Deep Learning

UNIVERSITA
DI PAVIA

A course gbout theoty & practice

Artificial Neural Networks
Basic ideas, notation and all that

Marco Piastra

Deep Learning 2023-2024 Artificial Neural Networks [1]

Function gpproximation:
linear combination

Deep Learning 2023-2024 Artificial Neural Networks [2]

Function Approximation: linear combination

» Approximating a target function
y = f*(x), xeR?

a.k.a. "single layer perceptron”

A first approximator: linear combination
j=w-x+b weRLHeR

\ i.e. this is a vector of dimension d

Note that, when the input is scalar, the approximator becomes
y=wx+b

i.e. a straight line

Deep Learning 2023-2024 Artificial Neural Networks [3]

Function Approximation: linear combination

» Approximating a target function
y = f*(x), xeR?

A first approximator: linear combination
j=w-x+b wecRLHeR

dataset
A set of actual inputs and outputs is all we know about the target function

D :={(z", y}HL,, ¢y =f @), vi

\

A set of data items Item index

Deep Learning 2023-2024

Artificial Neural Networks [4]

Function Approximation: linear combination

» Approximating a target function
y = f*(x), xeR?

A first approximator: linear combination

j=w-x+b wecRLHeR

dataset
A set of actual inputs and outputs is all we know about the target function

D :={(z", y}HL,, ¢y =f @), vi

Three other fundamental aspects to be considered:

* representation: which parametric approximator for a given target function?

* evaluation: how could you tell that some parameter values are better than others?

* optimization: how can we learn optimal values for the parameters?

Deep Learning 2023-2024 Artificial Neural Networks [5]

Function Approximation: linear combination
= Example: XOR

X1 P T1 D X2
y = XOR(z), x € {0,1}? . 2 L
0 1 1
Approximator: linear combination 1 0 1
j=w-x+b, weRLbeR 1 1 0
Dataset: this is our datasé (N =4)
D= {(=", y)}L,

Deep Learning 2023-2024 Artificial Neural Networks [6]

Function Approximation: linear combination

= Example: XOR T1 o T1 D xo
y = XOR(x), « € {0,1}? 0 L L
0 1 1
Approximator: linear combination 1 0 1
j=w-xz+b, weRLbeR 1 1 0
Dataset: . . this is our dataset (N = 4)
D = {(z\", y"}L,

Loss function (evaluation):
. .) . ____—— Squared Error (one data item)
L(z™,y ") == (g(xW) — y)?
1 : : ____— Maean Squared Error (MSE — whole dataset)
LD)= 5 Y L)
(x(®) ,y())eD

Deep Learning 2023-2024 Artificial Neural Networks [7]

Function Approximation: linear combination
= Example: XOR

X1 P T1 D X2
y = XOR(z), x € {0,1}? . 2 L
0 1 1
Approximator: linear combination 1 0 1
j=w-x+b, weRLbeR 1 1 0
Dataset: this is our datasé (N =4)
D= {(="), y")}X,

Optimization problem:

We need to find i.e. the set of parameter values that minimizes loss w.r.t. to the dataset

(w, b)* := argmin L(D)
(w,b)

Deep Learning 2023-2024 Artificial Neural Networks [8]

Function Approximation: linear combination

= |Loss minimization

Approximator: linear combination
j=w-x+b wecRLHeR
Loss function:

1 | |
=5 Z (G(zD) —)2
1 N
=¥ Z (w -z +b) — y)?
Can we express this summation by using linear algebra?

As we will see later on, matrix representation may lead to a better parallelization of computations

Deep Learning 2023-2024 Artificial Neural Networks [9]

Function Approximation: linear combination

= |Loss minimization

Approximator: linear combination
j=w-x+b wecRLHeR

Loss function:

N

1
_ () (’6)
L(D) = ;:1 w -z +b) — y)?

define:
:L’g 1) 33((1 1)
X — . ____—— Inputdata in matrix form (item index first)
M)

Deep Learning 2023-2024 Artificial Neural Networks [10]

Function Approximation: linear combination

= |Loss minimization

Approximator: linear combination
j=w-x+b wecRLHeR

Loss function:

N
1

_ () (’6)

L(D) = ;:1 w -z +b) — y)?

define: -
_CL’gl) e 33((11) 1) w1 [y]
X = N . y=1 :
E U . Ly

The loss function becomes:

. 0 loss function in matrix form
L (D) - (X v — y) ~— This is a positive-definite quadratic form

1
N

Deep Learning 2023-2024 Artificial Neural Networks [11]

Function Approximation: linear combination

= |Loss minimization

Approximator: linear combination

j=w-xz+b weRYbeR

Loss function:

define;

1 N
ﬁE:@U$m+b)2
1=1

(1)

Lq

o

The loss function becomes:

L(D) =

1
N

(X9 —y)?

Deep Learning 2023-2024

P 1 1 (D7
] v= yo=1
w
1 . ™).

loss function in matrix form

~— This is a positive-definite quadratic form

Artificial Neural Networks [12]

Function Approximation: linear combination

= Loss minimization XOR T To 1 P To
Approximator: linear combination 0 0 0
j=w-x+b wcR bR 0 1 :
Loss function: 1 0 1
1 - 5 1 1 0
L(D) = +(X¥ —) y
For XOR: this is our dataset (N = 4)
[w H
=11 01 Y= . Y7
11 1 0]

Deep Learning 2023-2024 Artificial Neural Networks [13]

Function Approximation: linear combination

= | .oss minimization
Approximator: linear combination
j=w-x+b wecRLHeR

Loss function:

_ 1 % 2
L(D) = + (X0 —y)
Optimization:
0
_819L(D) = (

AN

this loss function is convex:

by solving this equation, we can find 9"

i.e. the optimal parameter values

Deep Learning 2023-2024

Artificial Neural Networks [14]

Function Approximation: linear combination

= |Loss minimization

Approximator: linear combination
j=w-x+b wecRLHeR
Optimization:

0 1 0
—L(D)= = (X9 —y)?
59 D) = 755 (X9 —y)
1 0 - A 1 0 A .
= Y X I—anT (X —) = — L (9T XT _ TV (X9 —
N g (X0 —y) (X0 —y) = =5 (I y) (XY —vy)
1 0 PRI . .
—Na—ﬁ(ﬁTXTXﬁ—ﬂTXTy—yTX19+yTy)
1 9 all these terms are scalars
=~ 8—(?9TXTX’19 — 207 X Ty + yTy)
%(QXTXﬂ—QXT)

Deep Learning 2023-2024 Artificial Neural Networks [15]

Function Approximation: linear combination

= |Loss minimization

Approximator: linear combination
j=w-x+b wecRLHeR

Optimization:
a]_ f A A
—L(D)= =(2XTX9-2X"T
55 L(D) = - (2XT X9 —2XTy)
s, N .
8—191,(1)) =0 = 2X'X9-2XTy=0

XTX0=XTy

Y = XTX _IXT this is what we need
)

this matrix is SQUARE and SYMMETRIC
and, typically, with actual datasets
is invertible (i.e. full rank)

Deep Learning 2023-2024

Artificial Neural Networks [16]

Function Approximation: linear combination

= Loss minimization XOR T1 9 T1 P xo
Approximator: linear combination 0 0 0
j=w-x+b wecRLHeR 0 1 1
For XOR: 1 0 1
A . 1 1 0
9= (XTX)"' X1y
0 0 1 . 0]
5 0 1 1 ! 1
X=1y 9 1| 97 “;)2 Y= h
1 1 1 0]
212 1 0 05 - 0
X'X=1|1 2 2| X*TX)'=|0 1 05 (X'X) ' XTy=10
2 2 4 0.5 0.5 0.75 0.5

Deep Learning 2023-2024 Artificial Neural Networks [17]

Function Approximation: linear combination

= |Loss minimization XOR

Approximator: linear combination 0
j=w-x+b wecRLHeR 0

For XOR: 1
1

1 4, T1 D xo
0 0
1 1
0 1
1 0

SR

hence the XOR linear approximator becomes:

j=05

What 2?2

Deep Learning 2023-2024

Avrtificial Neural Networks [18]

Function approximation:
Feed-Forward Neural Network

Deep Learning 2023-2024 Artificial Neural Networks [19]

Feed-Forward Neural Network
» Approximating a target function
y=f(x), ©eR"
Second attempt: (shallow) feed-forward neural network
j=w -gWax+b)+b WeR"™ wbecR"'becR

\ this is a matrix of dimensions h X d

this is a non-linear scalar function, applied elementwise

Deep Learning 2023-2024 Artificial Neural Networks [20]

Feed-Forward Neural Network

» Approximating a target function
y = f*(x), xeR?

Second attempt: (shallow) feed-forward neural network

gy=w- -g(Wax+b)+ b, W eRY™ wbeR'beR

Popular choices for the non-linear function:

1
g(x) =o(x) = = 11 g(x) = tanh(x) g(x) = max(0, x)
oe —rew]
o=
Sigmoid Hyperbolic Tangent RelLU

Deep Learning 2023-2024 Artificial Neural Networks [21]

Feed-Forward Neural Network

» Approximating a target function
y = f*(x), xeR?

Second attempt: (shallow) feed-forward neural network

gy=w- -g(Wax+b)+ b, W eRY™ wbeR'beR

Popular choices for the non-linear function: this is somewhat specidl..
1
g(z) = o(z) =) g(x) = tanh(x) g(z) = max(0, z)
» o (—row]
::f ==
(R -
Sigmoid Hyperbolic Tangent RelLU

Deep Learning 2023-2024 Artificial Neural Networks [22]

Feed-Forward Neural Network

» Approximating a target function
y = f*(x), xeR?

Second attempt: (shallow) feed-forward neural network

gy=w- -g(Wax+b)+ b, W eRY™ wbeR'beR

output layer

input layer

Deep Learning 2023-2024 Artificial Neural Networks [23]

Feed-Forward Neural Network

» Approximating a target function
y = f*(x), xeR?

Second attempt: (shallow) feed-forward neural network

gy=w- -g(Wax+b)+ b, W eRY™ wbeR'beR

NOTE: biases b and b are NOT represented in the graph

Deep Learning 2023-2024 Artificial Neural Networks [24]

Universality of FF Neural Networks

= Universal approximation theorem (cybenko, 1989; Horik, 1991; Leshno et al. 1991)
For any target function

Yy = f ’ (.’B), T © Rd (which is continuous and Borel measurable)

andany ¢ > 0 there exists parameters

h\e Zt. W e R4 w.beR"beR

such that the (shallow) feed-forward neural network

this is the dimension of the hidden layer: it is a parameter in the theorem

g=w- -gWx+b)+1b

approximates the target function by less than

sup | (@) = (w-g(Waz +b) +)| <e

(on any compact subset of Rd)

This theorem holds with any of the non-linear functions seen before

Deep Learning 2023-2024 Artificial Neural Networks [25]

Universality of FF Neural Networks

* Universal approximation theorem (cybenko, 1989; Hornik, 1991; Leshno et al. 1991)

Intuitive rationale

Any continuous target function
y=f"(x), x€R

can be approximated arbitrarily well by a stepwise function

y“ *(z) this is the largest difference
SN R @ e gWa) +h)
/ \ 5 i

X—A//

[
»

X

for simplicity, assume now that z is scalar (hence W is vector)

g=w- -gWx+b)+1b

Deep Learning 2023-2024 Artificial Neural Networks [26]

Universality of FF Neural Networks

* Universal approximation theorem (cybenko, 1989; Hornik, 1991; Leshno et al. 1991)

Intuitive rationale

Consider the step function as the non-linearity;
g=w- step(Wzx+b)+b

then, by expanding the scalar product:
g = wy step(Wyx + by) + - - + wp step(Wpx + bp,) + b

where each step occurs at

g(x) = step(x)

Wicx+b;,=0 — W, -z2=-b — ﬂiz—ﬁ
W;
Consider pairs of steps ¢ and j and impose Y :33212223212))
%<%’ Wi, W; >0, w; =—wj w3
in this way we can construct g such function steps b by g
W; j

Deep Learning 2023-2024

Artificial Neural Networks [27]

Learning
Feed-Forward Neural Networks

Deep Learning 2023-2024 Artificial Neural Networks [28]

Learning with FF Neural Networks

» Approximating a target function
y = f*(x), xeR?

Second attempt: (shallow) feed-forward neural network

gy=w- -g(Wax+b)+ b, W eRY™ wbeR'beR

Optimization problem (learning)
Givenadataset D := {(zW,y NN | ¢ = r(2®) v

=1
/ the dimension of the hidden layer is pre-defined

we want to find parameter values W € R"4 w. b e R" b e R

1 . .
that minimize the loss function L(D) := ~ Z (g — y(9))?
D

where: 59 .= w - g(Waz'D +b) +b

Deep Learning 2023-2024

Avrtificial Neural Networks [29]

Learning with FF Neural Networks

» Approximating a target function
y = f*(x), xeR?

Second attempt: (shallow) feed-forward neural network

gy=w- -g(Wax+b)+ b, W eRY™ wbeR'beR

Difficulty
In general, minimizing the loss function
1 i i
L(D) = > ((w-g(Wz') +b) +b) —)2
D
cannot be done directly since [— this loss function is not convex, in general
0
—L(D)=0
09 (D)

cannot be solved analytically We need to find another way

Deep Learning 2023-2024 Artificial Neural Networks [30]

Gradient Descent (GDP): intuition

= Optimization problem
¥* ;= argming L(D,9)
Just rrqaking the dependence explicit
= Minimizing a generic function
Ly \ tangent lines

with slope
given by

gradient
at 9\

Follow the opposite of the gradient!

Deep Learning 2023-2024 Artificial Neural Networks [31]

Gradient Descent (GD): intuition =

= Optimization problem .
¥* ;= argming L(D,9) =7 |
/

Just making the dependence explicit

= [terative mEthOd/ Step in the method

1. Initialize 9% at random

0

2. Update 9(t) = g(t=1) _ n — 55 (ng(t—l))
3. Unless some termination criterion has been met, go back to step 2.
where
< L(D,9) g2’ o3 Ly, 9)
<1 The gradient of the loss over the dataset D is the average of gradients over each data item

A learning rate, it is arbitrary (i.e., an hyperparameter)

Deep Learning 2023-2024 Artificial Neural Networks [32]

Gradient Descent (GD): convergence

= Convergence

When L(D,) is convex, derivable, and its gradient is Lipschitz continuous, that is

H—L (D,9,) — a%L(D 95)

\scnﬁl—m C>0

the gradient descent method converges to the optimal 9" for £ — oo
provided that n < 1/C

When L(D,) is derivable but not convex, and its gradient is Lipschitz continuous,
the gradient descent method converges to a local minimum of L (D,)
under the same conditions

Deep Learning 2023-2024 Artificial Neural Networks [33]

Gradient Descent (GD): practicalities

= Convergence in practice
The choice of the learning rate 71 is crucial

Cost . Cost . . .
learning rate too low learning rate too high (i.e. no convergence)

> 1
Start 6 Start > 8
Cost
A learning rate just right
\ \ Learning step
|
1
1
: Minimum
|
1
1 1 >
Random 0
initial value A

Images from https://www.safaribooksonline.com/library/view/hands-on-machine-learning/9781491962282/ch04.html

Deep Learning 2023-2024 Artificial Neural Networks [34]

Gradient Descent (GD): practicalities

= Convergence in practice
When L(D, 1) is not convex, the initial estimate 99 is crucial

Cost

A

Plateau X

Y

i
(0) 0)
4 Global v

Local minimum 7 .
minimum

The outcome of the method will depend on which ’19(0) is picked

Image from https://www.safaribooksonline.com/library/view/hands-on-machine-learning/9781491962282/ch04.html

Deep Learning 2023-2024 Artificial Neural Networks [35]

Learning
Feed-Forward Neural Networks
(contd.)

Deep Learning 2023-2024 Artificial Neural Networks [36]

Gradient Descent for FF Neural Networks

Recall that the item-wise loss for a specific data item in the dataset is
L(G",y") == (51 — y1))?
then

Z LD,y

and the gradient of the loss function is

8
7 y()
819 8’19N ZL
1 6’
S il y)
=N 2 gyl)
D

Moral: we need to be capable to compute the gradient on each data item

Deep Learning 2023-2024 Artificial Neural Networks [37]

Gradient Descent for FF Neural Networks

Suppose we can compute the four item-wise gradients, w.r.t. to the parameters:
0 13 0 0

——L(§D, y@ — L(§D, y@ — L(§D, 4 — L(5D, 4y
oW (y) 0b (y) ow () ob (y)
then we can apply a gradient descent method
* Gradient Descent
1. Assign initial values to the four parameters WO pO) (0 p(0)
2. Update the four parameters by adding
1) - 1 0 N
AW = —n — —— L(§D, y® Ab = —n — — L(§D, 4@
Aw = —p — 3 9 LD, 4 Z (79D
N Ow ’ (%

3. Unless complete, return to step 2.

Deep Learning 2023-2024 Artificial Neural Networks [38]

Computing Gradients

All we need to apply the descent method is computing the item-wise gradients

For instance:
9, . O .
(z) (2) (z) (1)\2
aw W) = S0 =y)
9,
() (z) 2
= o (w - g(Wa) 1 b) +b) - y©)

(similar expressions hold for the other three gradients)

Assume =]

g(x) = ReLU(x) := max(0, x)

i.e., the non-linearity is ReLU
Easy, huh?

Deep Learning 2023-2024 Artificial Neural Networks [39]

FF Neural Networks

®
L]

Function Approximation

T D T2

o

O = O

XOR

tion

INIMIZa

= [ossm

ReLUWx +b) + b

1 -

forward neural network

]

Approximator
(shallow) feed-

\dimension of the hidden layer

imal values for XORand h = 2

Opt

AR
A
AR
AR
NERRERERL
ARy

SRR

EaRA R
T e e e
NARNRLIE RN AR

RIRERTAAS
AERTRE
R
ARRRRRe
SRIREATANANRY
SANRARTRTRIRY
TR
RN

X
S

1

1
1 1

Artificial Neural Networks [40]

Deep Learning 2023-2024

Stochastic and Mini-Batch
Gradient Descent

Deep Learning 2023-2024 Artificial Neural Networks [41]

Function Approximation: FF Neural Networks

= Loss minimization XOR T1 9 T1 P xo
Approximator: 0 0 0
(shallow) feed-forward neural network 0 1 1
y=w-ReLUWax +b) + b 1 0 1
1 1 0
In this case our dataset was tiny... (N =4) /

this is our dataset

What if the dataset was very large?

Deep Learning 2023-2024 Artificial Neural Networks [42]

Stochastic Gradient Descent (SGD): intuition

= Objective
Y* := argming L(D,19)

= [terative method
1. Initialize 9% at random

2. Pick a dataitem (:B(i), y(i)) € D with uniform probability

3. Update 9 — 9= _ p(® a% L5,y O, 9(t=D)

4. Unless some termination criterion has been met, go back to step 2.

n(t) <1

Note that the learning rate may vary across iterations...

Deep Learning 2023-2024

Artificial Neural Networks [43]

Stochastic Gradient Descent for FF Neural Networks

With very large datasets, the sum in:
1 0
oV

AY = =N, — L(3 (4, (i))

may take very long to compute (and this must be repeated at each iteration)

= Stochastic Gradient Descent (SGD) (e "you don't actually need to sum up them all")
1. Assign initial values to the four parameters W) p(0) 4,0 p(0)

2. Pickup adataitem (x @)y) from D with uniform probability
and update the four parameters (with 1 < 1.0, 1 — 0 as iterations progress)

0 : : 0 . _
AW = —n ——L(5® @) Ab — —p — L(5® 4,8
0 o N
Aw = — LW,y Ab = — 7 (2) o, (2)
=~ LG,y) b=~ = L(5V,y)

3. Unless complete, return to step 2.

Deep Learning 2023-2024

Avrtificial Neural Networks [44]

Stochastic Gradient Descent (SGD): convergence

= Convergence

When L(D,) is convex, derivable, and its gradient is Lipschitz continuous, that is

H—L (D,9,) — a%L(D 95)

‘gcnﬁl—ﬁzn, >0

the stochastic gradient descent method converges to the optimal ¥ for t — 0o
provided that |

(t) < — Note that n(t) — 0 for t = o0
—Ct

When L(D, 19) is derivable, and its gradient is Lipschitz continuous but not convex
the stochastic gradient descent method converges to a local minimum of L(D, 1)
under the same conditions

Deep Learning 2023-2024 Artificial Neural Networks [45]

Speed of Convergence

Perhaps surprisingly, stochastic gradient descent shares the same properties

and could be faster than GD ...

Consider a generic loss function L(ﬂ) which is convex in the parameter 19

Define accuracy as an upper bound:
optimal value

L(97) — L(9)] < p

[Bottou & Bousquet, 2008]

current parameter estimate

N size of the dataset
" q number of (scalar) parameters in 0

Algorithm Cost per Iterations to reach Time to reach
iteration accuracy p accuracy p
Gradient descent 1 1
(GD) O(N q) O (log —) O (N qlog —)
P P

Stochastic gradient 1 1
descent (SGD) (’)(q) O (_) @) (q_)

P P

Deep Learning 2023-2024

Artificial Neural Networks [46]

Qualitative comparison of GD methods

Typical traces 38 g—m Stochastic i

of the three methods 360 — Mini-batch 1
(batch = GD)

3.4} | == Batch 1

91 3.2+
3.0F

2.8}

26}

2.4+
2.5 3.0 3.5 4.0 4.5

In general:

* GDis more regular but slower (with large datasets)
« SGD is faster (with large datasets) but noisy
 MBGD is often the right compromise in practice...

Image from https://www.safaribooksonline.com/library/view/hands-on-machine-learning/9781491962282/ch04.html

Deep Learning 2023-2024 Artificial Neural Networks [47]

Mini-batch Gradient Descent (MBGD): intuition

= Objective
Y* := argming L(D,19)

= [terative method

1. Initialize 8 at random

2. Pickaminibatch B C D with uniform probability

0
3. Update 9 = 9= _ p(®) = (B 91
PEe o)
4. Unless some termination criterion has been met, go back to step 2.
where
iL B, 19 Z y(%) ,9)
iz B |

This method has the same convergence properties of SGD

Deep Learning 2023-2024 Artificial Neural Networks [48]

Mini-batch Gradient Descent for FF Neural Networks

= Mini-batch Gradient Descent (MBGD)

1. Assign initial values to the four parameters W (9 p(0) 4,(0) p(0)

2. Pickamini-batch B C D with uniform probability
and update the four parameters (with n < 1.0, n — 0 as iterations progress)

1 0 N 1 0 N

A —_ — P—— —L N(Z) ((L) A = — _— _L ~(?’) (7’)
4 ”|B{Zaw G y") Ab "|B|ZB oY)

1 1, . ,

_ E y) Ab — — § L) ()

3. Unless complete, return to step 2.

This method has the same convergence properties of SGD

Deep Learning 2023-2024 Artificial Neural Networks [49]

	Slide 1
	Slide 2: Function approximation: linear combination
	Slide 3: Function Approximation: linear combination
	Slide 4: Function Approximation: linear combination
	Slide 5: Function Approximation: linear combination
	Slide 6: Function Approximation: linear combination
	Slide 7: Function Approximation: linear combination
	Slide 8: Function Approximation: linear combination
	Slide 9: Function Approximation: linear combination
	Slide 10: Function Approximation: linear combination
	Slide 11: Function Approximation: linear combination
	Slide 12: Function Approximation: linear combination
	Slide 13: Function Approximation: linear combination
	Slide 14: Function Approximation: linear combination
	Slide 15: Function Approximation: linear combination
	Slide 16: Function Approximation: linear combination
	Slide 17: Function Approximation: linear combination
	Slide 18: Function Approximation: linear combination
	Slide 19: Function approximation: Feed-Forward Neural Network
	Slide 20: Feed-Forward Neural Network
	Slide 21: Feed-Forward Neural Network
	Slide 22: Feed-Forward Neural Network
	Slide 23: Feed-Forward Neural Network
	Slide 24: Feed-Forward Neural Network
	Slide 25: Universality of FF Neural Networks
	Slide 26: Universality of FF Neural Networks
	Slide 27: Universality of FF Neural Networks
	Slide 28: Learning Feed-Forward Neural Networks
	Slide 29: Learning with FF Neural Networks
	Slide 30: Learning with FF Neural Networks
	Slide 31: Gradient Descent (GD): intuition
	Slide 32: Gradient Descent (GD): intuition
	Slide 33: Gradient Descent (GD): convergence
	Slide 34: Gradient Descent (GD): practicalities
	Slide 35: Gradient Descent (GD): practicalities
	Slide 36: Learning Feed-Forward Neural Networks (contd.)
	Slide 37: Gradient Descent for FF Neural Networks
	Slide 38: Gradient Descent for FF Neural Networks
	Slide 39: Computing Gradients
	Slide 40: Function Approximation: FF Neural Networks
	Slide 41: Stochastic and Mini-Batch Gradient Descent
	Slide 42: Function Approximation: FF Neural Networks
	Slide 43: Stochastic Gradient Descent (SGD): intuition
	Slide 44: Stochastic Gradient Descent for FF Neural Networks
	Slide 45: Stochastic Gradient Descent (SGD): convergence
	Slide 46: Speed of Convergence
	Slide 47: Qualitative comparison of GD methods
	Slide 48: Mini-batch Gradient Descent (MBGD): intuition
	Slide 49: Mini-batch Gradient Descent for FF Neural Networks

