Intelligenza Artificiale

Introduzione al Genetic Programmimg

Marco Piastra

Classificazione del GP

• In base alle dimensioni dei sistemi di calcolo evolutivo

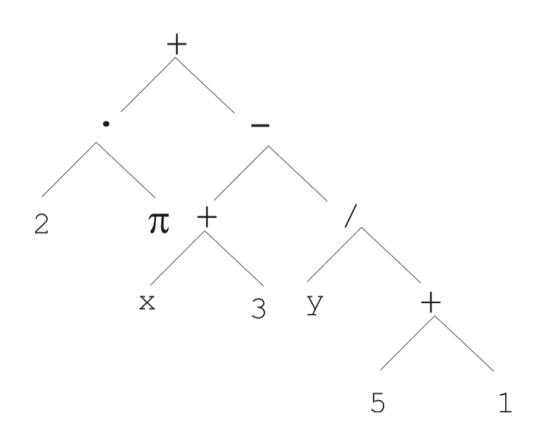
Rappresentazione	Strutture ad albero
Ricombinazione	Scambio di sotto-alberi
Mutazione	Cancellazione e ricostruzione di sotto-alberi
Selezione	Torneo
Processo evolutivo	Generazionale

• Vi sono comunque molte varianti ...

Strutture sintattiche e alberi

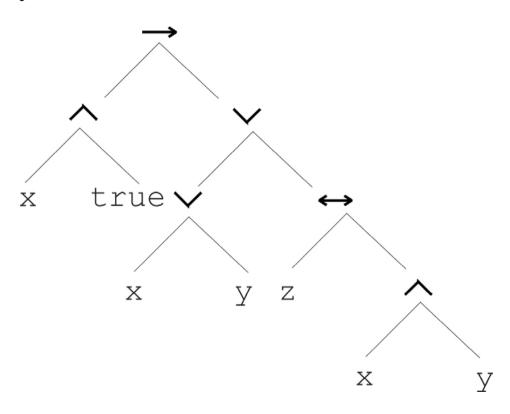
- Universalità
 - Qualsiasi cosa abbia una sintassi formale (una grammatica) può essere rappresentata in forma di albero
 - 1. Espressioni aritmetiche

$$2 \cdot \pi + \left((x+3) - \frac{y}{5+1} \right)$$


2. Formule logiche

$$(x \land z) \rightarrow ((x \lor y) \lor (z \longleftrightarrow (x \land y)))$$

3. Programmi

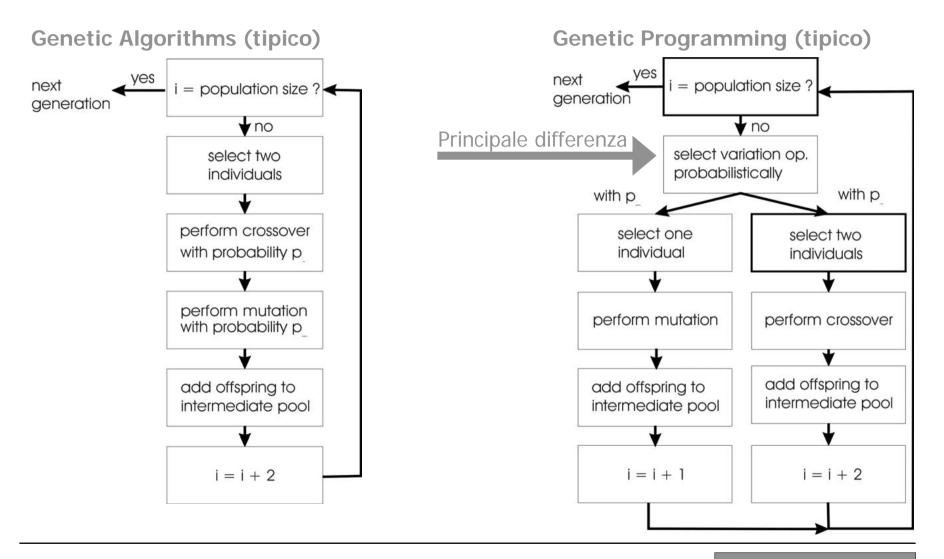

Esempio 1

$$2 \cdot \pi + \left((x+3) - \frac{y}{5+1} \right)$$

Esempio 2

$$(x \land z) \rightarrow ((x \lor y) \lor (z \longleftrightarrow (x \land y)))$$

Esempio 3


```
i =1;
while (i < 20) {
    i = i +1
}</pre>
```


GP ed alberi

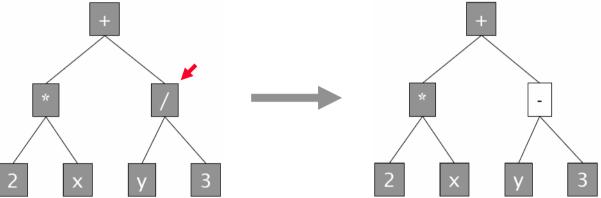
- Una tecnica di calcolo evolutivo per le strutture ad albero
 - Le strutture ad albero rappresentano *espressioni* in una *sintassi*
 - Gli operatori genetici (*mutazione*, *ricombinazione*) agiscono direttamente sulle strutture ad albero
 - Praticamente assente la differenza tra *genotipo* e *fenotipo*
- Valutazione della fitness
 - Le strutture ad albero hanno una semantica operazionale
 - Descrivono operazioni da compiere
 - p.es. il programma di controllo di un robot
 - La valutazione della fitness è indiretta
 - Si valuta la struttura ad albero
 - La funzione di fitness si applica ai risultati della valutazione
- Lo spazio delle possibili soluzioni
 - p.es. lo spazio delle espressioni aritmetiche
 - Troppo vasto ed articolato per uno studio analitico esaustivo

GP e processo evolutivo

Generazione di strutture ad albero

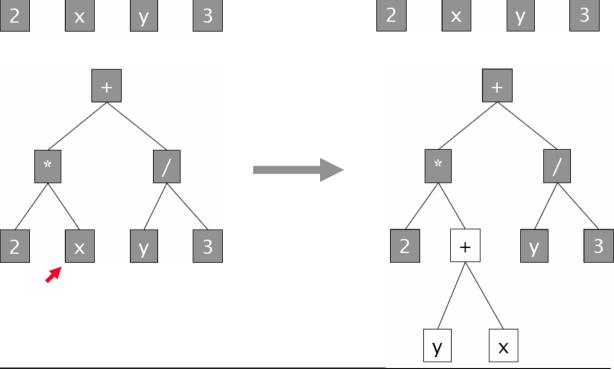
- Algoritmo di generazione
 - Due insiemi di simboli:
 - Simboli non teminali NT, con arità $\{+, -(2), *, /, -(1)\}$
 - Simboli terminali T

- $\{x, y, z, \pi, ...\}$
- Limite di profondità massima D_{max}
- Si genera l'albero in modo incrementale
 - A partire dal nodo radice, scegliendo i nodi a caso in NT e T
- Full method
 - Ogni nodo a profondità < D_{max} è scelto in NT
 - Ogni nodo a profondità = D_{max} è scelto in T
- Grow Method
 - Ogni nodo a profondità < D_{max} è scelto in NT ∪ T
 - Ogni nodo a profondità = D_{max} è scelto in T
 - Gli alberi risultanti possono avere profondità < D_{max}


Strategie di generazione

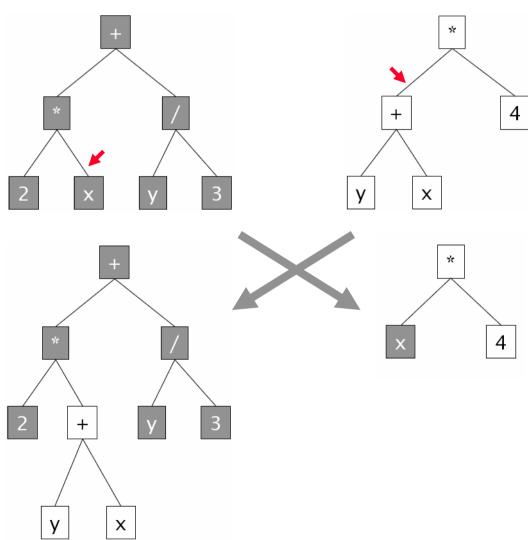
- Popolazione iniziale
 - Strategia classica nel GP: ramped half-and-half
 - 50% di individui generati con il *Full Method*
 - 50% di individui generati con il Grow Method
- Sintassi semplici e limitazioni semantiche
 - L'algoritmo di generazione funziona solo per le sintassi typeless
 - A parte i limiti di profondità
 - Qualsiasi elemento di NT ∪ T può essere scelto ad ogni passo dell'algoritmo di generazione
 - Le operazioni devono essere protette (p.es. divisione per zero)
 - La maggior parte dei linguaggi di programmazione sono invece strongly-typed (p.es. C, C++, Java, SQL)

Operatori di mutazione


Sostituzione

- Selezione di un nodo
- Alterazione del nodo

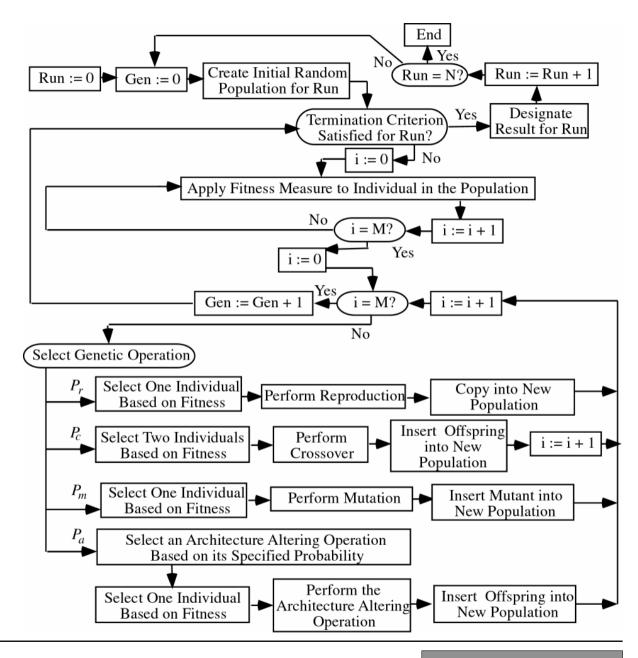
Editing


- Selezione di un nodo
- Rimozione del sotto-albero
- Generazione di un nuovo sotto-albero

Operatori di ricombinazione

Crossover

- Selezione di due punti di taglio
- Scambio dei sotto-alberi


Selezione a torneo (tournament)

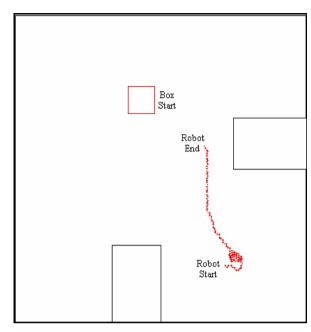
- Motivazione
 - I metodi *fitness proportionate* richiedono strutture dati di popolazione
 - Può essere scomodo su popolazioni vaste e/o distribuite
- Metodo generale
 - Si scelgono a caso k individui della popolazione
 - Tra i k individui, si sceglie quello a fitness più alta
- Controllo
 - Tramite il valore di k (finestra di selezione)
 - Per k = 1 la selezione è puramente casuale (la *fitness* non conta più)
 - Per k = dim(popolazione) la selezione non è più casuale
 - Maggiore il valore di k, maggiore è la pressione selettiva
 - Gli individui a minore fitness hanno probabilità minori di essere selezionati
 - Maggiore è la pressione selettiva, più breve è la durata della diversità
 - L'individuo migliore (della popolazione) prende il sopravvento
 - Un alto tasso di mutazione non può compensare questo effetto

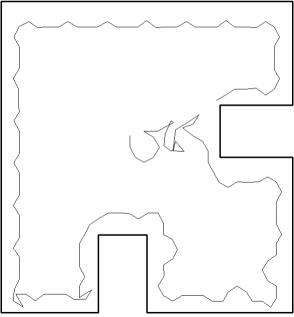
Riproduzione ed elitismo

- Motivazione
 - Nei processi evolutivi generazionali, è pericoloso produrre nuove generazioni solo per mutazione e ricombinazione
 - Si rischia di perdere i risultati acquisiti
 - In quanto gli individui migliori potrebbero andar persi
- Riproduzione
 - Gli individui selezionati vengono copiati nella nuova generazione
 - Un operatore genetico 'degenere': non fa nulla
- Flitismo
 - Selezione non casuale dei migliori n individui e riproduzione
 - Si ha la certezza di non perdersi i migliori di ogni generazione
 - Usare con cautela: abbrevia la durata della diversità

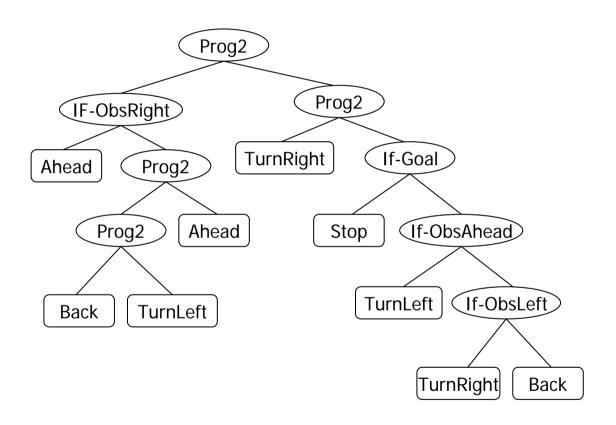
Schema di flusso

Parametri di processo: esempio


- Popolazione
 - Dimensione: da qualche decina a decine di migliaia
 - Dominante, in molti casi, è il costo di valutazione della fitness
 - Popolazioni molto ampie danno maggiori garanzie ma rallentano il processo
 - Profondità D_{max} : tipicamente 7 o 8 (dipende dal problema)
- Selezione operatori genetici
 - Riproduzione: p = 0.1
 - Crossover: p = 0.7
 - Mutazione: p = 0.2
 - La mutazione per editing è meno distruttiva
 - Elitismo: poche unità
- Pressione selettiva
 - Finestra di selezione k: tipicamente 5 su una popolazione di 1024


Problemi tipici

- Non convergenza (valori di fitness non accettabili)
- Perdita della diversità della popolazione
 - Aumento eccessivo della pressione selettiva per accelerare il processo
- Gigantismo degli individui (bloating)
 - Di solito il valore D_{max} viene usato solo per la generazione
 - Gli operatori genetici (p.es. crossover) non limitano le dimensioni dell'offspring
 - Individui più grandi (con parti ridondanti) preservano meglio la fitness
 - E` più alta la probabilità che gli operatori genetici alterino le parti ridondanti
 - Risultato: esplosione delle dimensioni degli individui
 - Fenomeno molto più marcato nel caso di processi non convergenti (può essere un indizio ...)
 - Rimedi:
 - In un processo convergente, spesso il problema si risolve da solo
 - Uso della parsimony pressure:
 la fitness penalizza gradualmente gli individui più grandi


Applicazione: esempio

- Un robot che si muove in un ambiente
 - L'obiettivo è evitare gli ostacoli
 - La logica di controllo utilizza un ciclo sense-eval-act:
 - Lettura dei sensori (sense)
 - Valuta le informazioni (eval)
 - Comandi agli attuatori (act)
 - L'obiettivo dell'evoluzione è una logica di controllo
 - Esplorazione efficace e completa
 - Senza urtare gli ostacoli
 - La fitness valuta il comportamento
 - + Area esplorata, Collisioni
 - La valutazione della fitness prende tempo ...

Applicazione: tipico individuo

Tipico individuo: osservazioni

- I nodi sono typeless
 - Questo facilita la generazione incrementale
- Non c'è passaggio di valori
 - La struttura dei nodi descrive solo il flusso dell'esecuzione
 - I sotto-alberi non passano un valore alla loro radice
 - Si confronti con il caso delle espressioni aritmetiche
- Non si usa memoria
 - Ogni ciclo sense-eval-act è un episodio indipendente
- Problemi per l'estensione
 - Il passaggio dei valori tende a introdurre la gestione dei tipi
 - Si consideri il caso: IF <sense> THEN <eval> ELSE <act>
 - La gestione della memoria può non essere semplice
 - Si può incorporare nei nodi ...