Deep Learning

A course about theory & practice

Reinforcement Learning

Marco Piastra

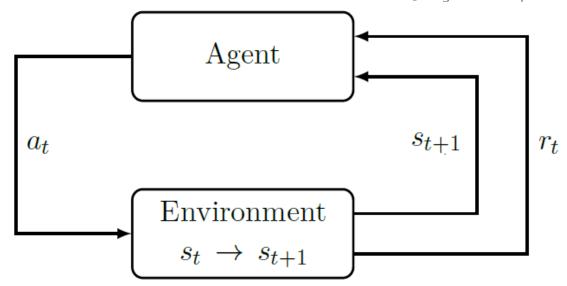
Deep Learning 2023–2024 Reinforcement Learning [1]

Markov Decision Process (MDP)

Deep Learning 2023–2024 Reinforcement Learning [2]

Basic assumptions

[image from: https://arxiv.org/pdf/1811.12560.pdf]



An **Agent** observes *state* s_t and performs *action* a_t

The **Environment** state transitions from $s_t \rightarrow s_{t+1}$

The **Agent** receives *reward* r_t

Cumulative reward:
$$R := \sum_{t=0}^{\infty} r_t$$

Markov Decision Process (MDP)

Markov Decision Process: $<\mathcal{S},\mathcal{A},r,P,\gamma>$

A set of <u>states</u>: $S = \{s_1, s_2, \dots\}$

A set of <u>actions</u>: $A = \{a_1, a_2, \dots\}$

A <u>reward function</u>: $r: S \to \mathbb{R}$

A <u>transition probability distribution</u>: $P(S_{t+1} \mid S_t, A_t)$ (also called a <u>model</u>)

Markov property: the transition probability depends only on the previous state and action

$$P(S_{t+1} \mid S_t, A_t) = P(S_{t+1} \mid S_t, A_t, S_{t-1}, A_{t-1}, S_{t-2}, A_{t-2}, \dots)$$

A *discount factor*: $0 \le \gamma < 1$

Deep Learning 2023-2024 Reinforcement Learning [4]

Markov Decision Process (MDP): policies and values

The agent is supposed to adopt a *deterministic* <u>policy</u>: $\pi: \mathcal{S} \to \mathcal{A}$ In other words, the agent always chooses its *action* depending on the *state* alone

Given a policy π , the **state value function** is defined, for each state s as:

$$V^{\pi}(s) := \mathbb{E}[r(S_t) + \gamma r(S_{t+1}) + \gamma^2 r(S_{t+2}) + \dots \mid \pi, S_t = s]$$

Note the role of the *discount factor*: a value $\gamma < 1$ means that that future rewards could be weighted less (by the agent) than immediate ones Note also that all states S_t must be described by *random variables*: i.e. the policy is deterministic, yet the state transition is not

Note also that when the reward is *bounded*, i.e. $r(S) \leq r_{\text{max}}$

$$\sum_{t=0}^{\infty} \gamma^t \ r(S_t) \ \leq \ r_{\max} \sum_{t=0}^{\infty} \gamma^t = \ r_{\max} \ \frac{1}{1-\gamma}$$
 for $\gamma < 1$ this is the geometric series

Bellman equations

By working on the definition of value function:

$$V^{\pi}(s) := \mathbb{E}[r(S_{t}) + \gamma r(S_{t+1}) + \gamma^{2} r(S_{t+2}) + \dots \mid \pi, S_{t} = s]$$

$$= \mathbb{E}[r(S_{t}) + \gamma (r(S_{t+1}) + \gamma r(S_{t+2}) + \dots \mid \pi, S_{t} = s]$$

$$= r(s) + \gamma \mathbb{E}[r(S_{t+1}) + \gamma r(S_{t+2}) + \dots \mid \pi, S_{t} = s]$$

$$= r(s) + \gamma \sum_{s'} P(s' \mid s, \pi(s)) \cdot \mathbb{E}[r(S_{t+1}) + \gamma r(S_{t+2}) + \dots \mid \pi, S_{t+1} = s']$$

$$= r(s) + \gamma \sum_{S_{t+1}} P(S_{t+1} \mid s, \pi(s)) \cdot V^{\pi}(S_{t+1})$$

This means that in a Markov Decision Process:

$$V^{\pi}(s) = r(s) + \gamma \sum_{S_{t+1}} P(S_{t+1} \mid s, \pi(s)) \cdot V^{\pi}(S_{t+1})$$

This is true for any state, so there is one such equation for each of those

If the set of states is <u>finite</u>, there are exactly |S| (linear) Bellman equations for |S| variables: in general, for any <u>deterministic</u> policy, V^π <u>can</u> be computed analytically

Deep Learning 2023-2024 Reinforcement Learning [6]

Optimal policy - Optimal value function

Basic definitions

$$V^*(s) := \max_{\pi} V^{\pi}(s), \ \forall s \in S$$
$$\pi^*(s) := \underset{\pi}{\operatorname{argmax}} V^{\pi}(s), \ \forall s \in S$$

Property: for every MDP, there exists such an optimal deterministic policy (possibly non-unique)

With Bellman Equations:

$$\max_{\pi} V^{\pi}(s) = r(s) + \gamma \max_{\pi} \left(\sum_{S_{t+1}} P(S_{t+1} \mid s, \pi(s)) \cdot V^{\pi}(S_{t+1}) \right)$$
$$V^{*}(s) = r(s) + \gamma \max_{\pi} \left(\sum_{S_{t+1}} P(S_{t+1} \mid s, \pi(s)) \cdot V^{*}(S_{t+1}) \right)$$
$$= r(s) + \gamma \max_{a} \left(\sum_{S_{t+1}} P(S_{t+1} \mid s, a) \cdot V^{*}(S_{t+1}) \right)$$

Therefore:

$$\pi^*(s) = \operatorname{argmax}_a \left(\sum_{S_{t+1}} P(S_{t+1} \mid s, a) V^*(S_{t+1}) \right)$$

once V^* has been determined, π^* can be determined as well

Computing V^* directly from these equations is unfeasible, however There are in fact $|\mathcal{A}|^{|\mathcal{S}|}$ possible strategies ...

Reinforcement Learning (model-based)

Deep Learning 2023–2024 Reinforcement Learning [8]

Optimal value function: value iteration

Value iteration algorithm

Initialize: $V(s) := r(s), \ \forall s \in S$ Repeat:

Note that there is no policy: all actions must be explored

1) For every state, update: $V(s) := r(s) + \gamma \max_{a} \sum_{s'} P(s' \mid s, a) V(s')$

Theorem: for every fair way (i.e. giving an equal chance) of visiting the states in $\,S$, this algorithm converges to $\,V^*$

Deep Learning 2023-2024 Reinforcement Learning [9]

Optimal policy: policy iteration

Policy iteration algorithm

Initialize $\pi(s), \forall s \in S$ at random *Repeat*:

This step is computationally expensive: either solve the equations or use value iteration \swarrow (with fixed policy π)

- 1) For each state, compute: $V(s) := V^{\pi}(s)$
- 2) For each state, define: $\pi(s) := \operatorname{argmax}_a \sum_{s'} P(s' \mid s, a) V(s')$

Theorem: for every fair way (i.e. giving an equal chance) of visiting the states in S , this algorithm converges to π^*

As with the value iteration algorithm, this algorithm uses partial estimates to compute new estimates.

It is also greedy, in the sense that it exploits its current estimate $V^\pi(s)$

Policy iteration converges with very few number of iterations, but every iteration takes much longer time than that of value iteration

The tradeoff with value iteration is the <u>action space</u>: when action space is large and state space is small, policy iteration could be better

Reinforcement Learning (model-free)

Deep Learning 2023–2024 Reinforcement Learning [11]

Molde-based vs. model-free reinforcement learning

Value iteration and policy iteration are offline algorithms

The \underline{model} , i.e. the Markov Decision Process is known What needs to be learnt is the optimal policy π^*

In the algorithms, visiting states just means considering them: there needs not be an agent which actually plays the game

Different conditions: learning by doing ...

Suppose the *model* (i.e. the MDP) is NOT known, or perhaps known only in part

In particular, it might not be known the transition function $P(S_{t+1} \mid S_t, A_t)$ Such scenario is also called 'model-free'

The agent, then, must learn by doing... that is, actually playing the game

Deep Learning 2023-2024 Reinforcement Learning [12]

Action value function

An analogous of the value function V^{π}

Given a policy π , the *action value function* is defined, for each pair (s,a) as:

$$Q^{\pi}(s,a) := \sum_{S_{t+1}} P(S_{t+1} \mid s,a) \cdot V^{\pi}(S_{t+1})$$

$$= \sum_{S_{t+1}} P(S_{t+1} \mid s,a) \cdot \mathbb{E}[r(S_{t+1}) + \gamma r(S_{t+2}) + \dots \mid \pi, S_{t+1}]$$

$$= \sum_{S_{t+1}} P(S_{t+1} \mid s,a) \cdot [r(S_{t+1}) + \mathbb{E}[\gamma r(S_{t+2}) + \dots \mid \pi, S_{t+1}]]$$

$$= \sum_{S_{t+1}} P(S_{t+1} \mid s,a) \cdot [r(S_{t+1}) + \gamma Q^{\pi}(S_{t+1}, \pi(S_{t+1}))]$$

In other words, $Q^{\pi}(s,a)$ is the expected value of the reward in S_{t+1} by taking action a in state s and then following policy π from that point on

Following a similar line of reasoning, the *optimal* action value function is

$$Q^*(s, a) = \sum_{S_{t+1}} P(S_{t+1} \mid s, a) \cdot [r(S_{t+1}) + \gamma \max_{a'} Q^*(S_{t+1}, a')]$$

Deep Learning 2023-2024 Reinforcement Learning [13]

Q-Learning

• Q-learning algorithm (ε -greedy version)

Initialize $\hat{Q}(s,a)$ at random, put the agent is in a random state s Repeat:

- 1) Select the action $\arg\max_a \hat{Q}(s,a)$ with probability $(1-\varepsilon)$ otherwise, select a at random
- 2) The agent is now in state s^\prime and has received the reward r
- 3) Update $\hat{Q}(s,a)$ by

$$\Delta \hat{Q}(s,a) = \alpha[r + \gamma \max_{a'} \hat{Q}(s',a') - \hat{Q}(s,a)]$$
 Exponential Moving Average (see later ...)

Note that step 1) is closely similar to a **multi-armed bandit**: in each state, the agent has to choose one among all actions in \mathcal{A} and this will produce a random reward...

Deep Learning 2023–2024 Reinforcement Learning [14]

Q-Learning

Q-learning algorithm

Theorem (Watkins, 1989): in the limit of that each action is played infinitely often and each state is visited infinitely often and $\alpha \to 0$ as experience progresses, then

$$\hat{Q}(s,a) \to Q^*(s,a)$$

with probability 1

The Q-learning algorithm bypasses the MDP entirely, in the sense that the optimal strategy is learnt without learning the model $P(S_{t+1} \mid S_t, A_t)$

Deep Learning 2023-2024 Reinforcement Learning [15]

Q-Learning revisited

• Q-learning algorithm (ε -greedy version)

Initialize $\hat{Q}(s,a)$ at random, put the agent is in a random state s Repeat:

- 1) Select the action $a=\mathrm{argmax}_a\hat{Q}(s,a)$ with probability $(1-\varepsilon)$ otherwise, select a at random
- 2) The agent is now in state $\,s'$ and has received the reward $\,r\,$
- 3) Update $\hat{Q}(s,a)$ by

$$\Delta \hat{Q}(s, a) = \alpha [r + \gamma \max_{a'} \hat{Q}(s', a') - \hat{Q}(s, a)]$$

By rewriting step 3)

$$\hat{Q}(s, a) = \hat{Q}(s, a) + \Delta \hat{Q}(s, a) = \hat{Q}(s, a) + \alpha [r + \gamma \max_{a'} \hat{Q}(s', a') - \hat{Q}(s, a)]$$

$$= \alpha [r + \gamma \max_{a'} \hat{Q}(s', a')] + (1 - \alpha) \hat{Q}(s, a)$$

Exponential Moving Average

compare with (see before):

$$Q^*(s,a) = \sum_{S_{t+1}} P(S_{t+1} \mid s,a) \cdot [r(S_{t+1}) + \gamma \max_{a'} Q^*(S_{t+1},a')]$$

Expectation