuals is much greater when wrapping is enabled,
and the variety within the population is less than when wrap-
ping is disabled.

A comparison of the average actual genome lengths to the
average effective genome lengths is given in Figure 6. Given
the fact that the wrapping feature was exploited to a greater
extent in this problem the effective lengths of the genomes is
greater than the actual lengths when wrapping was allowed.
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Figure 5 Cumulative frequency measures for the Santa
Fe Trail problem.

5 Discussion
A comparison of the number of invalid individuals pro-

duced in both problem domains examined here shows that,
invalid individuals are restricted almost exclusively to the
initial population, see Figure 9. The effective removal of
these unwanted individuals could be attributed to selection
and replacement mechanisms used in the GA, in particular
the Steady State replacement strategy, and as such is an ex-
ample of the effective use of the illegal individual replace-
ment constraint to evolve legal phenotypes, as described in
[Yu and Bentley 98]. A significant increase in performance
of the system was noted in [Ryan, O’Neill 98] when a Steady
State replacement mechanism was employed over the previ-
ous generational mechanism. The poorer performance of the
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Figure 6 Actual versus Effective Genome Length for the
Santa Fe Trail.
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Figure 7 Number of unique individuals.

system, when using the generational replacement mechanism,
could be partially attributed to the propagation of a large num-
ber of invalid individuals from generation to generation which
overwhelm the useful population.

The data obtained for the number of unique individuals,
and the mean variety measure, while not perfect indicators of
genetic diversity, would suggest that wrapping does not have
a significant effect on the genetic diversity within a popula-
tion. Wrapping does however, have a large effect on the prob-
ability of success within the 20 generations examined in the
case of the Santa Fe Trail problem. This could be due to the
regular repetitive nature of the required solution which could
be exploited effectively by the wrapping mechanism. Future
work will involve analysing these runs over longer periods of
generations to determine if a solution to the Santa Fe Trail
without wrapping could be obtained, by simply using longer
chromosomes, and in particular by the use of the duplication
operator with useful codons.

In [Banzhaf 94] it was suggested that a genotype to phe-
notype mapping process could be responsible for maintain-
ing genetic diversity in a population by virtue of neutral mu-
tations, what we refer to as silent mutations, according to
Kimura’s neutral theory of molecular evolution [Kimura 83].
The genetic code degeneracy in GE, just like in the genetic
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Figure 8 Mean variety for each generation.
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Figure 9 Number of invalid individuals for each genera-
tion.

code observed in molecular biology, could be playing a vi-
tal role in maintaining the genetic diversity that has been
observed here, and as such, an investigation into this phe-
nomenon will be carried out. The fact that GE is capable of
ensuring genetic diversity throughout a run, could prove to be
a very useful feature if the system was to be applied to prob-
lems that required an adaptive property, such as in dynamic
problem domains.

A comparison of GE to GP was carried out in
[O’Neill, Ryan 99] on the Santa Fe Trail, and it was found
that while GP suffered from bloat in the case where solution
lengths were not minimised by being taken into account in
the fitness function, GE suffered no such ill effects. Wrap-
ping, one of the more unusual features of GE has been shown
to be used by the system in the case of this problem domain.
As to why wrapping is employed in this case is unclear, and
does not appear to be responsible for restricting bloat, as no
significant increase in genotypic lengths was observed when
wrapping was switched off. However, when wrapping was
disabled in the case of the Symbolic Regression problem it
was found that the chromosome lengths increased by a large
amount. In this case the wrapping feature appears to restrict
the length of the chromosomes.



6 Conclusions
A detailed analysis of some of GE’s features has been de-

scribed, in particular focus was directed towards wrapping.
The results indicate that wrapping was essential for success
in the window of generations analysed on the Santa Fe Trail
problem, and was useful in restricting genotypic lengths in
the case of Symbolic Regression.

Using the mean variety measure has suggested that genetic
diversity is being maintained during runs of the system. The
fact that genetic diversity is maintained could be attributed to
the fact that the search space has been separated from the so-
lution space via the genotype to phenotype mapping process,
and in particular it is thought that the degenerate genetic code
is responsible for this phenomenon. In light of this, it would
be interesting to examine in detail what effect the genetic code
degeneracy is having on the performance of the system, and if
it is being exploited during the evolutionary process to main-
tain genetic diversity.

Taking on board these findings, and the fact that GE has
proved successful across diverse problem domains, indica-
tions are that GE is a powerful approach to generating pro-
grams in any language.
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