Deep Learning

A course about theory & practice

AlphaZero

Marco Piastra

Deep Learning 2023-2024 AlphaZero [1]

AlphaZero =MCTS + DNN

Deep Learning 2023-2024 AlphaZero [2]

Monte Carlo Tree Search (MCTS) method

MCTS method:

• <u>memory</u> of past playouts in a single MCTS step (collected in the tree statistics)

• <u>knowledge transfer</u> between MCTS steps (by reusing subtrees already explored)

• optimal policy only <u>partially</u> defined (on actually computed states)

• <u>intrinsically stochastic</u> policy optimization (the same initial state can give rise to different optimizations)

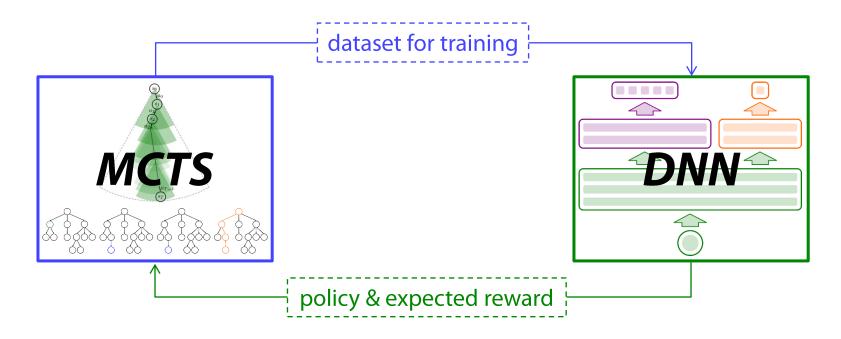
What about <u>knowledge transfer</u>
 between MCTS episodes?
 transferring the entire MCTS tree
 would rapidly cause its explosive growth...

 a_{T-1}

Deep Learning 2023-2024 AlphaZero [3]

Knowledge transfer between MCTS episodes

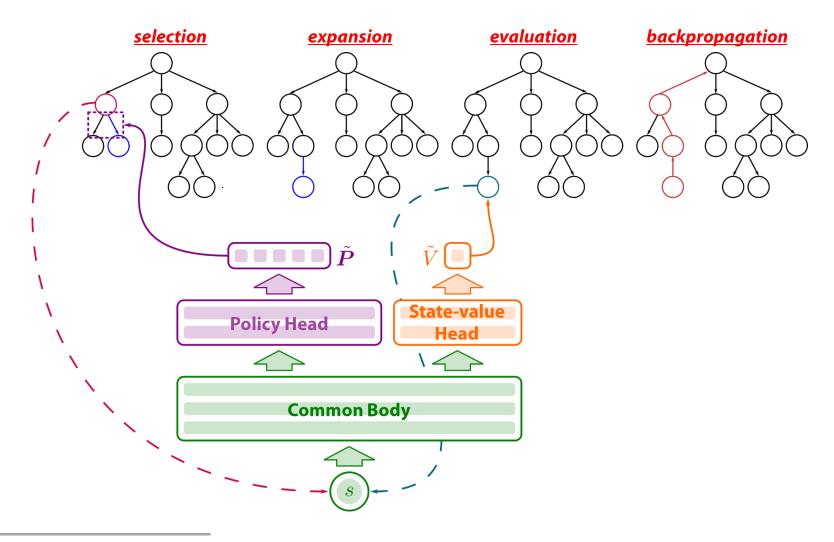
- **AlphaZero** [Silver et al. 2017]
 - <u>Monte Carlo Tree Search (MCTS):</u> improves the policy by focusing on the most promising actions
 - <u>Deep Neural Network (DNN):</u> learns the improved policy and transfers it between MCTS episodes



Deep Learning 2023-2024 AlphaZero [4]

AlphaZero

■ AlphaZero = MCTS + DNN

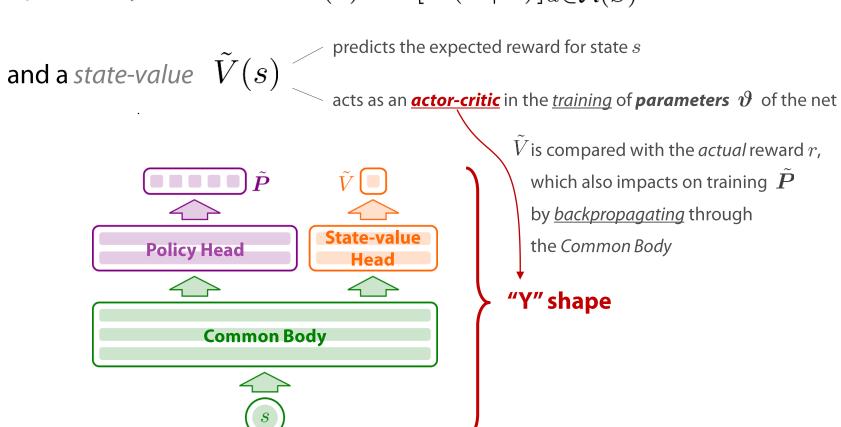


Deep Learning 2023-2024 AlphaZero [5]

DNN in AlphaZero

DNN in AlphaZero

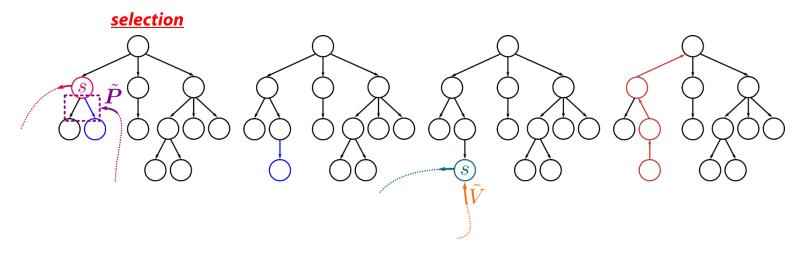
- <u>input:</u> a state s
- output: a probability distribution $\tilde{P}(s) := [\tilde{P}(a \mid s)]_{a \in \mathcal{A}(S)}$



stochastic policy (a vector of probabilities)

Deep Learning 2023-2024 AlphaZero [6]

MCTS step in AlphaZero

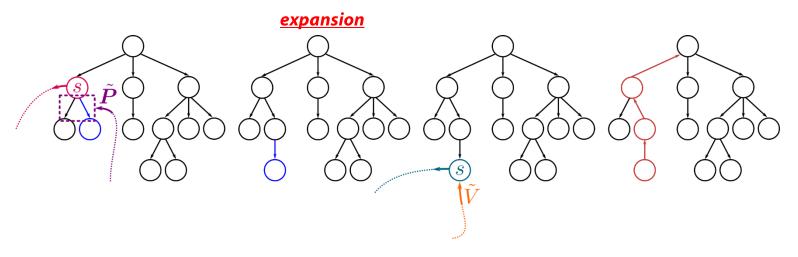


<u>selection</u>: UCT policy is replaced with **PUCT** ("Predictor" + UCT)

$$\pi^{\text{PUCT}}(s) := \underset{a}{\operatorname{argmax}} \left\{ \hat{Q}(s,a) \text{ for } \textit{DNN} \text{ policy} \atop \textit{DNN} \text{ policy} \atop \textit{DNN} \text{ policy} \atop \textit{N}(s,a) + c(s) \tilde{P}(a \mid s) \frac{\sqrt{N(s)}}{N(s,a) + 1} \right\}$$
 exploration rate $c(s) := \log \frac{1 + N(s) + c_{\text{base}}}{c_{\text{base}}} + c_{\text{init}}$ avoids division by 0

Deep Learning 2023-2024 AlphaZero [7]

MCTS step in AlphaZero

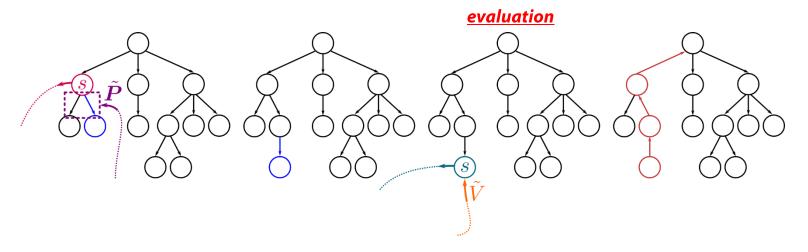


• expansion: initialization of the leaf new node s_L :

$$N(s_L) := 0$$
 and $\forall a \in \mathcal{A}(s_L)$ $N(s_L, a_L) := 0$, $\hat{Q}(s_L, a_L) := -\infty$

Deep Learning 2023-2024 AlphaZero [8]

MCTS step in AlphaZero



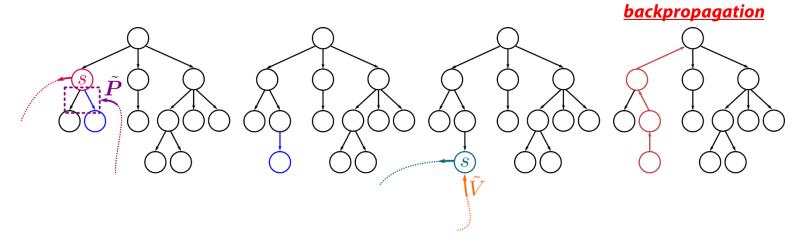
• <u>expansion</u>: initialization of the leaf new node s_L :

$$N(s_L) := 0$$
 and $\forall a \in \mathcal{A}(s_L)$ $N(s_L, a_L) := 0$, $\hat{Q}(s_L, a_L) := -\infty$

• <u>evaluation</u> (in place of <u>simulation</u>): expected reward is $\tilde{V}(s_L)$

Deep Learning 2023-2024 AlphaZero [9]

MCTS step in AlphaZero



• expansion: initialization of the leaf new node s_L :

$$N(s_L) := 0$$
 and $\forall a \in \mathcal{A}(s_L)$ $N(s_L, a_L) := 0$, $\hat{Q}(s_L, a_L) := -\infty$

- <u>evaluation</u> (in place of <u>simulation</u>): expected reward is $\tilde{V}(s_L)$
- <u>backpropagation</u>: for each state s and action a visited in selection/expansion:

$$N(s) := N(s) + 1,$$

$$N(s,a) := N(s,a) + 1$$
 and
$$\hat{Q}(s,a) := \hat{Q}(s,a) + \underbrace{\tilde{V}(s_L) - \hat{Q}(s,a)}_{N(s,a)}$$

Deep Learning 2023-2024 AlphaZero [10]

MCTS step in AlphaZero: policies

Selection policy: PUCT

$$\pi^{\text{sel}}(s) := \pi^{\text{PUCT}}(s) := \underset{a}{\operatorname{argmax}} \left\{ \hat{Q}(s, a) + c(s)\tilde{P}(a \mid s) \frac{\sqrt{N(s)}}{N(s, a) + 1} \right\}$$

Output policy:

$$\pi^{\text{out}}(s) \sim \left[\hat{P}(a \mid s) := \frac{N(s, a)}{N(s)}\right]_{a \in \mathcal{A}(s)}$$

taking frequencies as probabilities (in place of their argmax as output action)

ensures <u>exploration</u>

(the <u>simulation</u> policy does not exist anymore)

Deep Learning 2023-2024 AlphaZero [11]

DNN training in AlphaZero

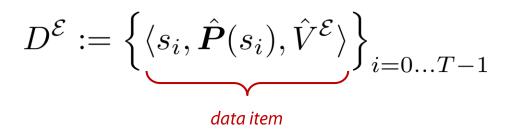
■ **Data items** from a <u>single</u> *MCTS episode*:

After an MCTS episode $\mathcal{E}:=\langle s_0,a_0,s_1,\ldots,a_{T-1},s_T \rangle$ with actual reward $\hat{V}^{\mathcal{E}}:=r(s_T)$:

• for each $\underline{\textit{non-terminal}}$ state $\,s_i\,\,(i=0\ldots T-1)$ in $\,\mathcal{E}\,$

$$\hat{m{P}}(s_i) := \left[\hat{P}(a \mid s_i) := rac{N(s_i, a)}{N(s_i)}
ight]_{a \in \mathcal{A}(s_i)}$$
 vector of frequencies

• the *output* of ${\mathcal E}$ is



Deep Learning 2023-2024 AlphaZero [12]

DNN training in AlphaZero

Iteration:

times 1) play one MCTS episode
$$\mathcal{E}_j$$
 2) collect data items $D^{\mathcal{E}_j}$

3) train the parameters of the *DNN* by using as *dataset*

$$D := \bigcup_{j=1}^K D^{\mathcal{E}_j}$$

In the limit of *infinite* iterations:

$$\pi^{\text{DNN}}(s) := \underset{a \in \mathcal{A}(s)}{\operatorname{argmax}} \tilde{P}(a \mid s) \to \pi^*(s) \quad \forall s$$

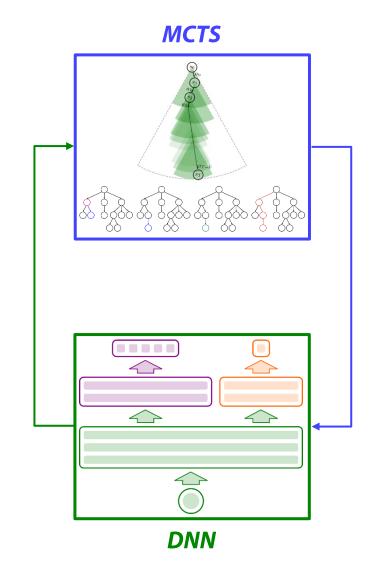
Deep Learning 2023-2024 AlphaZero [13]

AlphaZero

• AlphaZero:

- <u>memory</u> of past playouts in a single MCTS step (collected in the tree statistics)
- <u>knowledge transfer</u> between MCTS steps (by reusing subtrees already explored)
- <u>knowledge transfer</u> between MCTS episodes (provided by DNN)
- $\underline{deterministic}$ policy optimization with policy defined for all states s:

$$\pi^{\mathrm{DNN}}(s) := \operatorname*{argmax}_{a \in \mathcal{A}(s)} \tilde{P}(a \mid s)$$



Deep Learning 2023-2024 AlphaZero [14]