

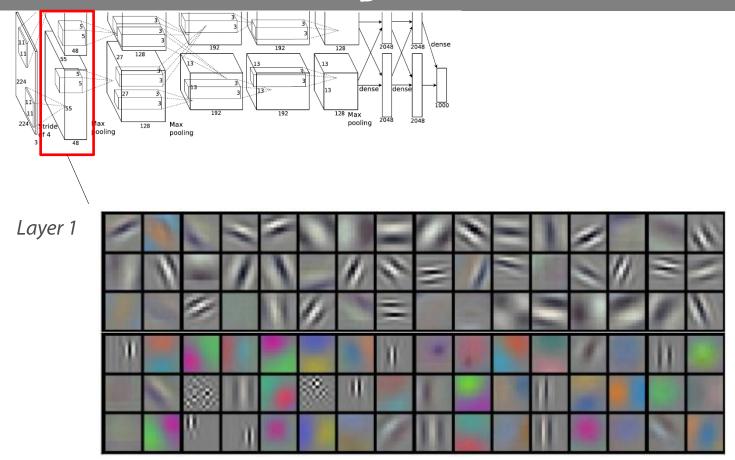
Deep Learning

07-Deep Convolutional Neural Networks and Beyond

Marco Piastra

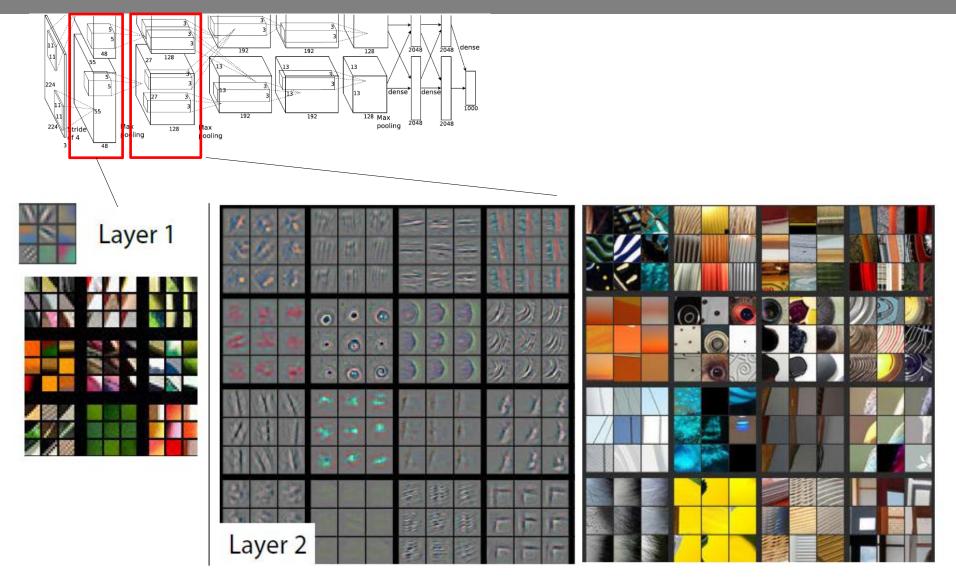
This presentation can be downloaded at: <u>http://vision.unipv.it/DL</u>

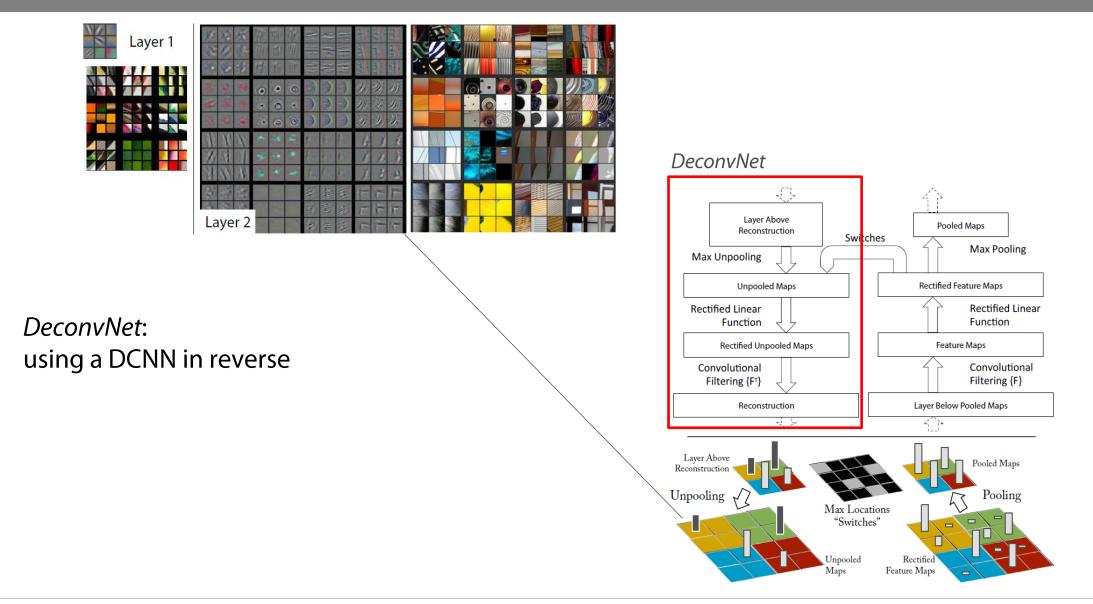
AlexNet Filters (after training)

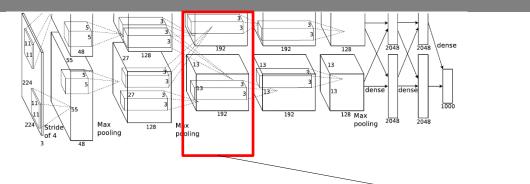


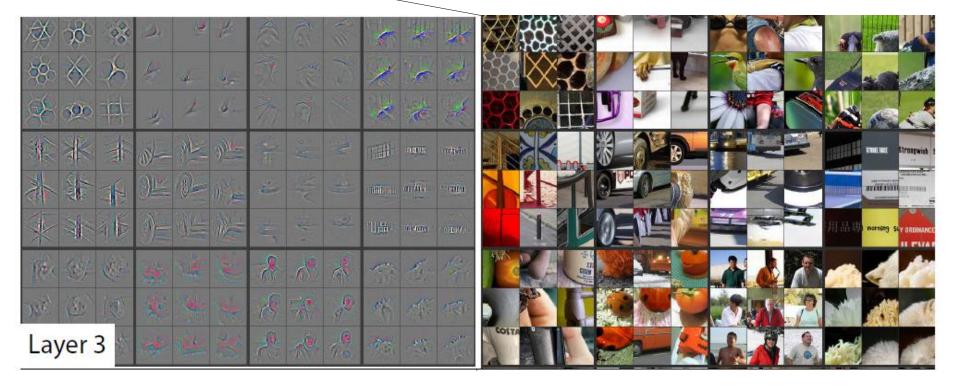
These are 96 real examples of convolutive filters for RGB images

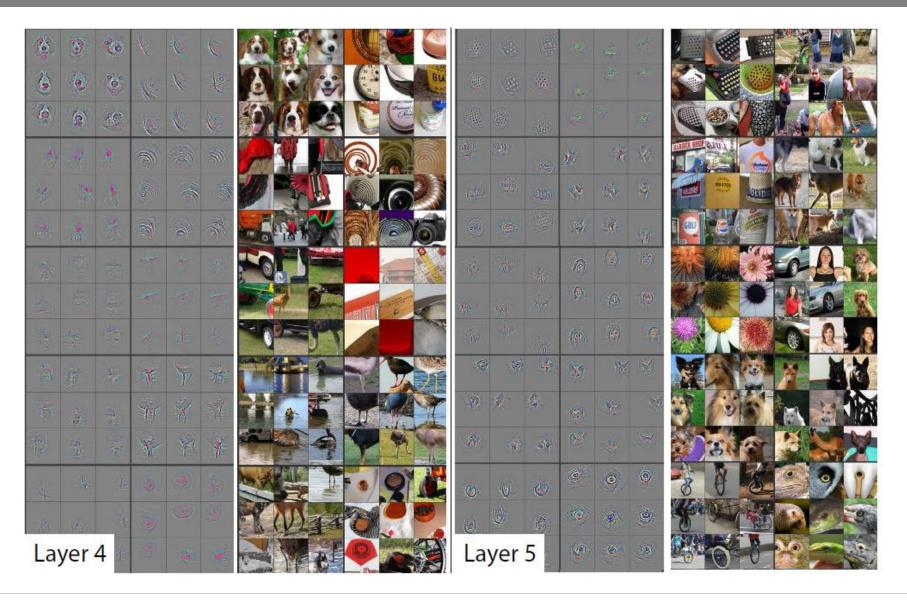
[image from http://cs231n.github.io/convolutional-networks/]







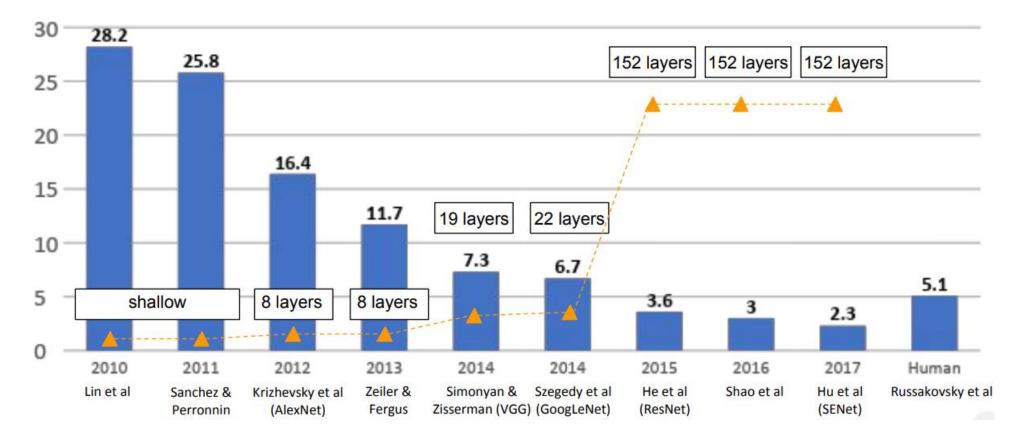




Beyond AlexNet: The DCNN storm

ImageNet: the full story

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners



The challenge is now over

Image from [http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture09.pdf]

VGG Architecture

Several variants

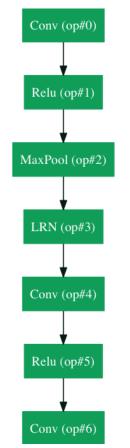
Only 3x3 convolutional filters used (each with ReLU)

LRN used in only one variant

ConvNet Configuration					
А	A-LRN	В	С	D	E
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight
layers	layers	layers	layers	layers	layers
input (224×224 RGB image)					
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64
	LRN	conv3-64	conv3-64	conv3-64	conv3-64
maxpool					
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128
		conv3-128	conv3-128	conv3-128	conv3-128
maxpool					
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
			conv1-256	conv3-256	conv3-256
					conv3-256
maxpool					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
maxpool					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
maxpool					
FC-4096					
FC-4096					
FC-1000					
soft-max					

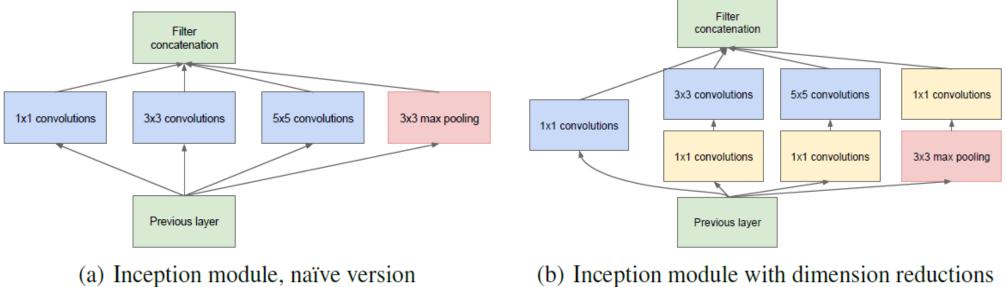
The ImageNet Large Scale Visual Recognition Challenge

How deep is a deep neural network, for a task like this?



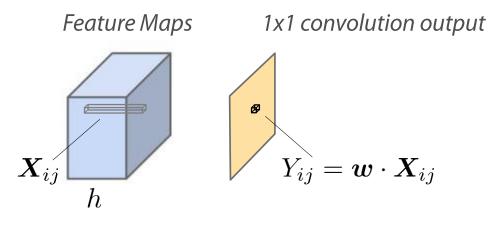
GoogLeNet (Inception v4) winner of two out of three categories in 2014: 154 network layers

Inception modules



(b) Inception module with dimension reductions

1x1 convolution?



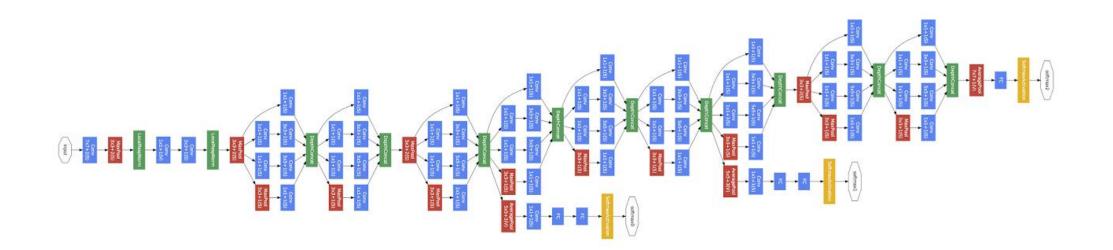
(It is a kind of misnomer)

Each filter has dimension $1 \times 1 \times h$ where *h* is the depth of the set of filter maps

Using d 1x1 convolution filters allows changing depth h into dClearly the assumption is d < h

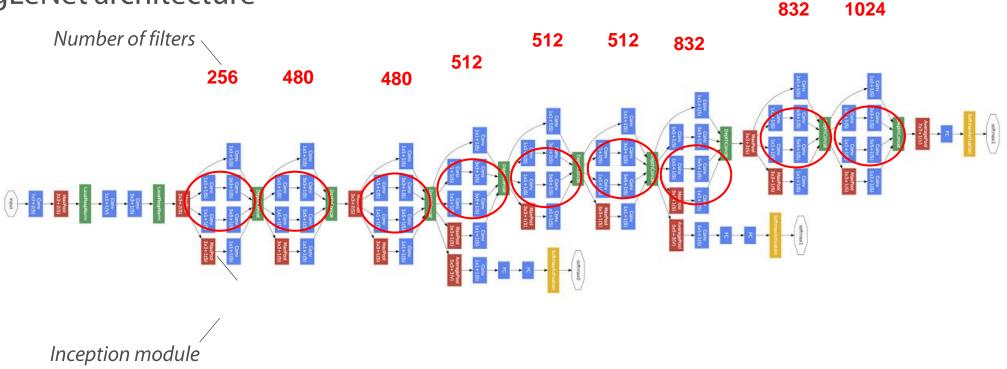
It mimics a fully connected layer (across channels)

GoogLeNet architecture



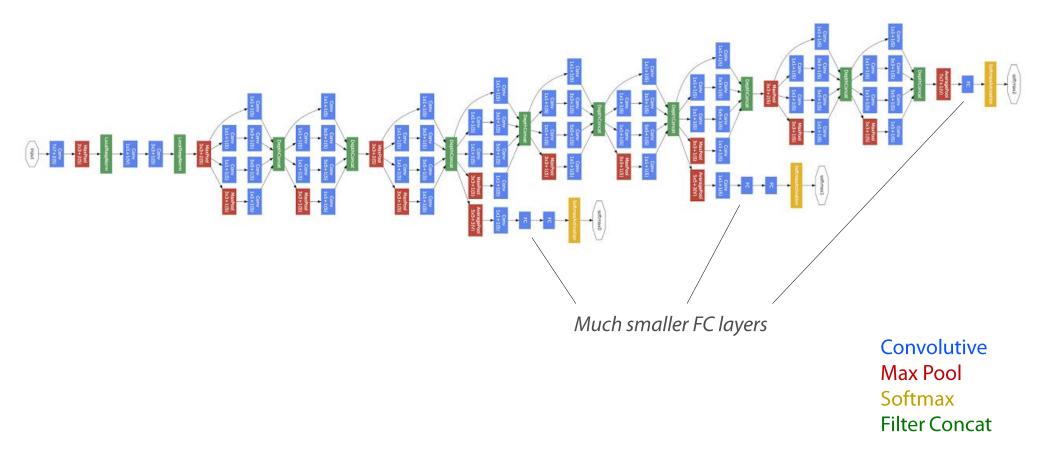
Convolutive Max Pool Softmax Filter Concat

GoogLeNet architecture

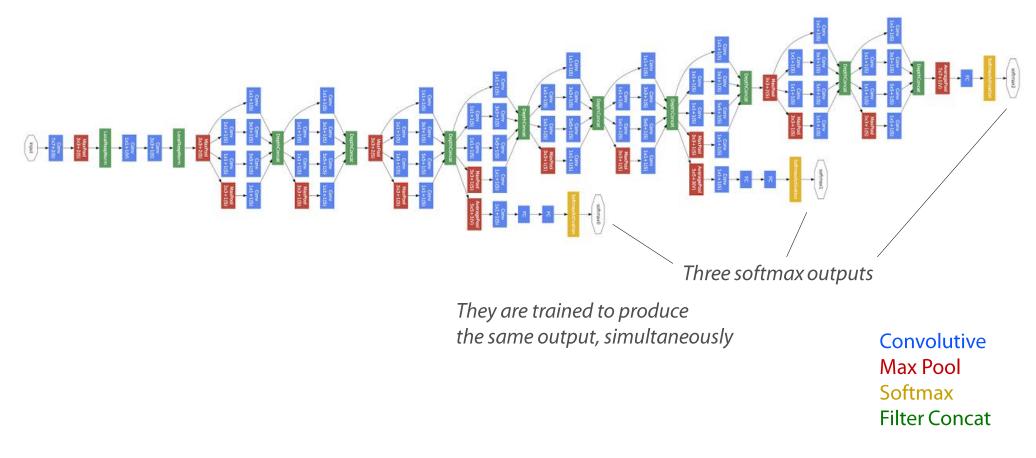


Convolutive Max Pool Softmax Filter Concat

GoggLeNet architecture



GoogLeNet architecture



ResNet Architecture

ResNet block

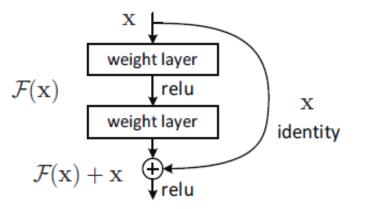


Figure 2. Residual learning: a building block.

Image from [https://arxiv.org/pdf/1512.03385.pdf]

ResNet Architecture

ResNet architecture

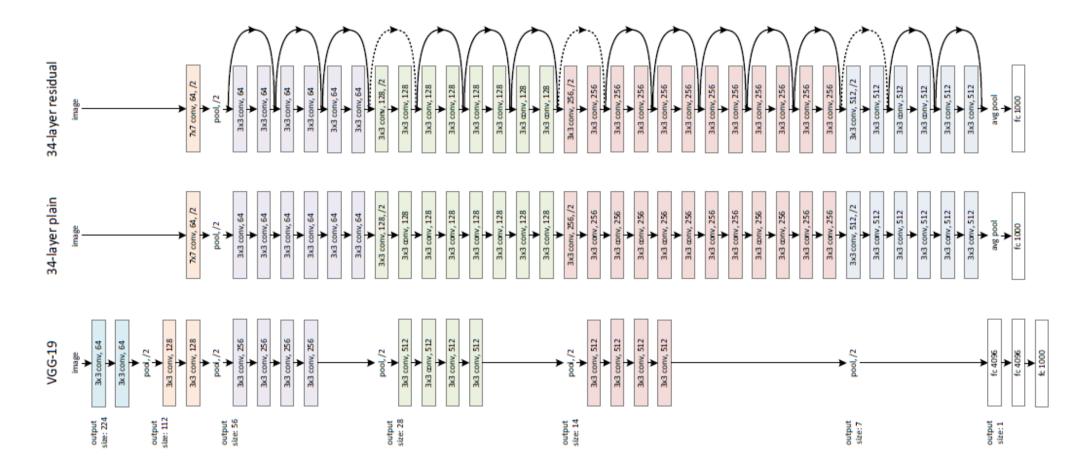


Image from [https://arxiv.org/pdf/1512.03385.pdf]

Comparing Different DCNNs

Comparative charts at Top-1 accuracy

i.e. how often the DCNN is right with ImageNet with its top prediction

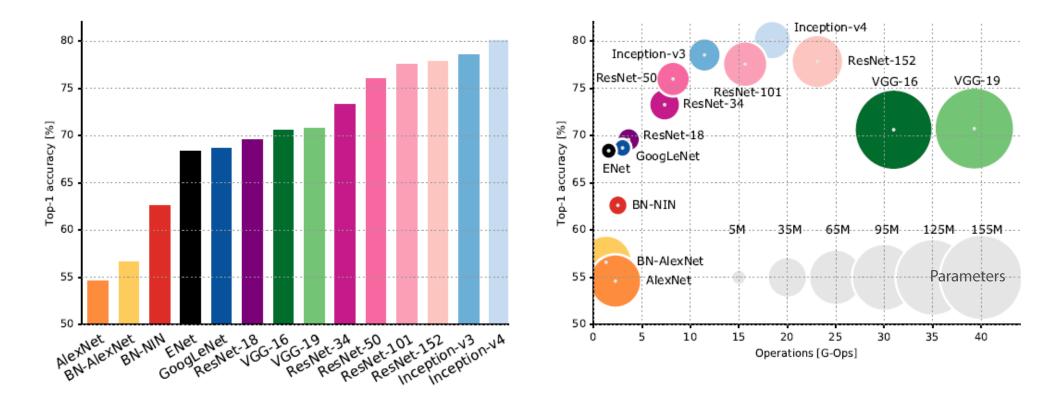
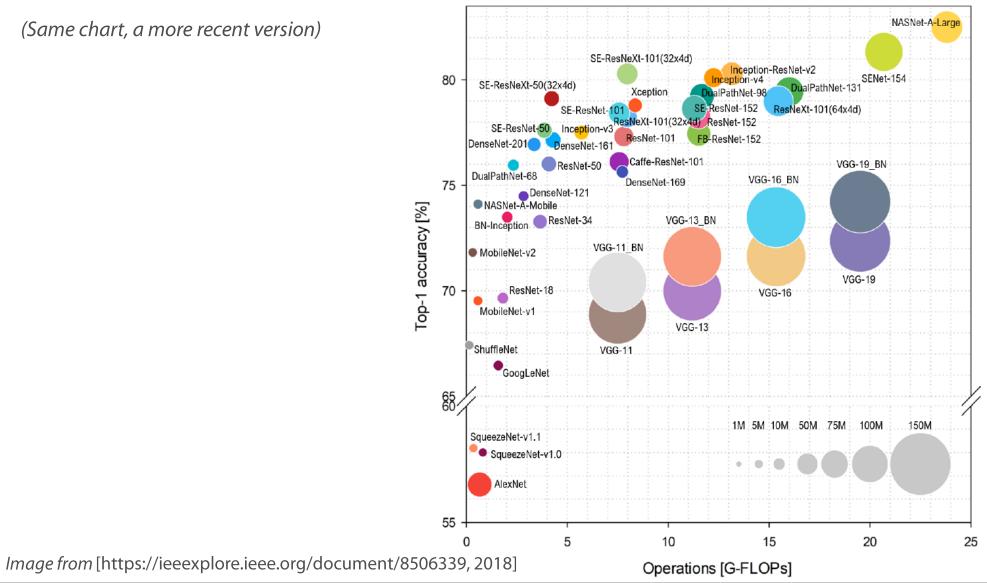


Image from [https://arxiv.org/abs/1605.07678, 2017]

Comparing Different DCNNs

(Same chart, a more recent version)

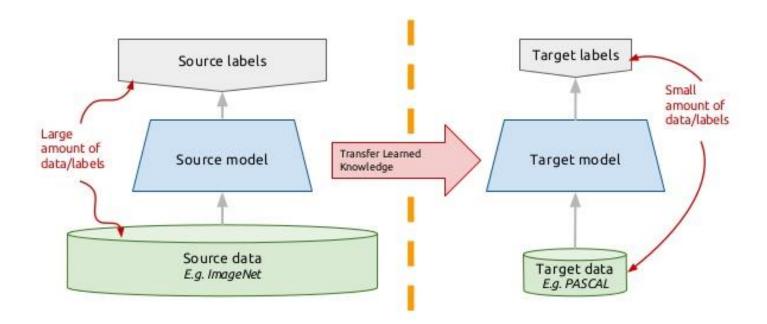


Deep Learning : 07-Deep Convolutional Neural Networks and Beyond

Transfer Learning

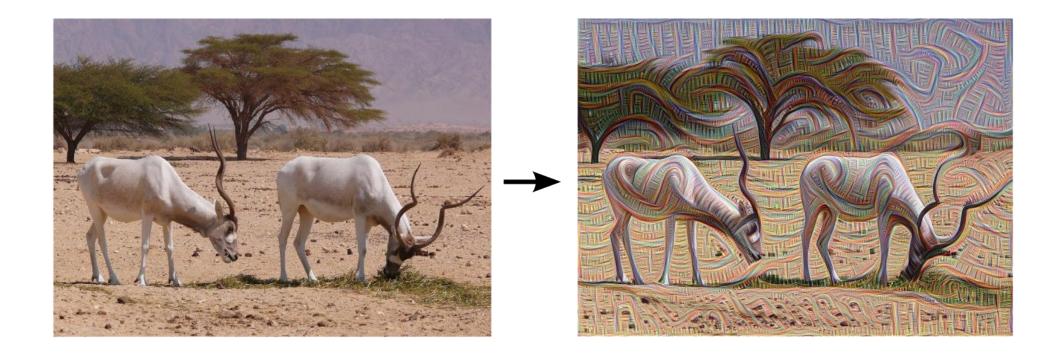
Transfer Learning

Transfer learning: idea



Ø A hallucinatory filter over a red tree. Spot the animals. Photograph: Google

Enhancing lower layers



Feature Enhancement

Image Space Gradient Descent

Define

 $oldsymbol{\Phi}_{k,l}(oldsymbol{I})$

as the response of a DCNN at a layer k, filter l to an image \boldsymbol{I}

Given a specific image \hat{I} , we define the loss function

 $L(\hat{I}, I) := \|\gamma \Phi_{k,l}(\hat{I}) - \Phi_{k,l}(I)\|^2$

The optimization problem

Amplification factor

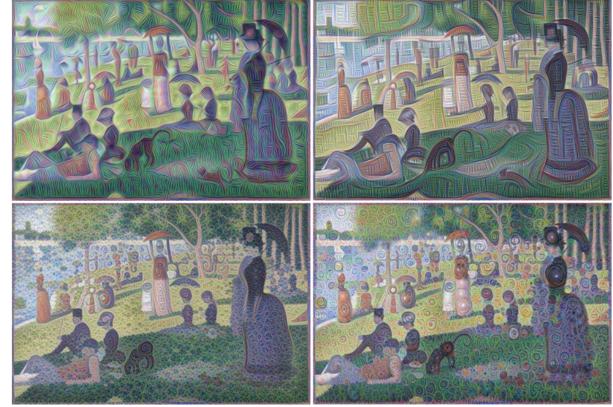
$$\boldsymbol{I}^* := \operatorname{argmin}_{\boldsymbol{I}} \left(L(\hat{\boldsymbol{I}}, \boldsymbol{I}) + \lambda \|\boldsymbol{I}\|^2 \right)$$

is solved via gradient descent by computing

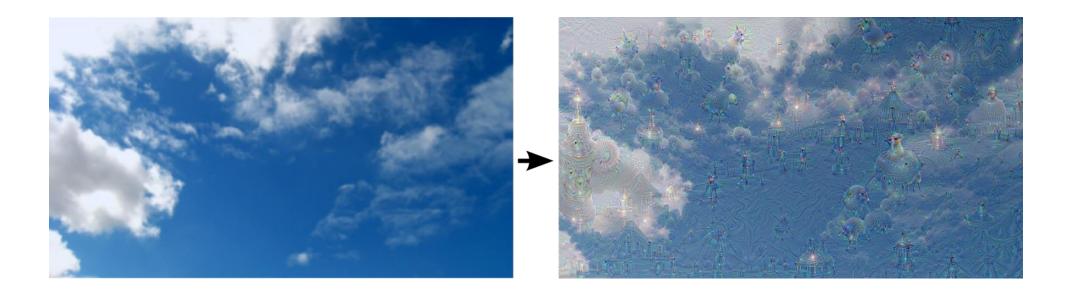
$$\frac{\partial}{\partial \boldsymbol{I}} \left(L(\hat{\boldsymbol{I}}, \boldsymbol{I}) + \lambda \|\boldsymbol{I}\|^2 \right)$$

and starting from $~~m{I}^{(0)}=\hat{m{I}}$

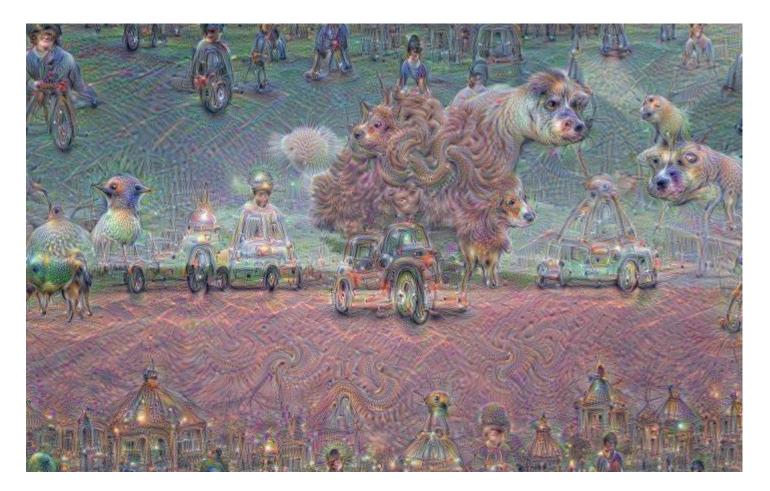
Enhancing lower layers



Enhancing upper layers



Letting the DCNN go on its own



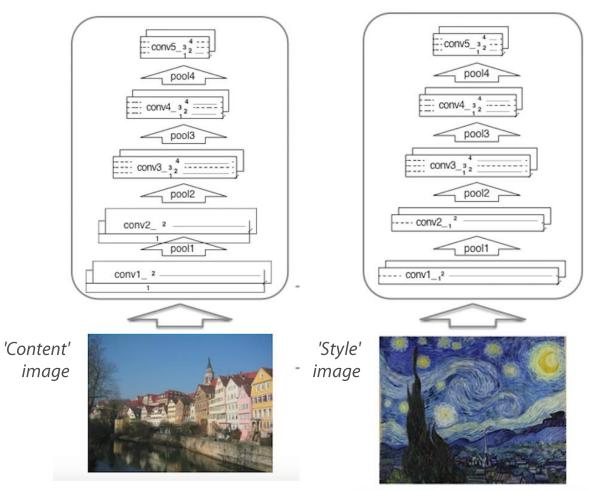
Letting the DCNN go on its own

The Power of Abstraction (in layers)

The Power of Abstraction

Different Layers of a Deep Convolutional Neural Network

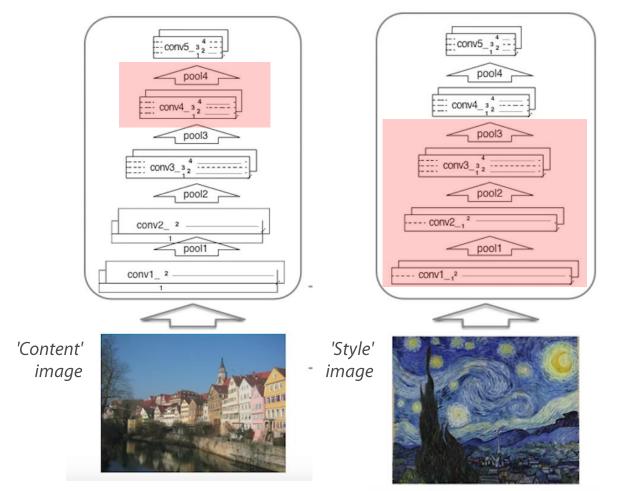
What kind of information does each layer 'store'?



The Power of Abstraction

Different Layers of a Deep Convolutional Neural Network

What kind of information does each layer 'store'?



Create a new image by combining more of the 'Content' top layer and more of 'Style' low layers

Mixing Two Images

Image Space Gradient Descent

Define

 $oldsymbol{\Phi}_{k,l}(oldsymbol{I})$

as the response of a DCNN at a layer k, filter l to an image $oldsymbol{I}$

Given a specific image \hat{I}_1 and \hat{I}_2 , we define the loss function

$$L(\hat{\boldsymbol{I}}, \boldsymbol{I}) := \sum_{k,l} \|\boldsymbol{M}_{k,l}(\boldsymbol{\Phi}_{k,l}(\hat{\boldsymbol{I}}_2), \boldsymbol{\Phi}_{k,l}(\hat{\boldsymbol{I}}_1)) - \boldsymbol{\Phi}_{k,l}(\boldsymbol{I})\|^2$$

Weighted Merge Function

The optimization problem

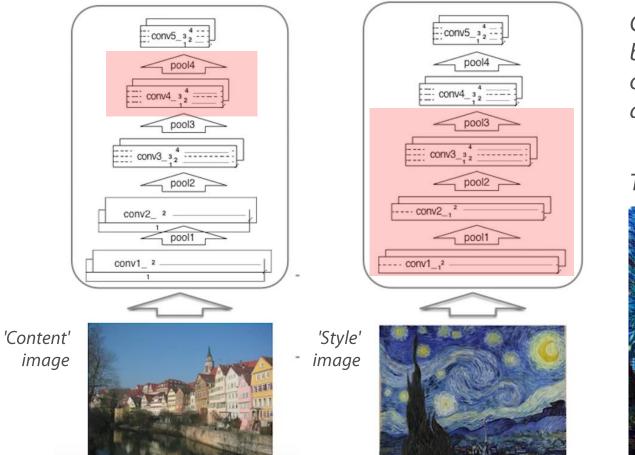
$$I^* := \operatorname{argmin}_{I} \left(L(\hat{I}, I) + \lambda \|I\|^2 \right)$$

is solved via gradient descent starting from $~oldsymbol{I}^{(0)}=\hat{oldsymbol{I}}_1$

The Power of Abstraction

Different Layers of a Deep Convolutional Neural Network

What kind of information does each layer 'store'?



Create a new image by combining more of the 'Content' top layer and more of 'Style' low layers

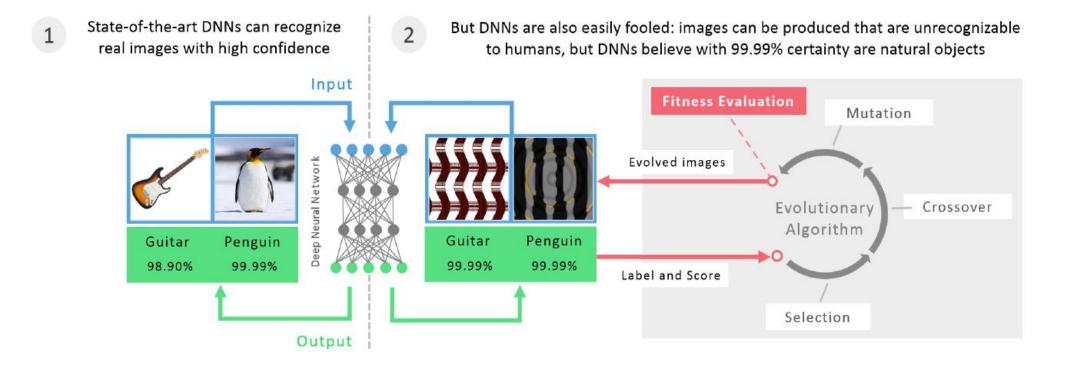
This is the result

The Power of Abstraction

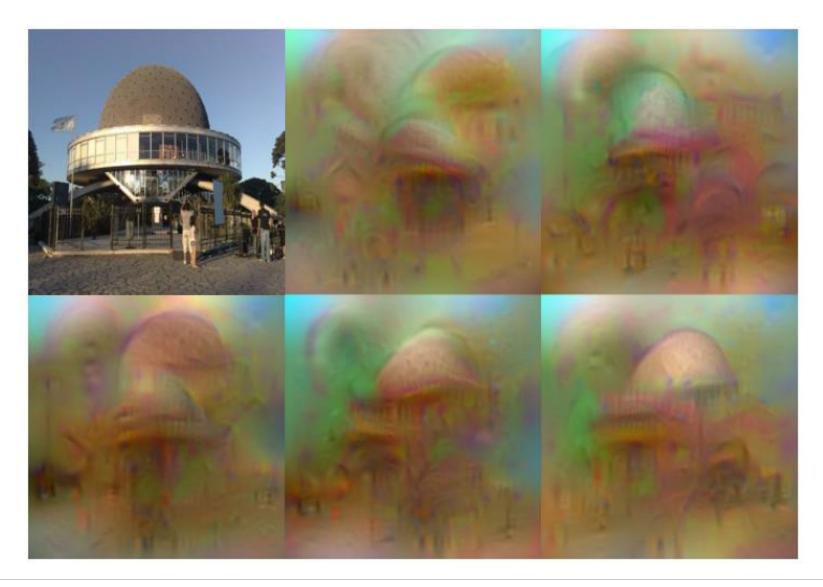
Different Layers of a Deep Convolutional Neural Network
Further examples:

Human-like Vision? No way

A DCNN can be fooled...



Reconstructing Images from Feature Maps



Reconstructing Images from Feature Maps

Image Space Gradient Descent

Define

 $oldsymbol{\Phi}_{k,l}(oldsymbol{I})$

as the response of a DCNN at a layer k, filter l to an image I

Given a specific image \hat{I} , we define the loss function

 $L(\hat{\boldsymbol{I}}, \boldsymbol{I}) := \|\boldsymbol{\Phi}_{k,l}(\hat{\boldsymbol{I}}) - \boldsymbol{\Phi}_{k,l}(\boldsymbol{I})\|^2$

and the optimization problem

$$\boldsymbol{I}^* := \operatorname{argmin}_{\boldsymbol{I}} \left(L(\hat{\boldsymbol{I}}, \boldsymbol{I}) + \rho P(\boldsymbol{I}) + \lambda \|\boldsymbol{I}\|^2 \right)$$

L2 Regularization

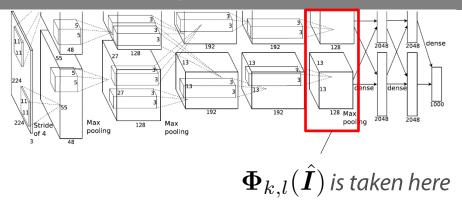
To solve this, we can compute

'Statistical Realism'

$$\frac{\partial}{\partial \boldsymbol{I}} \left(L(\hat{\boldsymbol{I}}, \boldsymbol{I}) + \rho P(\boldsymbol{I}) + \lambda \|\boldsymbol{I}\|^2 \right)$$

and apply a gradient descent procedure, starting from a random image $oldsymbol{I}^{(0)}$

Reconstructing Images from Feature Maps



This is $\hat{m{I}}$

The remaining five images were generated using image space gradient descent with different initial images $\mathbf{I}^{(0)}$

Just add some little noise ...

nature

Subscribe

NEWS FEATURE · 09 OCTOBER 2019

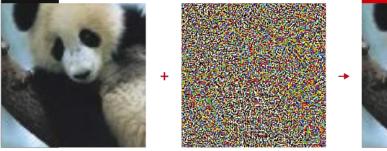
Why deep-learning AIs are so easy to fool

Artificial-intelligence researchers are trying to fix the flaws of neural networks.

PERCEPTION PROBLEMS

Adding carefully crafted noise to a picture can create a new image that people would see as identical, but which a DNN sees as utterly different.

Panda



In this way, any starting image can be tweaked so a DNN misclassifies it as any target image a researcher chooses.

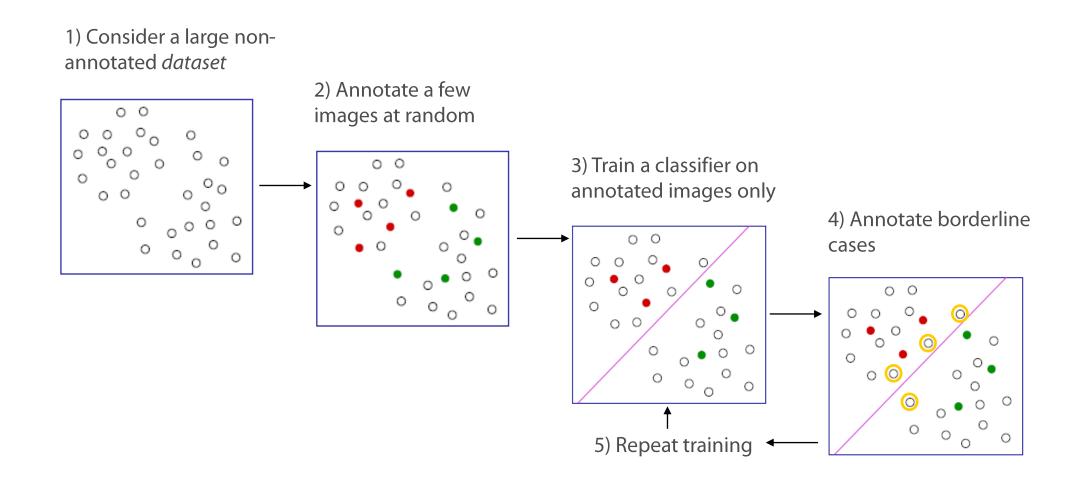
Target image: race car

onature

No Free Lunch: creating an annotated dataset

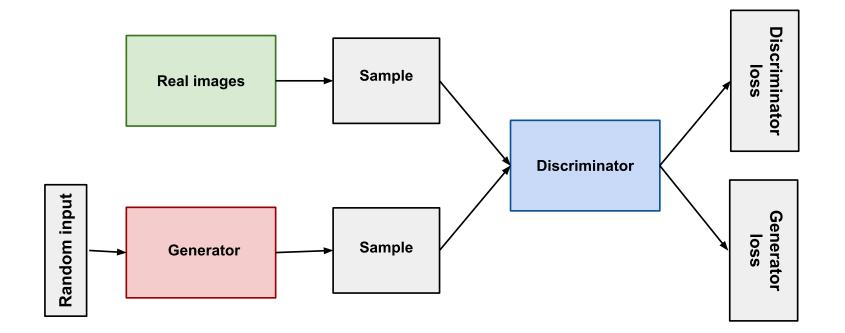
Active Learning

When the network decides which annotations should be made



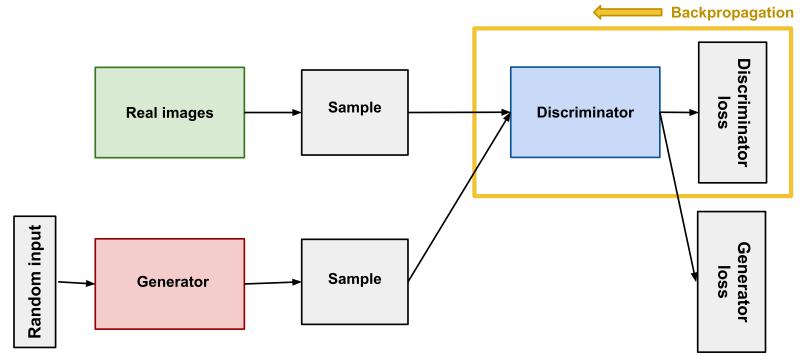
Two competing networks

- a) A *discriminator* learns to classify images while detecting fake ones
- b) A generator learns how to fool the discriminator



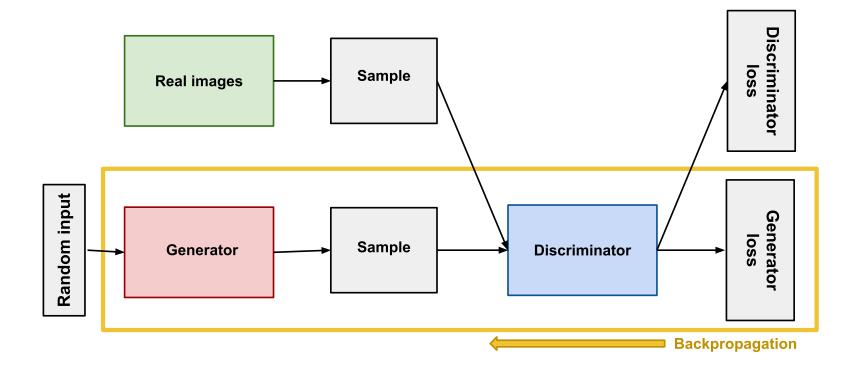
Two competing networks

- a) A *discriminator* learns to classify images while detecting fake ones
- b) A generator learns how to fool the discriminator
- c) The two networks are trained in alternate turns



Two competing networks

- a) A *discriminator* learns to classify images while detecting fake ones
- b) A generator learns how to fool the discriminator
- c) The two networks are trained in alternate turns



Applications

- This method can be used to generate larger datasets from smaller ones
- Or to generate photo-realistic, yet synthetic images (even 'deep fakes')



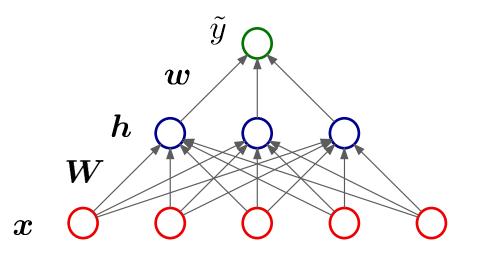
Unsupervised Learning: Auto-Encoders

Auto-Encoders

Encoder

A feed-forward neural network with one hidden layer

$$\tilde{y} = \boldsymbol{w} \cdot g(\boldsymbol{W}\boldsymbol{x} + \boldsymbol{b}) + b$$



Auto-Encoders

Encoder

A feed-forward neural network with one hidden layer $\tilde{y} = \boldsymbol{w} \cdot g(\boldsymbol{W}\boldsymbol{x} + \boldsymbol{b}) + b$

Auto-encoder (basic idea): encoder + decoder

$$\boldsymbol{x}^{[m]} = g(\boldsymbol{W}^{[m]} \cdot g(\boldsymbol{W}\boldsymbol{x} + \boldsymbol{b}) + \boldsymbol{b}^{[m]})$$

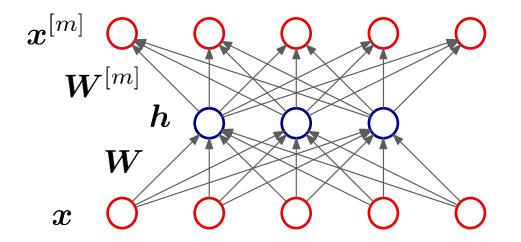
Loss function (MSE):

$$L(x^{[m]}, x) = (x^{[m]} - x)^2$$

Initially:

$$oldsymbol{W}^{[m]} = oldsymbol{W}^T$$

then train the network with each data sample **onto itself**



Auto-Encoders

Auto-encoder (More in general)

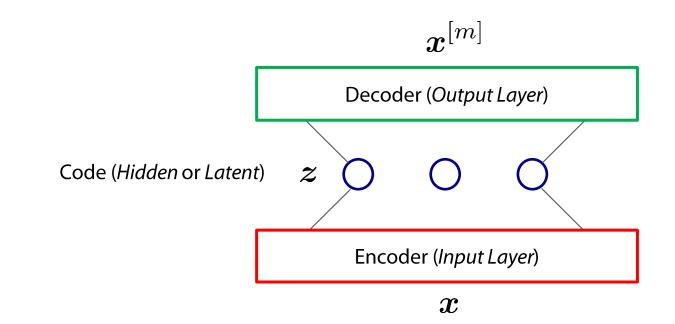
Two main (composite) layers: encoder and decoder

One hidden or latent layer z

Each item in the dataset comprises the input only (Unsupervised Learning)

 $D := \{ (\boldsymbol{x}^{(i)}) \}_{i=1}^{N},$

The result of the optimization is z: a compact (i.e. lower-dimensional) representation of the input x



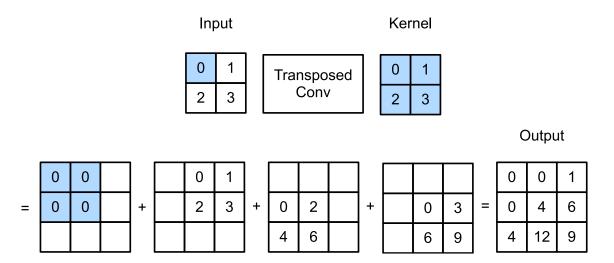
Auto-Encoders vs PCA

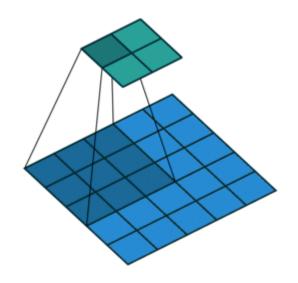
Function	Feature Space	PCA Reconstruction	Auto Encoder Reconstruction
y=mx+c			
y=mx²+c			
y=mx ⁸ +c			

When non-linearity matters...

Function	Feature Space	PCA Reconstruction	Auto Encoder Reconstruction
Plane			
Curved Surface			
	20 12 34 66 68 12 50 10 1	CO DI GA DI	Lin 02 00 64 55 10 25 ⁴

Transposed Convolution (a.k.a. 'Deconvolution')





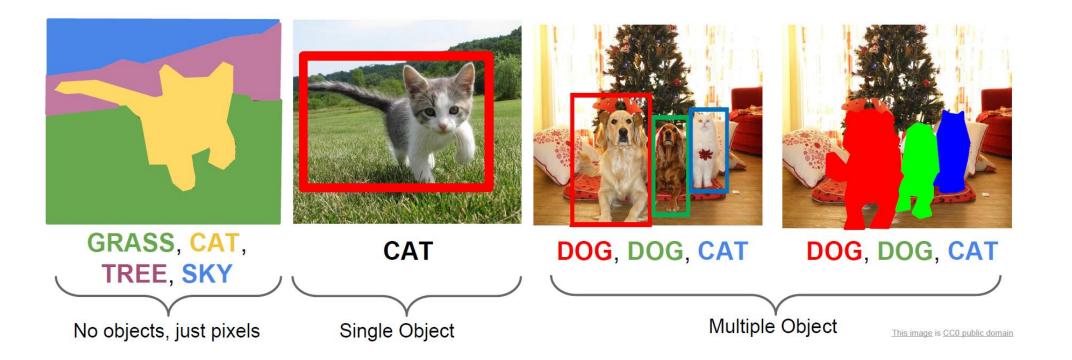
For autoencoders based on convolutional layers

- Scalar input values are multiplied by the kernel tensor
- The output feature map is obtained by summing up all contributions

Image Classification Object Detection Segmentation

Deep Learning for different imaging tasks

Beyond simple image classification

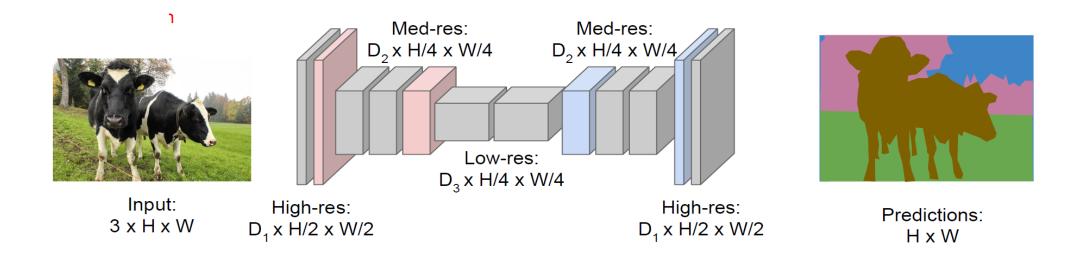


Semantic segmentation

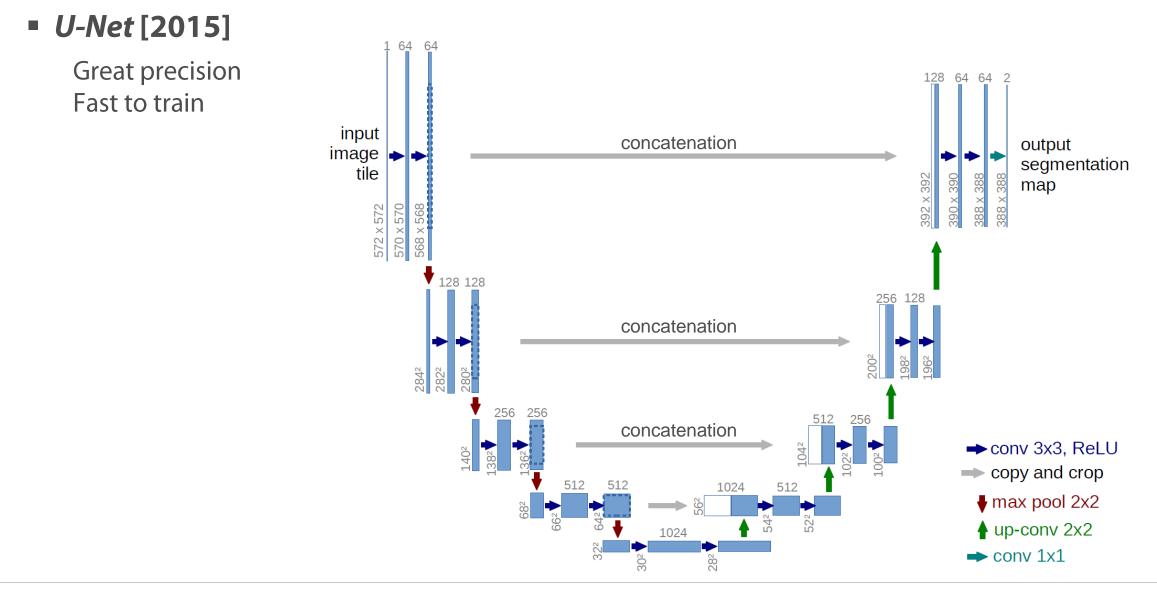
Beyond simple image classification

Similar network architecture, different arrangement

Fully Convolutional Networks (FCN) Downsampling first, upsampling afterwards



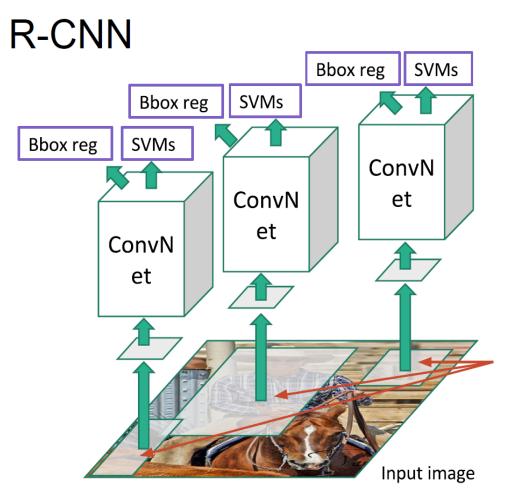
Semantic segmentation



Generate boxes and classifications

Two-stage Process

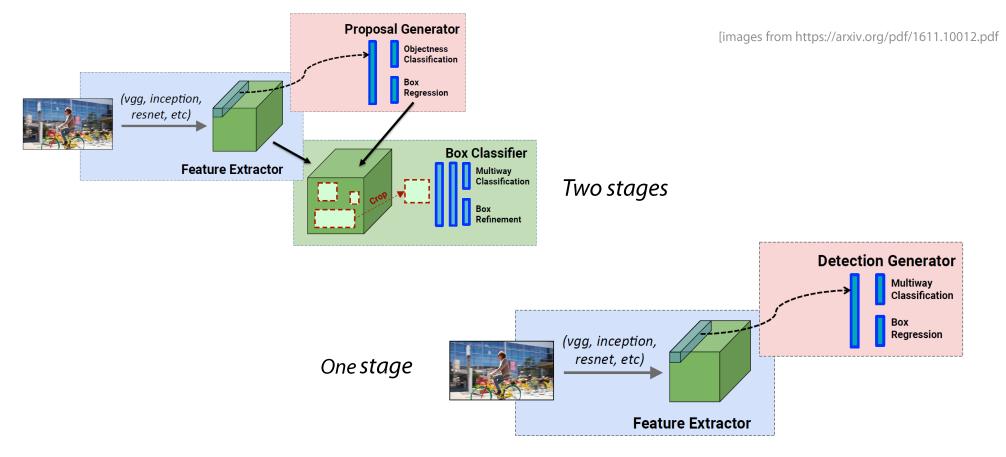
Generate bounding box candidates Pass each candidate through a DCNN Select those candidates that are classified with higher certainty



Generate boxes and classifications

Two-stage to One-stage process

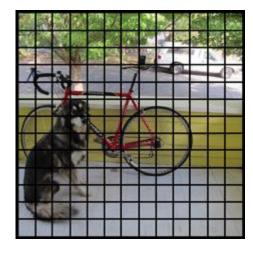
Generate bounding box candidates and classifications in one go



YOLO and SSD: one-pass convolutional network for object detection

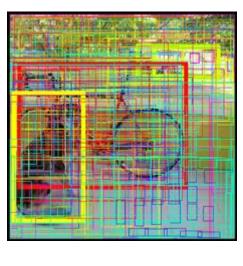
Generate boxes and classifications at once

1) Impose a fixed grid over the input image

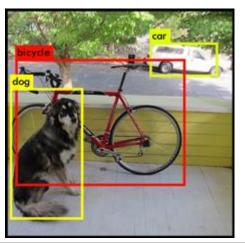


2) Generate possible bounding boxes

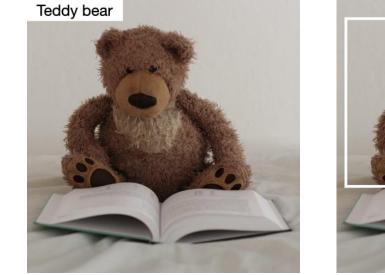
3) Classify each of them

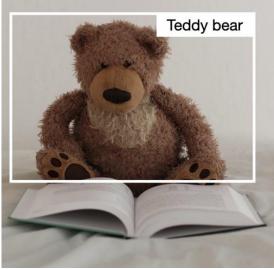


4) Keep the boxes at highest confidence

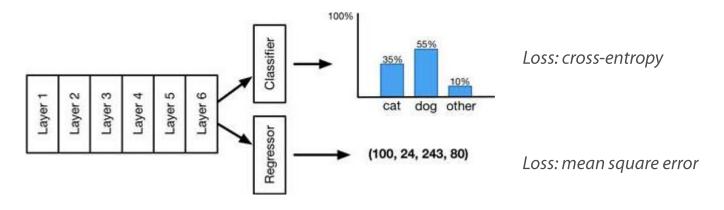


From classification to localization

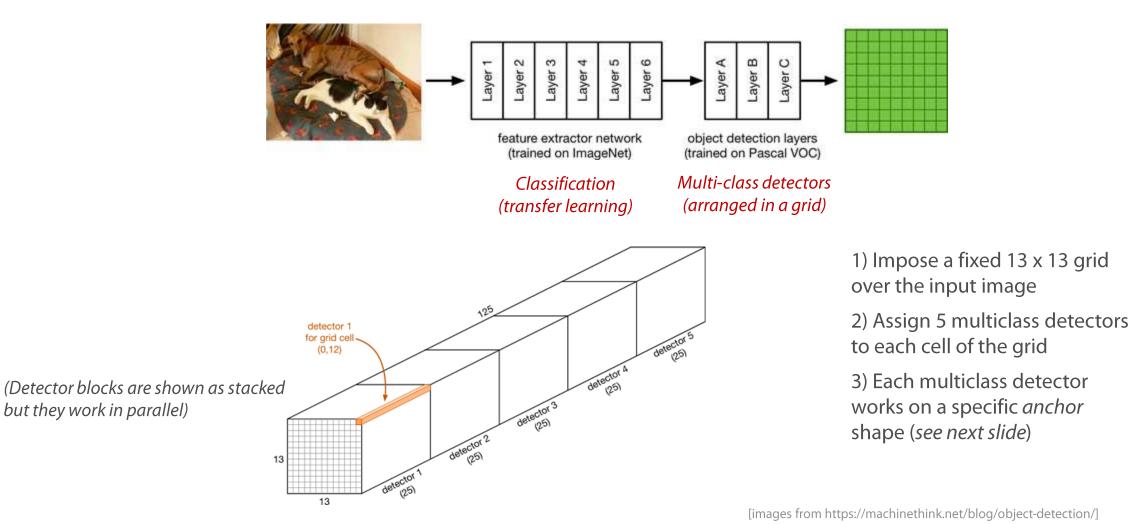




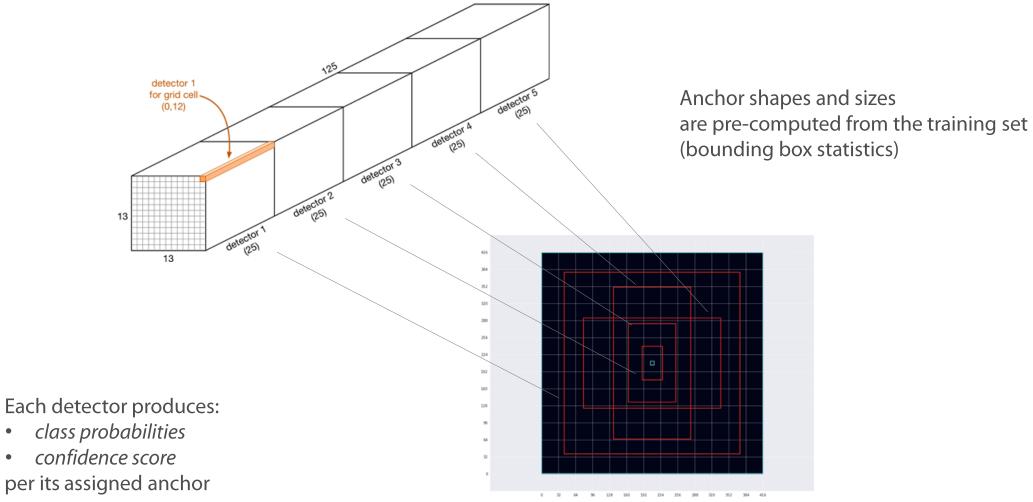
[images from https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-convolutional-neural-networks]



Grid detectors



• Grid detectors: one per <u>anchor</u>



[images from https://machinethink.net/blog/object-detection/]

٠

•

Given anchor, cell and class

$$\langle c_x, c_y, p_w, p_h \rangle$$

top-left cell coordinates

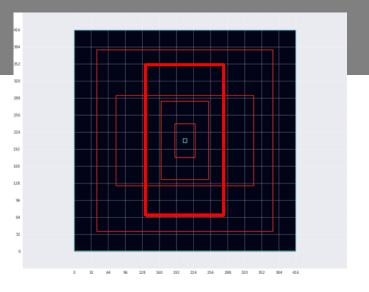
anchor sizes

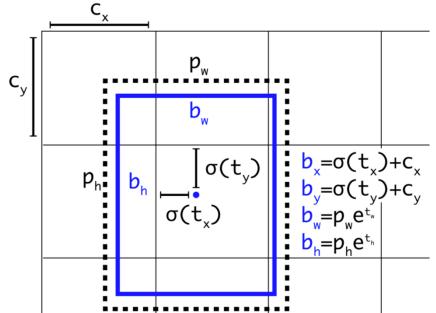
Each detector produces

$$\begin{aligned} \langle t_x, t_y, t_w, t_h, p_o, p_c \rangle \\ b_x &= \sigma(t_x) + c_x \\ b_y &= \sigma(t_y) + c_y \\ b_w &= p_w e^{t_w} \\ b_h &= p_h e^{t_h} \end{aligned}$$

bounding box coordinates

- p_o 'objectness' probability
- p_c class probability

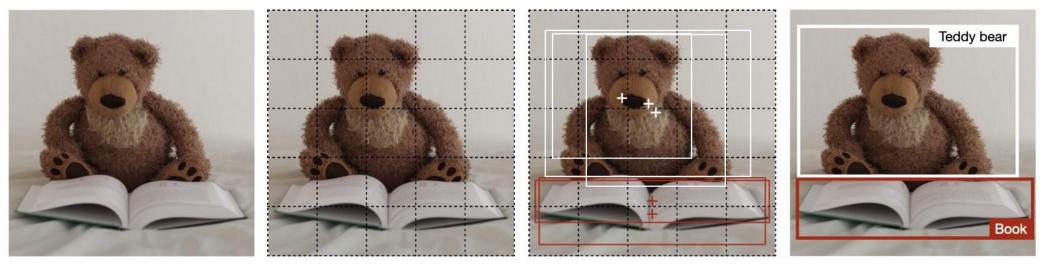




[images from https://wikidocs.net/167697]

From grid boxes to candidate boxes

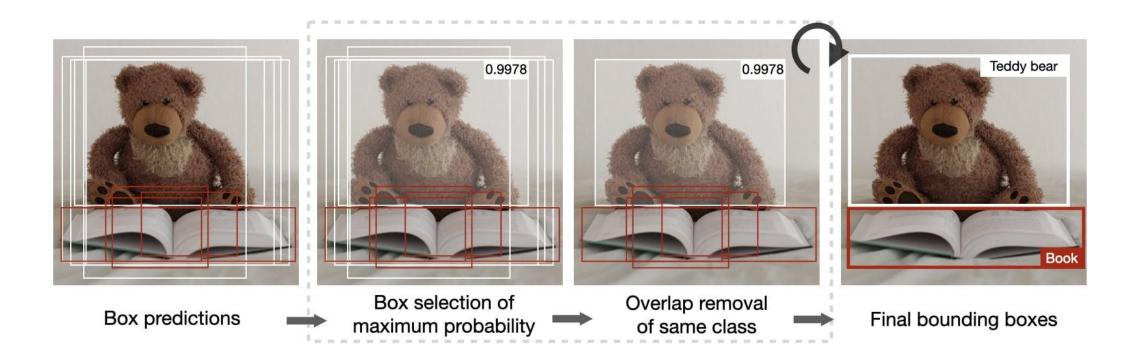
Merging predictions



Original image \longrightarrow Division in $G \times G$ grid \longrightarrow Bounding box prediction \longrightarrow Non-max suppression

[images from https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-convolutional-neural-networks]

Further processing



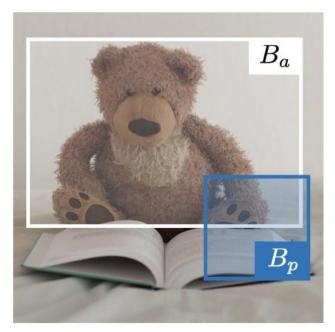
[images from https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-convolutional-neural-networks]

Measuring object detection accuracy

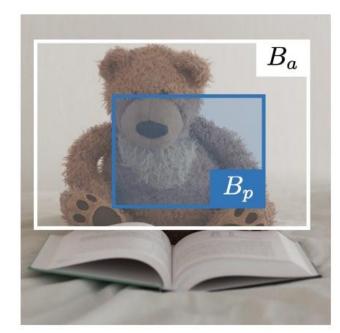
Intersection over Union (IoU)

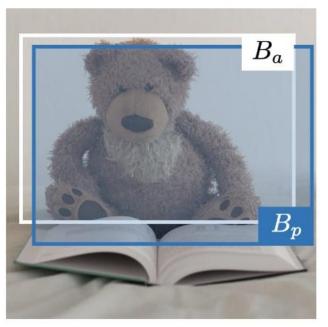
$$IoU(B_p, B_a) := \frac{B_p \cap B_a}{B_p \cup B_a}$$

It's a post-localization accuracy measure (not a loss function)



 $IoU(B_p, B_a) = 0.1$





 $IoU(B_p, B_a) = 0.5$ $IoU(B_p, B_a) = 0.9$ [images from https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-convolutional-neural-networks]