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About why they did not use
Deep Networks
from the beginning
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Problem: vanishing or exploding Gradients

The gradient descent method implies updating the parameters at each step:
making sure that the gradient does not either vanish or explode is not easy

For instance, in

OL .
AW = —p 22 (50 /@)
W =—n- 0" 4")
. . o 0
the gradient contains a multiplicative term o g(x)
which can be < 1.0 v

e.g. for the sigmoid function:

-10 -5 0 5 10
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Problem: vanishing or exploding Gradients

The gradient descent method implies updating the parameters at each step:
making sure that the gradient does not either vanish or explode is not easy

Consider a deep network
jg=w-gWH...gWwllg 4 plty... 4 bl 1 p
in which

* g istheidentity function and all bl and b are zero;

« all hidden layers have the same size d of the input (i.e., al matrices are square);

« all W areidentical and diagonalizable, with eigenbasis (e1,-++,eq)

This means that i.e. first eigenvalue raised to the k-th power

S
WL wlle = Wke = A (ey - x)er + - Ni(eq - x)ey

k k
— )\133161 + - )\dazded

Moral:any A; > 1 leads to explosion whileany A; < 1 leads to vanishing
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Problem: initial values of the parameters

However, the main problem of training is that of initial values...
Gradient Descent can only discover minima that are close to the initial values

x=3.00000, y=3.00000, f(x,y)=34.20000

Using deep networks
can only make this problem worse:
intuitively, with deeper networks, 100
the 'surface' can be even rougher... 80
60 N,
2 e
N
0
=20

[Image from http://cpmarkchang.logdown.com/posts/434534-optimization-method-momentum]
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Improving optimization
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Improving optimization
= SGD (or MBGD)

Standard, decaying learning rate

Update step:
90 — 9t _p 9 pip gt-1)
N
decaying mini-batch,
learning rate possibly a singleton
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Improving optimization
= SGD (or MBGD)

Standard, decaying learning rate

Update step:
90 — 9t _p 9 pip gt-1)
N
decaying mini-batch,
learning rate possibly a singleton

Many different ways to improve performance and speed rate:
* add some momentum
* take in account 2" order derivatives
* make the learning rate adaptive
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Improving optimization
= SGD (or MBGD)

Standard, decaying learning rate

Update step:
0
9 =g9t=b) _p ~ (B, 9¢D
N 5L )
¢ 0
(t—1)
n aﬁL(B 9 )
“force felt by the ball”
N 0
Loss F= _8_19L(B 19) _
(“potential “acceleration”
p /
energi/ ) | f — ma
L(B,9) o
v e
... the gradient directly affects the velocity
(not the position)
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Momentum

= Momentum momentum term:
" ot the ball run” / tendency to keep running at the same speed and direction
w® =40 _p L1 g gty L0 Z g (D)
P
9B — 9t=1) | 4,(®) O<y<l1

“coefficient of friction”

Loss
(“potential
energy”)
\ |
L(B,9)!
' >
U
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Momentum

= Momentum

"Let the ball run”
w® =4t —p L 1B gty L0 Z g
09
9 — 9t=1) | 4, (®
0
(t—1)
N 5gL(B,0 )
Consider 19 as a position ...
LOSS /OCity”
(“potential / 1, _
energy”) ot 0~ 9 — 9ty
\ |
“acceleration”
L(B’ﬂ)i > a/% ul® — Y —iL(B 9)
9 09
... the gradient directly affects the velocity
(not the position)
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NAG

= Momentum
“Let the ball run”

w® = Ayt _p 9

50
90 _ 9t-D) 4 4

—L(B, 9% ), w® =0

= Nesterov Accelerated Gradient (NAG)
"Let the ball run but be predictive"”

0
—n —L(B, ,!9(15 1) 4 (t—1)
N 5L yu) o

9 — 9= 4,600

w® = gt
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2d order method's

In this example (geometric view)

Gradient Descent

The level curves of

a quadratic form in 2D
are ellipses centered

in the origin

Newton-Raphson
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2d order method's

= Taylor’s expansion

LB, ) = L(B,9 )+ 5 L(B,9 ) (9~ 9¢)
1
+ 5 (0 - 9D H (9 — 90V +
All terms in blue are constant
where: 9 9
— (t—1) —— The Hessian Matrix
H:= (819L(B,19 ))

— Theargmin

= Differentiate both sides and take 9 = 9*

%L(B 9") = £9L(B I 4 H(9* — 9t—1)
this must be 0
fhen: 9 — 90D = _H~ 1ﬂL(B Y1)
L,
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2d order method's

= Gradient Descent
0

(t) _ 9q(t=1) _ Y
9 0 77819

L(B,9Y)

= Newton-Raphson's optimization method

O
(t) _ ,9(t—1) _ —1 (t—1)
9\ =9 n H 815’L(B,ﬁ )
9, 9,
, L (t—1)
where: Hi= <8ﬁL(B,ﬁ ))

Why is the Newton-Raphson's method better than GD?
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2d order method's

= Newton-Raphson's optimization method

9t — 9t=1) _ n H_la%L(B,ﬁ(t_l)) H — 8(29 (a%L(B’ﬁ(t_l)))
Example _~a quadratic form, centered in the origin
L(B,9) =19 - AY
w 0] cdemaemedaean
A= , a; >0Vi=1,...,d
0 ... aq
iL(B 9) = 249
oY ’ (1/ay ... 0 ]
Hza(aL(Bﬁ)>:2A H—tar Lo
oY \ 0V ’ 2 2| - ' -
| 0 ... 1/aq

1
9 = 9t= _ §A_12A19(t_1) =9t~ —p9t=1) — (1 — y)9t—Y)

What??
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2d order method's

In this example (geometric view)

L(B,9) =9 AV

The level curves of

a quadratic form in 2D
are ellipses centered

in the origin

with

a],a1<<a2

|

Gradient Descent
9 = 9= _ p2 49—

Newton-Raphson
9 = 9= _ pg(t=1)

Deep Learning 2023-2024
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2d order method's

= Newton-Raphson's optimization method
0 0 0
I = 9= _p g~ (B, 9" =
nH 55 LB ) H=5515

The (inverse of the) Hessian Matrix takes into account also the curvature

L(B, 19“—1)))

Newton-Raphson XO

Gradient Descent
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AdaGrad

= Newton-Raphson's optimization method
0
®) = 9t=Y _py H—' — (B, Y -
91 =9 " g LB 9) H:= 19(

0
oV

L(B, 19“-1)))

However
* Computing the inverse Hessian matrix is not easy, in general

* Itrequires O(d?’) time versus O(d) of the gradient — ;. the number of parameters
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AdaGrad

= Newton-Raphson's optimization method
0 0
®) — 9t _py H' = L(B,9¢ -
9 =9 77 g LB 9) H:= - (

0
oV

L(B, 19“-1)))

However
* Computing the inverse Hessian matrix is not easy, in general

* Itrequires O(d?’) time versus O(d) of the gradient — /.. the number of parameters

* AdaGrad approximation

5 QY0
G = JZ(;; Bﬁ(ﬂ))> GY.=| : .

=1 0 ... GY

90 = 9=l _p (GI—1)~!
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AdaGrad

B, ﬁ(t—l))

Gradient Descent 9
9 = 9t-l) _p 8_19[/(3,19(15—1))
Newton-Raphson 5
(1) _ (t—1) H~- 1_L B (t—1)
9V =19 7 59 (B0 )
AdaGrad 0
(1) — 9(t—=1) _ (t—1)
90 =91 —y (GUY) I
——— _+;i ——
S | ﬂH B -
.. B
E;radieh? Descent ) _;VewtohOI'-ERaphsoén
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RMSprop

* AdaGrad approximation

t o 2
G = > (aﬁ_L(B,ﬁ(j)))

J=1

= RMSprop approximation

The overall sum is replaced by the exponential moving average (EMA)

®._ 9 15 g®
gi‘, * 819@ ( ? )

EMA(g7)® = 7(g"”)* + (1 — 7)EMA (7)™

)

Deep Learning 2023-2024
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AdaDelt;

= RMSprop approximation

* AdaDelta approximation

(t) . iL B 9@
g’b ’ 8797} ( 9 )
EMA(g2)® := v(g{")? + (1 — 9)EMA(g2)¢— )
G\ =\ [EMA(g2) ot
———— Hessian approximation
0
ﬁ(t) — ﬁ(t—l) _ G(t—l) -1Y% r/p (t—1)
n ( )" g LB, )
DY = \[EMA(A92)® DO
——— 'momentum’ factor
0
90 — 9t-1) _, pt-D(qt-1\-1_% ;g g¢t-1)
U ( ) 5o LB )

Deep Learning 2023-2024
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Improving optimization

- SGD

- Momentum
= NAG

- Adagrad
~  Adadelta
-  RMmsprop

% %

XN
S
%’%‘?ﬁ'&?&r’ %{'0%'

1.0

Image from https://imgur.com/a/Hqolp
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mizgtion

;

Improving opt

- SGD

- Momentum

- NAG
- Adagrad

Adadelta
-  RMmsprop

.com/a/Hqolp

imgur

/]

Image from https

Learning as Optimization [25]

Deep Learning 2023-2024



Improving optimization

T

s
o
.'_'«.L

4 == Momentum

meen - NAG

- Adagrad
Adadelta

Rmsprop

IITrrrrrrir

Image from https://imgur.com/a/Hqolp
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Adam

* Replace components with their EMAs ...

_mgt)_
(t) _ () (t=1) @ . | .
= p1 ( ) ( Bl)m% me = : ———EMA of the gradient
g
A
Tz(t) — /8 ( (t)) -+ (1 — 52)7“?_1) T(t) = : ————EMA of the Hessian
(' " approximation
T4 (vector form)
m(t) -7
()
1—(1—pq) bias corrections (decay with time)
A®) r(t)
1 —(1—p5s)t
~ (t—1
9t — 9t—1) _ (D

n \/ﬁ ——— (elementwise)
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Adam

= Experimentally

MNIST Logistic Regression

0.7 T

0.2

] !

AdaGrad
SGDNesterov
Adam

] N TS O T

i i i i
10 15 20 25 30

35 40 45

iterations over entire dataset

Deep Learning 2023-2024

MNIST Multilayer Neural Network + dropout
! ! 1

AdaGrad
RMSProp

SGDNesterov | ]

AdaDelta
Adam

50

i
100

1
150

iterations over entire dataset
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Improving optimization

* Messages to take home

* Improved optimizers adopt a combination of intuition and mathematical modeling
* In particular, some of them are approximators to 2" order optimization methods

* Assuch, there is no formal guarantee that they will be effective in all cases

Moral: in general, their effectiveness will depend on the optimization problem
and the representation being used
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A bag of wonderful tricks
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Why RelV is better (sometimes)

The gradient descent method implies updating the parameters at each step:
making sure that the gradient does not either vanish or explode is not easy

For instance, in

oL ;. :
AW = —1 W(y(z)a y(z))
. . o 0
the gradient contains a multiplicative term o g(x)
which can be < 1.0

In general, e
the derivative of ReLU 08
does not suffer 07
from the same problem 06

0.5

04}

03}

02}

01f
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Why RelV is better (sometimes)

In experimental practice (sometimes):

* ReLU alleviates the problem of initial values
(i.e. when initial values are too far away and cause sigmoid or tanh to saturate)

In general, || —Sawaweraw 0
the derivative of RelLU 08
does not suffer 07

0.6

from the same problem

0.5

04}

03}

02}

01f
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Why RelLV is better (sometimes)

In experimental practice (sometimes):

* ReLU alleviates the problem of initial values
(i.e. when initial values are too far away and cause sigmoid or tanh to saturate)

* RelLU may accelerate the training process

. ReLU
g " / Saturatmg
E’ —RelU
£ —_— - = derivative-RelLU 0.9
© 0254 -
= 0.8
0.7
0.6
D T T T T T T T
1] 5 10 15 20 25 30 as 40 0.5
Epochs 04}
Image from [Krizhevsky, Sutskever & Hinton, 2012] 0sf
02Ff
01F
1 0.5 0 05 1
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Input Normalization

* Intuition
Consider the (very simple) layer

h(x) := g(wx +b) = g(wiz1 + woxs + b)

X1 and X9 arein
and suppose x1 € [10007 2000]9 To € [0-17 0-2]/ completely different scales

0.5
* w; influences i alot more than ws
* training w2 is challenging and slow

®
©

T T T 1
500 1000 1500 2000

wyp

level curves of loss function

-
< / X/Eii); (during training)
=~

wq
Image from https://https://www.jeremyjordan.me/batch-normalization/
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Input Normalization

* Input normalization
1) compute mean p and (component-wise) variance o’ of inputs over dataset D

1 1
- 2 . (.2 2 . 2 . 2
Mo—m E T o’ :=(o7,...,03,) with o} =D E (x; — 1)
xcD xcD
2) normalize all inputs, component-wise 05
~ ~ A~ . A~ aj T ) FEX TR .
L .= (3313 ce 7xd)a with Z; := . 5 k. LAy
V T + € e 500 1000 1500 2000
/

to avoid division by zero
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Input Normalization

* Input normalization

1) compute mean p and (component-wise) variance o2of inputs over dataset D

1 1
- 2 . (2 2 - 2 . 2
M= E x o”:= (o71,...,03,) with o == — E (x; — p5)
D] D)
xeD xcD
2) normalize all inputs, component-wise 05
. . . 1. 4 Li — Hs " s Ry e edar
T = (T1,...,2q), with z; = > LTRSS AL
\V, O-i + € y & 500 1000 1500 2000
2_
. to avoid division by zero
) rescale 1 shift by 1
— : ‘e; . = each component
— . ) .“, L “o \ . dosvonn, .
T . . by —500 2 7 ™ s0o
'3". -
' ‘: *a . ’ 1
_0‘.5_
1 o2 + €

(2
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Input Normalization

* Input normalization
1) compute mean p and (component-wise) variance o’ of inputs over dataset D

1 Z
2 . 2 2 . 2 5

xecD | ‘ xcD

2) normalize all inputs, component-wise
Tj — g

\/07;2 + €

3) apply h(z):= g(wz +b) = g(w1Z1 + wal2 +b)

T = (.561, O ,.Cl?d), with i’z =

Deep Learning 2023-2024 Learning as Optimization [37]



Input Normalization

* Input normalization
1) compute mean i and (component-wise) variance o’ of inputs over dataset D

1 . 1
u::me 02::(0%,...,03,) WlthO',L-z :ZWZ(%—MF
xecD xecD

2) normalize all inputs, component-wise
Li — [

\/07;2 + €

3) apply h(z):= g(wz +b) = g(w1Z1 + wal2 +b)

T = (.561, O ,.Cl?d), with i’z =

wo
e training becomes
faster and more stable
(also allowing higher learning rates)

level curves of the loss function
(during training)

w1

Image from https://https://www.jeremyjordan.me/batch-normalization/
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Batch Normalization

= Normalizing in between layers

nabNN e BRI (R R () )

each layer h!" has an input of its own, which should be normalized

AN

How?
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Batch Normalization

* Normalizing in between layers

nabNN e BRI (R R () )

each layer h!" has an input of its own, which should be normalized

Normalizing in between layers during training would require:

e pre-computing the input to each layer, for each data itemin D
« applying normalization before proceeding further upwards

« doing it again after each updating the DNN parameters

Moral: it’s impossible

Decp Learning 2023-2024 Learning as Optimization [40]



Batch Normalization

= For each mini-batch:
B = {w(i)}m
1=1

BNB,V(w(i)) = ’753(1) + 0
N

trainable parameters

(all operations are performed element-wise)

5(1) — ) — g

O'%"‘E\

avoid division by zero

] — .
of = EZ(-’L‘(@) — 1B)
1=1

1o
m 2

=
oy
1

Deep Learning 2023-2024 Learning as Optimization [41]



Batch Normalization

* Training
e atstep t: ppmm and 0']25,@) are computed over the current mini-batch B(*)

* parameters v and 3 (for each BN-layer) are trained
in the same way as the other parameters in the DNN

* exponential moving averages of mean and variance of the mini-batches B are collected

MA(p)™ =6 ppoy + (1 =0) - MA(w)" ", MA(w)" = ppo
MA(e®)® =662, + (1 —6)-MA(e®)D  MA(e®)W := o2,

= Inference

Inference is typically performed for fewer inputs, possibly just one ...

Deep Learning 2023-2024 Learning as Optimization [42]



Batch Normalization

* Training
e atstep t: e and 0123(“ are computed over the current mini-batch B

* parameters v and 3 (for each BN-layer) are trained
in the same way as the other parameters in the DNN

* exponential moving averages of mean and variance of the mini-batches B are collected
MA()'" =6 ppew + (1 —=6)- MA(w)" 1, MA(w)"Y = pga
MA(6?)® .= 6. 0%, + (1 -0)-MA(e?)* D, MA(e?)Y =%,

= Inference

Normalize using the moving averages collected during training

© pi=MA(W®

as collected during the training process
« o2:=MA(e})T)

Decp Learning 2023-2024 Learning as Optimization [43]



Batch Normalization

= Does it work? How good is the approximator when applied to data items
that are not in the dataset?

2
[#2]
|

Validation Accuracy
)
\
L
)
\
\
1
\

= = = |nception
= = BN-Baseline
------- BN-x5
! BN-x30
o 4+ BN-x5-Sigmoid
I' & Steps to match Inception

5M 10M 15M 20M 25M 30M
Training steps

0.4

» Batch normalization acts as a reparametrization of the optimization process that

1. makes the loss function smoother

2. allows higher learning rates

3. reduces chances to getting stuck into local minima
Image from [loffe and Szegedy 2015]
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Dropout

= Knocking-out at random

For each mini-batch, a small percentage of 'units' is de-activated

Training: mini-batch 1

Deep Learning 2023-2024 Learning as Optimization |45]



Dropout

= Knocking-out at random

For each mini-batch, a small percentage of 'units' is de-activated

Training: mini-batch 2

Deep Learning 2023-2024 Learning as Optimization |46]



Dropout

= Knocking-out at random

For each mini-batch, a small percentage of 'units' is de-activated

Training: mini-batch 3

Deep Learning 2023-2024 Learning as Optimization [47]



, @ small percentage of 'units' is de-activated

i-batch

4
.»sw.»f‘sw.

‘< 4‘ ‘<<
o0 @
DS
AN

V- BV
S v & .3
=ELES
= S
Un.rlu..l
”Odo
.Ien

<< B %
S Q.»
S o=
= S
a.mO
Vkp
rGO
L EJ

<

S

S

.»'\

Sy I
AKX XK
C et
& Qec A\
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Prediction

Dropout

= Knocking-out at random

For each mini

Training

Deep Learning 2023-2024



Contrasting Overfitting
= Applying Dropout

In a typical experiment
* initially, the performance on D,,; improves slowly
» then it becomes better and more resilient to overfitting (to be explained next)

Validation set
Training set ||

RMSE

~ -
-
———————————————

0.5

0 100 200 300 400 500
Epoch

Image from https://www.safaribooksonline.com/library/view/hands-on-machine-learning/9781491962282/ch04.html
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