Deep Learning

A course about theory & practice

Auto-Encoders

Marco Piastra

Deep Learning 2023-2024 Auto-Encoders [1]

Principal Component Analysis (PCA)

Deep Learning 2023-2024 Auto-Encoders [2]

PCA: the intuitive idea

Dataset of vectors

Suppose you have a dataset made of vectors

[images from https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues]

PCA: the intuitive idea

Change of Basis

Suppose you have a dataset made of vectors

May a change in coordinates, which leaves data unaltered, be advantageous?

[images from https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues]

Translation

$$D := \{\boldsymbol{x}^{(i)}\}_{i=1}^{N}, \quad \boldsymbol{x}^{(i)} \in \mathbb{R}^{d}$$
 dataset in matrix form
$$\boldsymbol{X} := \begin{bmatrix} x_1^{(1)} & \dots & x_d^{(1)} \\ \vdots & \ddots & \vdots \\ x_1^{(N)} & \dots & x_d^{(N)} \end{bmatrix} \in \mathbb{R}^{N \times d}$$
 centroid (mean vector)
$$\boldsymbol{\mu} := \frac{1}{N} \sum_{i=1}^{N} \boldsymbol{x}^{(i)}$$

$$\boldsymbol{v}^{(i)} := \boldsymbol{x}^{(i)} - \boldsymbol{\mu}$$
 translated dataset in matrix form
$$\boldsymbol{V} := \begin{bmatrix} v_1^{(1)} & \dots & v_d^{(1)} \\ \vdots & \ddots & \vdots \\ v_1^{(N)} & \dots & v_d^{(N)} \end{bmatrix} \in \mathbb{R}^{N \times d}$$
 (it has zero vector mean)
$$\boldsymbol{V} := \begin{bmatrix} v_1^{(N)} & \dots & v_d^{(N)} \\ \vdots & \ddots & \vdots \\ v_1^{(N)} & \dots & v_d^{(N)} \end{bmatrix} \in \mathbb{R}^{N \times d}$$

Deep Learning 2023-2024

Covariance matrix

$$oldsymbol{V} := egin{bmatrix} v_1^{(1)} & \dots & v_d^{(1)} \ dots & \ddots & dots \ v_1^{(N)} & \dots & v_d^{(N)} \end{bmatrix} \in \mathbb{R}^{N imes d}$$

Definition of covariance matrix (see Wikipedia)

$$oldsymbol{C} := \mathbb{E}\left[(oldsymbol{x} - \mathbb{E}[oldsymbol{x}])(oldsymbol{x} - \mathbb{E}[oldsymbol{x}])^T
ight] = \mathbb{E}\left[(oldsymbol{x} - oldsymbol{\mu})(oldsymbol{x} - oldsymbol{\mu})^T
ight]$$

$$oldsymbol{C} = rac{1}{N} \ oldsymbol{V}^T oldsymbol{V}, \quad oldsymbol{C} \in \mathbb{R}^{d imes d}$$

Actually, with Bessel correction, this would be $\dfrac{1}{N-1}$

(it is completely irrelevant here)

Deep Learning 2023-2024 Auto-Encoders [6]

Spectral Theorem

(a.k.a. Eigenvalue Decomposition – EVD)

Any square and <u>full-rank</u> matrix like:

$$C = V^T V, \quad C \in \mathbb{R}^{d \times d}$$

can be decomposed as

$$C = U\Lambda U^T$$

where $oldsymbol{U}$ is <u>orthogonal</u> and $oldsymbol{\Lambda}$ is <u>diagonal</u>

$$m{\Lambda} := egin{bmatrix} \lambda_1 & \dots & 0 \ dots & \ddots & dots \ 0 & \dots & \lambda_d \end{bmatrix}$$
 $m{\lambda}$ Eigenvalues: multipliers, or 'the mass' of the original matrix

Eigenvectors: the new vector basis

Furthermore, any covariance matrix is semidefinite positive, which means

$$\lambda_i \ge 0, \forall i \in \{1, \dots, d\}$$

Deep Learning 2023-2024 Auto-Encoders [7]

Dimension reduction

Rotation matrix

$$oldsymbol{U} \in \mathbb{R}^{d imes d}$$
 — Eigenvectors: each row is a versor for the new coordinate space

Projecting data onto the new feature space

$$oldsymbol{Z} := oldsymbol{V} oldsymbol{U}^T \in \mathbb{R}^{N imes d}$$

Since $m{U}$ and $m{U}^T$ are orthogonal, the linear transformation is a pure <u>rotation</u> around the (translated) origin

Deep Learning 2023-2024 Auto-Encoders [8]

PCA: what is this all for

Dimension reduction

Sorting eigenvalues in λ (scree plot)

Selecting principal components

$$\hat{\lambda} \in \mathbb{R}^r, \quad r < d$$

Projection matrix

$$oldsymbol{U} \in \mathbb{R}^{d imes d}$$
 only the selected $oldsymbol{r}$ columns have been preserved

Projecting data onto the new feature space

$$\hat{oldsymbol{Z}} := oldsymbol{V} \hat{oldsymbol{U}}^T \in \mathbb{R}^{N imes r}$$

Scree Plot

Deep Learning 2023-2024 Auto-Encoders [10]

Encoder

A feed-forward neural network with one hidden layer

$$\tilde{y} = \boldsymbol{w} \cdot g(\boldsymbol{W}\boldsymbol{x} + \boldsymbol{b}) + b$$

Deep Learning 2023-2024 Auto-Encoders [11]

Encoder

A feed-forward neural network with one hidden layer

$$\tilde{y} = \boldsymbol{w} \cdot g(\boldsymbol{W}\boldsymbol{x} + \boldsymbol{b}) + b$$

• Auto-encoder (basic idea): encoder + decoder

$$x^{[m]} = g(W^{[m]} \cdot g(Wx + b) + b^{[m]})$$

Loss function (MSE):

$$L(x^{[m]}, x) = (x^{[m]} - x)^2$$

Initially:

$$\mathbf{W}^{[m]} = \mathbf{W}^T, \ \mathbf{W} \in \mathbb{R}^{r \times d}$$

then train the network with each data sample *onto itself* (unsupervised learning)

Deep Learning 2023-2024 Auto-Encoders [12]

Linear Auto-Encoders (vs PCA)

Linear Auto-encoder (basic idea)

$$ilde{m{x}} = (m{W}^T(m{W}m{x} + m{b}) + m{b}')$$
 Look ma': no non-linear, activation functions

$$ilde{m{v}} = m{W}^T m{W} m{v}$$
 Use translated dataset vectors and set vector bias to zero

The loss function aims to achieve $\tilde{m{v}} - m{v} = m{0}$ therefore, it can be rewritten as:

$$\left\|oldsymbol{V}oldsymbol{W}^Toldsymbol{W} - oldsymbol{V}
ight\|_F^2$$
 Frobenius norm of a matrix: (flatten it and take the norm)

Mathematically, it can be shown that such loss has a unique global minimum in which the line vectors in \mathbf{W} are the r most significant eigenvectors of $\mathbf{C} = \frac{1}{N} \mathbf{V}^T \mathbf{V}$ (up to a scaling factor)

[see https://arxiv.org/pdf/1804.10253]

Deep Auto-Encoders

Shallow Auto-encoder

$$x^{[m]} = g(W^{[m]} \cdot g(Wx + b) + b^{[m]})$$

It can be shown that also with one non-linear layer per each side, the optimum \boldsymbol{W} still relates to the r most significant eigenvectors (PCA)

Deep Auto-Encoder

It takes at least <u>two</u> non-linear layers per each side to achieve a truly non-linear auto-encoder

[Bourlard & Kabil, Autoencoders reloaded, 2022]

[image from Bourlard & Kabil, 2022 -https://link.springer.com/article/10.1007/s00422-022-00937-6]

Deep Learning 2023-2024 Auto-Encoders [14]

Auto-encoder (More in general)

Two main (composite) layers: encoder and decoder

One **hidden** or **latent** layer z

Each item in the dataset comprises the input only (*Unsupervised Learning*)

$$D := \{(\boldsymbol{x}^{(i)})\}_{i=1}^{N},$$

The result of the optimization is $\,z\,:\,$ a compact (i.e. lower-dimensional) representation of the input $\,x\,$

This representation is also called the *latent space*

Deep Learning 2023-2024 Auto-Encoders [15]

Auto-Encoders vs PCA

When non-linearity matters...

Function	Feature Space	PCA Reconstruction	Auto Encoder Reconstruction
Plane	23.00 2.15 2.15 2.15 2.15 2.15 2.15 2.15 2.15	15 00 34 05 00 12 00 00 15 00	00 00 00 00 00 00 00 00 00 00 00 00 00
Curved Surface	80 CJ 34 66 on 12 DOLD	02 52 04 10 53 12 20 34 54 34 3	10 07 04 64 05 18 20 518

Deep Learning 2023-2024 Auto-Encoders [16]