Deep Legrning

UNIVERSITA
DI PAVIA

A course gbout theoty & practice

Reinforcement Learning

Marco Piastra

Deep Learning 2023-2024 Reinforcement Learning (1]

Markov Decision Process (MDP)

Deep Learning 2023-2024 Reinforcement Learning [2]

Basic assumptions

Agent

Environment
St —» St+1

\

[image from: https://arxiv.org/pdf/1811.12560.pdf]

St+1

The Environment: is in state s —— ¢

An Agent observes state s: and performs action a;

The Environment state transitions from S¢ — S¢+1

The Agent receives reward ¢

oo
Cumulative reward: p ._ Z ry

Deep Learning 2023-2024

t=0

Reinforcement Learning 131

Markov Decision Process (MDP)

Markov Decision Process: < S, A,r, P,y >
Asetof states: S = {s1,52,...}

A set of actions: A = {aq,as,...}

A reward function: r: S - R

A transition probability distribution: P(Sy;+1 | S¢, A¢) (also called a model)
Markov property: the transition probability depends only on the previous state and action

P(St—l—l | StaAt) — P(St—l—l | StaAta St—laAt—la St—QaAt—Qv ..)
A discountfactor: 0 <~ <1

Deep Learning 2023-2024 Reinforcement Learning 4]

Markov Decision Process (MDP): policies and values

The agent is supposed to adopt a deterministic policy: =:S — A
In other words, the agent always chooses its action depending on the state alone

Given a policy 7 , the state value function is defined, for each state s as:
V7 (s) :==E[r(S) + 7 (Se1) +7*7(Se42) + ... | 7, Sy = 5]

Note the role of the discount factor: avalue v < 1 means that that future rewards
could be weighted less (by the agent) than immediate ones

Note also that all states S; must be described by random variables
i.e. the policy is deterministic, yet the state transition is not

Note also that when the reward is bounded, i.e. 7(S) < rmpax

Z'y r(Sy) < rmaXZ'y — rmaX%
t=0 \ -

for v < 1 thisis the geometric series

Deep Learning 2023-2024 Reinforcement Learning [5]

Bellman equations
By working on the definition of value function:
V™ (s) :=E[r(Sy) +yr(Ses1) + ¥°r(Ses2) + ... | 7, S = 3]
E[r(St) +v(r(Se+1) +9r(Ses2) +...)| 7, St = s
r(s) + YE[r(Sit1) +y7r(Sig2) + ... [T, 5 = 5]
)
)

r(s) +v2 o P(s" | s,m(s)) - E[r(Ses1) + y7r(Seq2) +...| m, Sip1 = §']
r(s) +v22s,,, P(Sey1 | s5,7(s)) - V™ (Si41)

This means that in a Markov Decision Process:

VT(s) =7(s) +72s,,, P(Ses1|5,7m(s)) - VT (Ses1)

This is true for any state, so there is one such equation for each of those

If the set of states is finite, there are exactly | S| (linear) Bellman equations for |S| variables:
in general, for any deterministic policy, V" can be computed analytically

Deep Learning 2023-2024 Reinforcement Learning 6]

Optimal policy — Optimal value function

= Basic definitions
V*(s) :=maxV7"(s), Vs € S

7*(s) := argmax_V7"(s), Vs € §

Property: for every MDP, there exists such an optimal deterministic policy (possibly non-unique)

With Bellman Equations:
mas, V7 (s) = r(s) + ymasy (S, P | 5.7(5) - V(Sian)
S,

)
VE(s) = r(s) + ymaxy (T, P(Sir | 5,7(s) - V(i)
r(s) +ymax, (T, P(Sie1 | 5.0)- V*(Sta1))

Therefore;

7*(s) = argmax, (ZS}H P(Sii1 | s,a)V* (St+1))

\ once V'* has been determined,

7 can be determined as well

Computing V™ directly from these equations is unfeasible, however
There arein fact | A|l°! possible strategies ...

Deep Learning 2023-2024 Reinforcement Learning 171

Reinforcement Learning

(model-based)

Deep Learning 2023-2024 Reinforcement Learning 8]

Optimal value function: value iteration

= Value iteration algorithm

Initialize: V(S) =T (S) , Vs €S Note that there is no policy:
Repeat: all actions must be explored

1) For every state, update: V(s) := r(s) —I—fymaXZP(s' | s,a)V(s")
a

Theorem: for every fair way (i.e. giving an equal chance) of visiting the states in S,
this algorithm converges to V'*

Deep Learning 2023-2024 Reinforcement Learning (9]

Optimal policy: policy iteration

= Policy iteration algorithm

Initialize ﬂ‘(3) ,Vs € S atrandom This step is computationally expensive:
Repe at: either solve the equations or use value iteration

— (with fixed policy)
1) Foreach state, compute: V(s) := V™ (s)

2) Foreach state, define: 7(s) := argmax, Z P(s' | s,a)V(s")
Theorem: for every fair way (i.e. giving an equal chance) of visiting the states in 5,

this algorithm converges to *

As with the value iteration algorithm, this algorithm uses partial estimates

to compute new estimates.
Itis also greedy, in the sense that it exploits its current estimate V'™ (s)

Policy iteration converges with very few number of iterations,
but every iteration takes much longer time than that of value iteration

The tradeoff with value iteration is the action space:
when action space is large and state space is small, policy iteration could be better

Deep Learning 2023-2024

Reinforcement Learning [10]

Reinforcement Learning
(model-free)

Deep Learning 2023-2024 Reinforcement Learning [11]

Molde-based vs. model-free reinforcement learning

» Value iteration and policy iteration are offline algorithms
The model, i.e. the Markov Decision Process is known
What needs to be learnt is the optimal policy 7*

In the algorithms, visiting states just means considering them:
there needs not be an agent which actually plays the game

= Different conditions: learning by doing ...
Suppose the model (i.e. the MDP) is NOT known, or perhaps known only in part

In particular, it might not be known the transition function P(St+1 | S, At)
Such scenario is also called ‘model-free’

The agent, then, must learn by doing... that is, actually playing the game

Deep Learning 2023-2024 Reinforcement Learning [12]

Action value function

An analogous of the value function V'™

Given a policy 7 , the action value function is defined, for each pair (s,a) as:

Q7(s,a) =3 g, P(Sey1]s,a) - V7 (St41)

=25, P(St+1]8,a) - E[r(Seq1) + 7 (Ses2) + ... | T, S
=2 .5,,, P(Set1 | s,a) - [r(Seq1) + E[yr(Seq2) + ... [7, Siqa]]
=25, P(St+1] s,a) - [r(St+1) + Q7 (St1, m(Se41))]

In other words, @™ (s, a) is the expected value of the reward in Sy 11
by taking action a in state s and then following policy st from that point on

Following a similar line of reasoning, the optimal action value function is

Q*(s,a) = Zst—l—l P(Sii1 | s,a) - [r(Sip1) +ymaxy Q*(Sii1,a’)]

Deep Learning 2023-2024

Reinforcement Learning [13]

Q-Learning

= Q-learning algorithm (e-greedy version)

Initialize Q(s,a) atrandom, put the agent is in a random state
Repeat:

A

1) Select the action argmax,Q(s,a) with probability (1 — ¢)
otherwise, select @ at random

2) Theagentis now in state s’ and has received the reward 7
3) Update Q(s,a) by

AQ(s,a) = alr + ymaxy Q(s',a') — Q(s, a)]

~————— Exponential Moving Average
(see later...)

Note that step 1) is closely similar to a multi-armed bandit:

in each state, the agent has to choose one among all actions in A
and this will produce a random reward....

Deep Learning 2023-2024

Reinforcement Learning [14]

Q-Learning

» Q-learning algorithm

Theorem (Watkins, 1989): in the limit of that each action is played infinitely often
and each state is visited infinitely often and a — 0 as experience progresses, then

~

Q(s,a) = Q" (s,a)

with probability 1

The Q-learning algorithm bypasses the MDP entirely,
in the sense that the optimal strategy is learnt without learning the model P(S¢11 | St, A¢)

Deep Learning 2023-2024 Reinforcement Learning [15]

Q-Learning revisited

= Q-learning algorithm (e-greedy version)

Initialize (s, a) at random, put the agent is in a random state s
Repeat:

~

1) Select the action a = argmax,Q(s, a) with probability (1 — &)
otherwise, select a at random
2) Theagentis now in state s’ and has received the reward 7

~

3) Update Q(s,a)by
AQ(s,a) = afr + ymax, Q(s',a’) — Q(s, a)]
By rewriting step 3)
Q(s,a) = Q(s,a) + AQ(s,a) = Q(s,a) + afr + ymaxy Q(s',a') — Q(s, a)]

A A

= afr + ymaxy Q(s',a")] + (1 — a)Q(s, a)

Exponential Moving Average

compare with (see before):

Q*(s,a) = ZSt—l—l P(Siy1|s,a) - [r(Sip1) +ymaxy Q*(Siy1,a’)]

Expectation

Deep Learning 2023-2024 Reinforcement Learning [16]

	Slide 1
	Slide 2: Markov Decision Process (MDP)
	Slide 3: Basic assumptions
	Slide 4: Markov Decision Process (MDP)
	Slide 5: Markov Decision Process (MDP): policies and values
	Slide 6: Bellman equations
	Slide 7: Optimal policy – Optimal value function
	Slide 8: Reinforcement Learning (model-based)
	Slide 9: Optimal value function: value iteration
	Slide 10: Optimal policy: policy iteration
	Slide 11: Reinforcement Learning (model-free)
	Slide 12: Molde-based vs. model-free reinforcement learning
	Slide 13: Action value function
	Slide 14: Q-Learning
	Slide 15: Q-Learning
	Slide 16: Q-Learning revisited

