J;ﬁ, H

UNIVERSITA
DI PAVIA

Deep Learning

O5- Learning 3s Optimization

Marco Piastra

This presentation can be downloaded at:
http://vision.unipv.it/DL

Deep Legrning : O5-Learning as Optimization

[1]

http://vision.unipv.it/DL

About why they did not use
Deep Networks
from the beginning

Deep Learning : O5-Learning as Optimization [2]

Problem: vanishing or exploding Gradients

The gradient descent method implies updating the parameters at each step:
making sure that the gradient does not either vanish or explode is not easy

For instance, in
oL

AW = ow

the gradient contains a multiplicative term

which can be < 1.0

e.g. for the sigmoid function:

(59, y@)

-10

Deep Legrning : O5-Learning as Optimization

[3]

Problem: vanishing or exploding Gradients

The gradient descent method implies updating the parameters at each step:
making sure that the gradient does not either vanish or explode is not easy

Consider a deep network
J=w - g(W[k] . -g(Wma: 4 blll) T b[k]) + b
in which

* g istheidentity function and all bl and b are zero;

« all hidden layers have the same size d of the input (i.e., al matrices are square);

« all WU areidentical and diagonalizable, with eigenbasis (€1, ,€q)

This means that i.e. first eigenvalue raised to the k-th power
/
k 1 k k k
Wk o Wwllle = Whre = M(e; - x)e; + - Ni(eg - z)ey
k k
=)\1.56161 + .-)\dazded

Moral:any A; > 1 leads to explosion whileany A; < 1 leads to vanishing

Deep Legrning : O5-Learning as Optimization

(4]

Problem: initial values of the parameters

However, the main problem of training is that of initial values...
Gradient Descent can only discover minima that are close to the initial values

Xx=3.00000, y=3.00000, f(x,y)=34.20000

Using deep networks
can only make this problem worse:

intuitively, with deeper networks, 100
the 'surface' can be even rougher... 80

[Image from http://cpmarkchang.logdown.com/posts/434534-optimization-method-momentum]

Deep Learning : O5-Learning as Optimization [5]

Improving optimization

Deep Learning : O5-Learning as Optimization [6]

Improving optimization

= SGD (or MBGD)

Standard, decaying learning rate

Update step:
90 — 9= _p 9 g g1
N
decaying mini-batch,
learning rate possibly a singleton

Deep Learning : O5-Learning as Optimization [7]

Improving optimization

= SGD (or MBGD)

Standard, decaying learning rate

Update step:
90 — 9= _p 9 g g1
N
decaying mini-batch,
learning rate possibly a singleton

Many different ways to improve performance and speed rate:
* add some momentum
* take in account 2" order derivatives
* make the learning rate adaptive

Deep Learning : O5-Learning as Optimization [8]

Improving optimization

= SGD (or MBGD)

Standard, decaying learning rate

Update step:
0
91 — 9= _» ~ 1(B 91
N 5L (B)
@ p >
il (t=1)
0 55 L(B,9")
“force felt by the ball”
N 0
Loss f = _8_,‘914(3779)
(“potential “acceleration”
" /
energ</) f — ma
|
L(B,9) 9
: > a X< —8_19L(B’ '19)
U e
... the gradient directly affects the velocity
(not the position)

Deep Legrning : O5-Learning as Optimization [9]

Momentum

= Momentum momentum term:
" ot the ball run” / tendency to keep running at the same speed and direction
w® =40 _p L1 g gty L0 Z g o=
P
9B — 9t=1) | 4,(®) O<y<l1

“coefficient of friction”

Loss
(“potential
energy”)
\ |
L(B,9)!
' >
U

Deep Learning : O5-Learning as Optimization [10]

Momentum

= Momentum

"Let the ball run”
0

91 — 9t=1) 4 4, ®

ult) = 4t L(B,9% V), «® =0 w1

»”

L(B,9""V)

9
59

Consider 19 as a position ...

[oss /”ve/ocity”
(“potential L 0 () (t—1)
cveray’) u=o0 ~ 90 -9

\ | " / . V4

L(B, 19) : P acceleration 5

! > a ~ u'Y —ul"Y x ——L(B,Y)
9 oY
... the gradient directly affects the velocity
(not the position)

Deep Legrning : O5-Learning as Optimization [11]

NAG

= Momentum
"Let the ball run”

0
ut =~ _ o 2 1 (B. 9D 0) —
= yu n 59 (B,), u 0

91 — 9t=1) 4 4, ®

= Nesterov Accelerated Gradient (NAG)
"Let the ball run but be predictive"”

9
o9

91 — 9t=1) 4 4, ®

Deep Learning : O5-Learning as Optimization [12]

24 order method's

In this example (geometric view)

Gradient Descent Newton-Raphson

The level curvesof | I INWWMWW _ |
aquadratic formin2D : '

are ellipses centered ~ |—— —— - — — ———
inthe origin = - B

Deep Learning : O5-Learning as Optimization [13]

24 order method's

= Taylor’s expansion
L(B,9) = L(B,9""V) + (%L(B, 9) - (9 — 9 Y)

(9 — 9D H (9 — 9tV +

All terms in blue are constant

1
2

where:

3, 0 . .
p— (t—1) _— The Hessian Matrix
H - 99 (aﬁL(B,'ﬁ))

— Theargmin

= Differentiate both sides and take 9 = 9*

6%L(B 9% = £9L(B 9 4 H (9" — 9t—1)
this must be 0
e 9 — 9l = —H—lﬂL(B YD)
o9

Deep Learning : O5-Learning as Optimization [14]

24 order method's

= Gradient Descent
0

(t) _ 9q(t=1) _ Y
9 0 77819

L(B,94 V)

= Newton-Raphson's optimization method

O
(t) _ ,9(t—1) _ —1 (t—1)
Y =9 n H aﬁL(B, Y)
9, 9,
, L (t—1)
where: Hi= (aﬁL(B,ﬁ))

Why is the Newton-Raphson's method better than GD?

Deep Learning : O5-Learning as Optimization [15]

24 order method's

= Newton-Raphson's optimization method

9 — 9t=1) _ " H—I%L(B’ﬁ(t—l)) H — 8?9 (({%L(B’ﬁ(t—n))
Example _~a quadratic form, centered in the origin
L(B,9) =19 - AY
w 0] cdemaemedaean
A = , a; >0Ve=1,...,d
0 ... aq
iL(B 9) = 2A9
oY ’ (1/ay ... 0]
Hza(aL(Bﬁ))=2A H—tar Lo
09 \ 0V ’ 9 9 ; : ;
| 0 ... 1/aq

1
9 = 9t= _ §A_12A19(t_1) =9t~ —p9t=1) — (1 — y)9t—Y)

What??

Deep Learning : O5-Learning as Optimization [16]

24 order method's

In this example (geometric view)

L(B,%) =19 - A9 with A= [%1 a()] , a1 K ag
2
Gradient Descent Newton-Raphson
9 = 9= _ p2 49— 9 = 9= _ pg(t=1)
= __:+_i ;—— ———————— ——:%——7_:

The level curves of i I H“WWMWW

a quadratic form in 2D
are ellipses centered @~ — —— ———— "——+ = —
inthe origin = - —— B

Deep Legrning : O5-Learning as Optimization [17]

24 order method's

= Newton-Raphson's optimization method

9 = 9= _p H‘liL(B,ﬁ(t_l)) s (0

09 09 \ 09
The (inverse of the) Hessian Matrix takes into account also the curvature

L(B, 19“—1)))

Newton-Raphson XO

Gradient Descent

Deep Learning : O5-Learning as Optimization [18]

= Newton-Raphson's optimization method
0 0
O =9t _p g1 (B9 =
9 9 n 59 (B, v) H 5 (

0
oV

L(B, 19“—1)))

However
* Computing the inverse Hessian matrix is not easy, in general

« Itrequires O(d?) time versus O(d) of the gradient — d. is the number of parameters

Deep Learning : O5-Learning as Optimization [19]

= Newton-Raphson's optimization method

0 0

9 =9ty g1 (B, 94 V) H = (8

0V

(t—1)
55 AC L)

However
* Computing the inverse Hessian matrix is not easy, in general

« Itrequires O(d?) time versus O(d) of the gradient — is the number of parameters

* AdaGrad approximation

o 2 G o
G\ = L(B,90) (t) - :

7= 0 a|
9O m“”n«W*Wﬁ%Mﬁﬂ“W

Deep Learning : O5-Learning as Optimization [20]

Gradient Descent

9 — 9t=1)

0
T o0
Newton-Raphson

9 =9t _p g1

AdaGrad

L(B,9"Y)

L(B,9 D)

0

9 = 9= _ (G Z (B, 91)

_1Gradieriut5 Descenot

0V

Deep Legrning : O5-Learning as Optimization

RMSprop

* AdaGrad approximation

= RMSprop approximation

The overall sum is replaced by the exponential moving average (EMA)

®._ 9 (®)

EMA(g2)® := 7(g{")? + (1 — y)EMA(g2)¢*~V i .

G\ =\ [EMA(g2) ¥ GO .—

90 = 9lt=1) _ (Glt=1)y-1 a% L(B. 9D j '

Deep Learning : O5-Learning as Optimization [22]

AdaDelts

= RMSprop approximation

O ._ 9 1p 90
g?,) 8?92 (Y)
EMA(g7)®) = 7(g{")* + (1 = 7)EMA(g?)¢ G 0
1
G = \[EMA(g2)® G .— | - :
———— Hessian approximation (£
O LY Gd
9 _ i
90 — 9= _ o (qt-0y-1_9 1 g -1
* AdaDelta approximation]]
D 0
1
D = \ /EMA(AG2)® DY .= | :
——— 'momentum’factor '(t)
) 0 ... DY
9 — 9= _ o pt-D(qtt-1\-1 ~Z 1B 9t

Deep Learning : O5-Learning as Optimization [23]

Improving optimization

— SGD

- Momentum

—— NAG

- Adagrad

-~ Adadelta

ok — Rmsprop

£/ .

(AL NI TR
LRI,
.9 %,

0 == 0’;‘,@%’: "‘"

” :'c ¥,

0,055

XK
S

1.0

Image from https://imgur.com/a/Hqolp

Deep Learning : O5-Learning as Optimization [24]

~
Q

t

Imiz3

/

Improving opt

- SGD

- Momentum

- NAG
- Adagrad

Adadelta
- Rmsprop

g o o=
A

S oo Sy T S
' .

.com/a/Hqolp

imgur

/]

Image from https

[25]

Deep Legrning : O5-Learning as Optimization

Improving optimization

o e T
| _“ﬁh-—— SGD

| == Momentum F
— NAG :
: — Adagrad
. | — Adadelta
= Rmsprop |

Image from https://imgur.com/a/Hqolp

Deep Learning : O5-Learning as Optimization [26]

* Replace components with their EMAs ...

TTth)
() ._ (t) - (t-1) o |
i Brlg:) + Brm; mee= - | ———EMA of the gradient
g
7« gt)
T,Et) = z(gfgt))z + (1 — ﬁg)T‘gt_l) r® .— | : | ——EMAoftheHessian
(' £ approximation
T4 (vector form)
m®) -7
mt) .—
1—(1—pq)t bias corrections (decay with time)
A r(0)
1 —(1—p5s)t
3 (t—1)

N —= - (elementwise)

Deep Legrning : O5-Learning as Optimization [27]

Adam

= Experimentally

0.7 :

0.2 i

1 1

MNIST Logistic Regression

AdaGrad
SGDNesterov
Adam

] N TS O T

0.5 e TS

i i i i
10 15 20 25 30

35 40 45

iterations over entire dataset

10

MNIST Multilayer Neural Network + dropout
1 ! 1

— AdaGrad
RMSProp

AdaDelta
Adam

SGDNesterov |

50

| 1
100 150
iterations over entire dataset

200

Deep Legrning : O5-Learning as Optimization

Improving optimization

= Messages to take home

* Improved optimizers adopt a combination of intuition and mathematical modeling
* In particular, some of them are approximators to 2" order optimization methods

* Assuch, there is no formal guarantee that they will be effective in all cases

Moral: in general, their effectiveness will depend on the optimization problem
and the representation being used

Deep Learning : O5-Learning as Optimization [29]

A bag of wonderful tricks

Deep Learning : O5-Learning as Optimization [30]

Why ReLV is better (sometimes)

The gradient descent method implies updating the parameters at each step:

making sure that the gradient does not either vanish or explode is not easy

For instance, in

AW = oL

0L) @)
”aw(y YY)

the gradient contains a multiplicative term
which can be < 1.0

8%9(:’6)

In general,

the derivative of RelLU
does not suffer

from the same problem

— Rel U

= derivative-ReL.U

0.9

0.8

0.7

0.6

0.5

04

03}

02}

01f

-0.5

.
0.5

Deep Legrning : O5-Learning as Optimization

[31]

Why ReLV is better (sometimes)

In experimental practice (sometimes):

* ReLU alleviates the problem of initial values
(i.e. when initial values are too far away and cause sigmoid or tanh to saturate)

In general, || —Sawaweraw 0
the derivative of RelLU 08
does not suffer 07

0.6

from the same problem

0.5

04

03}

02}

01f

Deep Learning : O5-Learning as Optimization [32]

Why ReLV is better (sometimes)

In experimental practice (sometimes):

* ReLU alleviates the problem of initial values
(i.e. when initial values are too far away and cause sigmoid or tanh to saturate)

* RelLU may accelerate the training process

0.75

. ReLU
@ 05 +
& N /[Saturating
e -~
o ~
E = ‘-/--. - — ReLU
- —_—— - = derivative-RelLU 09
® 0325 -
= 08
0.7
0.6
G T T T T T T T
1] 5 10 15 20 25 30 as 40 0.5
Epochs 0.4
Image from [Krizhevsky, Sutskever & Hinton, 2012] 0sf
02Ff
01F

Deep Learning : O5-Learning as Optimization [33]

Input Normalization

= Intuition
Consider the (very simple) layer

h(x) := g(wx +b) = g(wiz1 + woxs + b)

X1 and X9 arein
and suppose x1 € [10007 2000]; T2 € [O-L 0-2]/ completely different scales

0.5
* w; influences i alot more than ws
* training w2 is challenging and slow

R T TE AL 2

T T T 1
(500 1000 1500 2000

®
©

wyp

level curves of loss function
(during training)

wh
Image from https://https://www.jeremyjordan.me/batch-normalization/

Deep Legrning : O5-Learning as Optimization [34]

Input Normalization

* Input normalization
1) compute mean p and (component-wise) variance o’ of inputs over dataset D

1 1
. 2 . 2 2 . 2. 2
M-—W E T o°:=(o7,...,03,) with o} =D E (z; — i)
xcD xeD
2) normalize all inputs, component-wise 05
-~ ~ A . ~ aj T) L TR -
L .= (3313 ce vwd)a with Z; := . 5 k. LAy
\/ O-i + € = 500 1000 1500 2000
/

to avoid division by zero

Deep Learning : O5-Learning as Optimization [35]

Input Normalization

* Input normalization
1) compute mean p and (component-wise) variance o“of inputs over dataset D

1
} : 2. (. 2 2 - 2 . § : _)2
|D‘ £ o — (Ul,...,Jd,) with g; _ﬁ (ZEZ—[,LZ)
xcD xeD
2) normalize all inputs, component-wise 05
~ A~ A . A aj'l_“z - ow s A, e, .
T = (T1,...,2q), with z; = > LTRSS AL
\V, O-i + € " 500 1000 1500 2000
| /
. to avoid division by zero
)) rescale] shift by 1L
— : ‘e; : ~ each component
_ .) .“, - “o \ . desvenn, .
T . . by —500 2 7 ™ soo
'3". -
' “ *a . ’ 1
0.5
] 02 + €

1

Deep Legrning : O5-Learning as Optimization

[36]

Input Normalization

* Input normalization
1) compute mean p and (component-wise) variance o’ of inputs over dataset D

1 _ 1
M:HZ«I‘ 0'2 = (O'%,...,O'?i,) VVIJChO',L-2 ZWZ(:&L—#Z)2
xcD xcD

2) normalize all inputs, component-wise
Li — [

\/0732 + €

3) apply h(z):= g(wz +b) = g(w1Z1 + wal2 +b)

T = (5/15'1, O ,Qfd), with LIAZ'@ =

Deep Legrning : O5-Learning as Optimization [37]

Input Normalization

* Input normalization
1) compute mean p and (component-wise) variance o’ of inputs over dataset D

|D|Z$ o :=(0f,...,03,) with o7 := Z(wz 1i)?

xcD iBED

2) normalize all inputs, component-wise
Tj — g

\/0732 + €

3) apply h(z):= g(wz +b) = g(w1Z1 + wal2 +b)

T = (fi’l, O ,fl\fd), with LIAZ'@ =

wo
* training becomes _
faster and more stable /@ level curves of the loss function

(also allowing higher learning rates) (during training)

w1

Image from https://https://www.jeremyjordan.me/batch-normalization/

Deep Legrning : O5-Learning as Optimization

[38]

Batch Normalization

= Normalizing in between layers

nabhN- - _ Rl (=Y (R (R (@))) .)

each layer h!! has an input of its own, which should be normalized

N

How?

Deep Learning : O5-Learning as Optimization [39]

Batch Normalization

= Normalizing in between layers

nabhN- - _ Rl (=Y (R (R (@))) .)

each layer h!! has an input of its own, which should be normalized

Normalizing in between layers during training would require:

e pre-computing the input to each layer, for each data itemin D
« applying normalization before proceeding further upwards

« doing it again after each updating the DNN parameters

Moral: it’s impossible

Deep Learning : O5-Learning as Optimization [40]

Batch Normalization

= For each mini-batch:
B = {m(i) }m
1=1

BNg ~(z™) :=~2® + 3
~

trainable parameters

(all operations are performed element-wise)

~(3) _ z() — HB

T Joi e

avoid division by zero

1 m

2 _ 1 (i) _
OB m;(:c pB)
pp = — 3 ald

m 1=1

Deep Learning : O5-Learning as Optimization [41]

Batch Normalization

= Training
e atstep t: ppmm and a%(t) are computed over the current mini-batch B(*)

* parameters v and 3 (for each BN-layer) are trained
in the same way as the other parameters in the DNN

* exponential moving averages of mean and variance of the mini-batches B () are collected
MA(p)™ =6 ppoy + (1 =0) - MA(w)" ", MA(w)" = ppo
MA(a?) :=§-a%,, + (1-06)-MA(e>)Y, MA(e®)W =62,

= Inference

Inference is typically performed for fewer inputs, possibly just one ...

Deep Learning : O5-Learning as Optimization [42]

Batch Normalization

= Training
e atstep t: e and 0']23(“ are computed over the current mini-batch B

* parameters v and 3 (for each BN-layer) are trained
in the same way as the other parameters in the DNN

» exponential moving averages of mean and variance of the mini-batches B () are collected
MA()™ =6 pgoy +(1=0) - MA(u)" ™", MA(w)V = ppo
MA(6®)W :=5-a%,, + (1 -0)-MA(eH)D, MA(eHWY =02,

= Inference

Normalize using the moving averages collected during training

© pi=MA(W®

as collected during the training process

« o2:=MA(e})T)

Deep Learning : O5-Learning as Optimization [43]

Batch Normalization

= Does it work? How good is the approximator when applied to data items
that are not in the dataset?

(=]
[#2]
1

Validation Accuracy
“\
.3
L
)
\
\
1
\
\

= = = |nception
= = BN-Baseline
e BN-x5
A BN-x30
A -4 BN-x5-Sigmoid
I' 4 Steps to match Inception

1 1
5M 10M 15M 20M 25M 30M
Training steps

0.4

« Batch normalization acts as a reparametrization of the optimization process that
1. makes the loss function smoother

2. allows higher learning rates

3. reduces chances to getting stuck into local minima
Image from [loffe and Szegedy 2015]

Deep Learning : O5-Learning as Optimization [44]

= Knocking-out at random

For each mini-batch, a small percentage of 'units' is de-activated

Training: mini-batch 1

Deep Learning : O5-Learning as Optimization [45]

= Knocking-out at random

For each mini-batch, a small percentage of 'units' is de-activated

Training: mini-batch 2

Deep Learning : O5-Learning as Optimization [46]

= Knocking-out at random

For each mini-batch, a small percentage of 'units' is de-activated

Training: mini-batch 3

Deep Legrning : O5-Learning as Optimization [47]

= Knocking-out at random

, @ small percentage of 'units' is de-activated

i-batch

For each mini

. V'V VYV
0
et &

I\
oy

3
N YO

9\
G/

At runtime

(or validation time),
when making predictions,

CII’OPOUT Is not active

.»'\

f O
‘ﬁ% é«.. XY
CKX XX
DS

Prediction

Training

[48]

Deep Legrning : O5-Learning as Optimization

Contrasting Overfitting
= Applying Dropout

In a typical experiment
* initially, the performance on D,,; improves slowly
» then it becomes better and more resilient to overfitting (to be explained next)

Validation set
Training set ||

RMSE

-
=~ -
-

0.5

0 100 200 300 400 500
Epoch

Image from https://www.safaribooksonline.com/library/view/hands-on-machine-learning/9781491962282/ch04.html

Deep Learning : O5-Learning as Optimization [49]

	Slide 1
	Slide 2: About why they did not use Deep Networks from the beginning
	Slide 3: Problem: vanishing or exploding Gradients
	Slide 4: Problem: vanishing or exploding Gradients
	Slide 5: Problem: initial values of the parameters
	Slide 6: Improving optimization
	Slide 7: Improving optimization
	Slide 8: Improving optimization
	Slide 9: Improving optimization
	Slide 10: Momentum
	Slide 11: Momentum
	Slide 12: NAG
	Slide 13: 2nd order methods
	Slide 14: 2nd order methods
	Slide 15: 2nd order methods
	Slide 16: 2nd order methods
	Slide 17: 2nd order methods
	Slide 18: 2nd order methods
	Slide 19: AdaGrad
	Slide 20: AdaGrad
	Slide 21: AdaGrad
	Slide 22: RMSprop
	Slide 23: AdaDelta
	Slide 24: Improving optimization
	Slide 25: Improving optimization
	Slide 26: Improving optimization
	Slide 27: Adam
	Slide 28: Adam
	Slide 29: Improving optimization
	Slide 30: A bag of wonderful tricks
	Slide 31: Why ReLU is better (sometimes)
	Slide 32: Why ReLU is better (sometimes)
	Slide 33: Why ReLU is better (sometimes)
	Slide 34: Input Normalization
	Slide 35: Input Normalization
	Slide 36: Input Normalization
	Slide 37: Input Normalization
	Slide 38: Input Normalization
	Slide 39: Batch Normalization
	Slide 40: Batch Normalization
	Slide 41: Batch Normalization
	Slide 42: Batch Normalization
	Slide 43: Batch Normalization
	Slide 44: Batch Normalization
	Slide 45: Dropout
	Slide 46: Dropout
	Slide 47: Dropout
	Slide 48: Dropout
	Slide 49: Contrasting Overfitting

