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Recurrent Neural Networks
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Recurrent Neural Networks

= Feed-forward neural network

yﬂ'szh—l-b where hZQ(WCB-Fb)
|

|
hidden input
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Recurrent Neural Networks

= Feed-forward neural network

yf'sz-h—|—b where h:=g(W€B—|—b)
|

|
hidden input

= Recurrent Neural Network

g(t) — w - h(t) + b where h(t) P Q(W.’L'(t) 4 Uh(t—l) 4 b)

| |
hidden at t input at t hidden at t-1

The basic idea is to make the network output depend on the past 'history’
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Recurrent Neural Networks

= Recurrent Neural Network

g(t) — w - h(t) + b where h(t) P Q(W.’L'(t) 4 Uh(t—l) 4 b)

|
hidden at t inputat t hidden at t>1

The basic idea is to make the network output depend on the past 'history’
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Recurrent Neural Networks

= Recurrent Neural Network

g(t) — w - h(t) + b where h(t) — g(Wag(t) == Uh,(t_l) + b)

| |
hidden at t input at t hidden at t-1
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RNN are Turing Machines

N Computational power of RNNs (Siegelmann & Sontag, 1992)

“RNNs can simulate any Turing machine”

moving CPU

readiwrite device — H

1

0

1

1

0|0

memory tape

start

This means that they can compute anything a Turing Machine could
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[image from https://en.wikipedia.org/wiki/Turing_machine]
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Recurrent Neural Networks

= Recurrent Neural Network

g(t) — w - h(t) + b where h(t) P Q(W.’L'(t) 4 Uh(t—l) 4 b)

| |
hidden at t input at t hidden at t-1

= General Properties

A recurrent neural network (RNN) is even more powerful than a FF neural network
It can approximate any Turing machine (i.e. a general theoretical model of computation)

It is much harder to train than a FF neural network
Although, with temporal unfolding (see above), gradient descent methods can be applied
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Recurrent Neural Networks

= Recurrent Neural Network

= Temporal Unfolding

(3

(2

(1)

where R .= g(Wa® + URTD 1 b)

hddenatt  inputatt  hiddenat ¢
ouputat 3~ 2(3) — 41y . BB®) 1 p
h®) = g(V:/':L'ES) + Uh(f) +b)
R = g(Wa??) + Uh(Tl) +b)
A g(W:cil) + Uh(TO) +b)
R .= g(W:L'iO) + Uh(T_l) +b)
default hidden state | p{=1) .—

input sequence  p (0)
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Recurrent Neural Networks

= Recurrent Neural Network

g(t) — W - h(t) iy where h(t) — g(W:E(t) 1 Uh(t_l) + b)

|
hidden at t input at t hidden at t-1

= Temporal Unfolding outputat g 5(3) — . B3 4 b

!
This looks very similar -
to a deep feed-forward h(g) - Q(WfL'ES) + Uh(2) + b)
neural network ... R 2(3) f
h? = gWz® + UR® + b)
(2 ! !
hY = g(WaV) + UR©® + b)
0 ; !
R .= g(Wa:iO) +URCY +b)
. 0 !
nputsequence CL'( ) default hidden state h(_l) — 0
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Recurrent Neural Networks

= Recurrent Neural Network
g(t) — W - h(t) + b where h(t) — Q(W.’L'(t) 4 Uh(t—l) 4 b)

* Input-Output Modes

one to one one to many many to one many to many many to many
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Recurrent Neural Networks

= Recurrent Neural Network
g(t) — W - h(t) + b where h(t) — Q(W.’L'(t) 4 Uh(t—l) 4 b)

* Input-Output Modes
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Long-Short Term Memory
(LSTM)
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LSTM

= Long-Short Term Memory (Hochreiter & Schmidhuber, 1995)
70 = w-h® +p
elementwise product
/
hY = o © tanh(c)
) = 7O 5 =D 450 g D)
sigmoid function

/
oV .= c(W,z'¥ + U,h"Y 1+ b,)

f(t) — O'(Wfil?(t) + Ufh(t_l) + by)

i) = (W + U;RV 1+ b))

CEQ — tanh(Wca:(t) + UKD 4 b.)
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LSTM

= Long-Short Term Memory (Hochreiter & Schmidhuber, 1995)
7 =w-h® +b

hY = o © tanh(c)
= £ o =1 4 50 o c?(:i)

oV .= c(W,z'¥ + U,h"Y 1+ b,)

f(t) — O'(Wfil?(t) + Ufh(t_l) + by)

i) = (W + U;RV 1+ b))
Combined input

¢t .= tanh(Woz® + U.h*V + b,)
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LSTM

= Long-Short Term Memory (Hochreiter & Schmidhuber, 1995)
hY = o © tanh(c)
W= O o lt=D 4 40 5 Cf,(;i,)

Gating values

O(t) — J(Woaz(t) —+ Uoh(t_l) -+ bo) output
f(t) — O'(Wf.’L‘(t) -+ Ufh(t_l) -+ bf) forget

’L(t) = O'(W@.’B(t) -+ U@h(t_l) + b@) input

cgf,b) — tanh(Wca:(t) + UKD 4 b.)
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LSTM

= Long-Short Term Memory (Hochreiter & Schmidhuber, 1995)

70 = w-h® +b
Applying gates

h) .= o © tanh(c®) hidden

C(t) — f(t) O C(t—l) + ’l,(t) ™ cgi) memory

oV .= c(W,z'¥ + U,h"Y 1+ b,)

f(t) c= O-(me(t) + Ufh(t_l) + bf) (a:(f),)l(t—l))

i) = (W + U;RV 1+ b))

CEZ) — tanh(Wca:(t) + UKD 4 b.)
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LSTM

= Long-Short Term Memory (Hochreiter & Schmidhuber, 1995)

g(t) = w - h(t) + b Celloutput

hY = o © tanh(c)
= £ o =1 4 50 o c?(:i)

oV .= c(W,z'¥ + U,h"Y 1+ b,)

f(t) c= O-(me(t) + Ufh(t_l) + bf) (a:(f),)l(t—l))

i) = (W + U;RV 1+ b))

CEZ) — tanh(Wca:(t) + UKD 4 b.)
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LSTM

* Temporal Unfolding
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LSTM

= Stacking and Temporal Unfolding

Deep Learning and Time Series [20]

Deep Learning 2023-2024



GRUV

= Gated Recurrent Unit (Kyunghyun Cho et al., 1995)

Simpler structure, no internal memory

Rt
(exponential moving average)
h® = (1— 2®) @ hED 4 20 ¢ {O RO
h) .= tanh(Wy,z™ 4+ U, (r © A7D) 4 b)) o
sigmoid function

O — (WD (t-1) 2
r\ =oc(W,x""” +U,h + b,)
Z(t) — O‘(sz(t) + Uzh(t_l) + bz) 2 pE=1)
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GRUV

= Gated Recurrent Unit (Kyunghyun Cho et al., 1995)

Simpler structure, no internal memory

Rt
(exponential moving average)
B = (1= 20y 0 BtV £ 20 ¢ RO R
A = tanh(Wy,z + U, (r® © D) + by) @
sigmoid function Gating values »
rt . J(Wrw(t) +URED 4 b.)  reset §
z(t) - O'(szL‘(t) + Uzh(t_l) + bz) update 20 IXGSY
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Deep Convolutional Networks
for Time Series Analysis
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1D Convolution Over Time

Time windows are treated as 1D ‘images’

Iuti global
convolution average
channels . . i
input time pooling
time series

K

output
classes

layer-4 layer-5

fully-connected

layer layer-1 ; L~

[image from https://link.springer.com/article/10.1007%2Fs10618-019-00619-1]

Deep Learning 2023-2024 Deep Learning and Time Series [24]



Temporal Convolution Networks

1D Convolution-Deconvolution in an autoencoder architecture (Lea et al., 2016)
Effective in segmenting actions and predicting time series
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[image from https://arxiv.org/abs/1611.05267]
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RNN applications
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Predictive Maintenance

= Detecting failure conditions from sensor readings

Nominal Condition Before Failure
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Training and Prediction occurs by using a sliding window of sensor readings as input
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Time Series Forecasting

Forecasting time series ahead of time

time

time series

input series

input_length

target series

L
output_length
| I
input_length

[image from https://medium.com/unit8-machine-learning-publication/temporal-convolutional-networks-and-forecasting-5ce 1b6e97ce4]
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Time Series Forecasting

Detecting anomalies as differences from forecasted and actual

Completed Trips Test
= Forecast Test
, e Original Test
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[image from https://eng.uber.com/neural-networks/]
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An Aside: Embedded Al
(3t UniPV)

Credits are due to M. Musci and E. Torti
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STM SensorTile for Wearable Devices

Microcontroller STM32 (ARM Cortex M4)
80MHz Clock Frequency
128KB SRAM
1MB Flash memory

life.augmented

arm

Multiple Onboard Sensors
Microphone
3D Accelerometer + 3D Gyroscope
e-Compass, 3D Accelerometer, 3D Magnetic sensor
Barometer

Peripherals
100 mAh Li-lon battery
Bluetooth Low Energy (BLE) radio module
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Why Embedding?

Edge computing is a method of optimizing cloud computing systems

by taking some portion of an application, its data, or services

away from one or more central nodes (the "core") to the other logical extreme

(the "edge”) of the Internet which makes contact with the physical world or end users
[Wikipedia]

= A critical problem for (any) Intelligent Wireless Sensor

Wireless transmission of raw sensor data to the cloud requires
a substantial amount of power

All Internet-of-Things Low-Power Wide Area protocols (LPWA: Lora, Sigfox, NB-loT)
but also BLE, ZigBee, etc. are optimized for sparse and infrequent short messages

Ideally, in an Intelligent Sensor, data processing must be performed onboard:
short messages should be sent only when relevant events or state transitions occur
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Human Fall (rehearsed)

Fo1 \
UNIVERSIDAD

Fall forward while walking rarioomn
caused by a slip
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Human Fall (rehearsed)

= Accelerometers

FO1 SA10 RO5 - Already labeled
Fall forward while walking caused by a slip

T T T T T
4] 500 1000 1500 2000 2500 3000
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Human Fall (rehearsed)

= Accelerometers (annotated)

FO1 SA10 RO5 - Already labeled
Fall forward while walking caused by a slip

T T T T T
0 500 1000 1500 2000 2500 3000

the actual fall occurred here
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Fall Detection

» Detecting human falls from accelerometer signals is difficult
The input is time-variant (unlike a still image)
Information is limited (just three scalar values at each time instant)
It is the 'history’ (i.e. the shape) of signals that describes the event
False negatives are to be avoided, but even false positives....

FO1 SA10 RO5 - Already labeled
Fall forward while walking caused by a slip

1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
1
|
|
|
|
|
T
0
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Smart Sensors: 3 Case Study

= Fall detection with wearable sensors (IPHSDM)

. ) . . Regione UNIVERSITA
A project co-funded by Regione Lombardia . Lombardia ‘32- fesr DI PAVIA

Event detection is performed by the smart sensors (SensorTile)
Messages are sent over BLE only to signal relevant events life.augmented

[ MF01_01_nicolablago_20180124_173405.mp4

intura - spalla - tasca

Long-Short Term Memory (LSTM)

(%) ¥o-1)

Embedded on Device

ClearSync | Save label
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Creating 3 dataset
(for Bl detection)
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Body Network

[ ]=C

Controller Gateway
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Body Network
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Simulated Falls
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Dataset Annotation

Flle

MFO1R03_eugenio.valentini_20180629_151901.mp4
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