Aside 5:
Word Embedding

Deep Learning : Aside 5 - Word Embedding [1]

Representing sentences

* Natural Language

“The man loves his son”

Clearly, this is a sequence, of words
How can word be represented, effectively?

First idea: one hot encoding
Given a dictionary of W words, each word w could be assigned a unique vector

v, € {0,137

* Not particularly efficient: large vectors with almost entirely filled with zeros
» The ordering of components will be meaningless: similarities among words will not be represented

Deep Learning : Aside 5 - Word Embedding [2]

Representing sentences

* Natural Language

“The man loves his son”

Clearly, this is a sequence, of words
How can word be represented, effectively?

Would be nice to have: similarity among words
Cosine similarity between two vectors

V1 * Vo

lvr]lflvz]

e [—1,1]

* Similar words (e.g., “son”, “daughter”) should have a small value - high similarity

Deep Learning : Aside 5 - Word Embedding [3]

Representing word's

* The Skip-Gram Model

“The man loves his son”

Basic idea: representing words via their context (in terms of conditional probability)
P(“the”, Cﬁman”’ “hiS”, “SOH” ’ “10V€S”)

Assuming conditional independence (akin Naive Bayesian Classifier):

the man his son

loves

the following factorization is correct:

= P(“the” | “loves”)P(“man” | “loves”)P(“his” | “loves”)P(“son” | “loves”)

Note that the ordering of context words is irrelevant

DC’GP Leam/'ng : Aside 5 - Word Embedding [image from http://d2l.ai/chapter_natural-language-processing-pretraining/word2vec.html (4]

Representing word's
* The Skip-Gram Model

P(“the” | “loves”)P(“man” | “loves”) P(“his” | “loves”) P(“son” | “loves”)

Conditional probability factors are defined via softmax
exp(u, - V;)

SV exp(u; - ve)

P(w, | w.) :=

under these assumptions:
.. d
* eachword i in the dictionary is associated to two vectors W;,V; € R
* V; isthe vector for i as center word, whereas w; is the vector for i as context word

* thedimension d of vectors is an hyperparameter

Deep Learning : Aside 5 - Word Embedding (5]

Representing word's

* The Skip-Gram Model

A skip-gram is a context of words in a sentence,
corresponding to a ‘center’ word

Each skip-gram is obtained from a fixed
window size, that is, the number of words
the context of the center word

Each skip-gram (a data item) is of the kind
(center word, context word)

Negative Sampling

A dataset for word embedding can be augmented
using negative sampling: creating skip-grams

for words that do not occur with the context

of the center word in the sentence

Therefore, a skip-gram becomes
(center word, context word, label)
where label is either 1 (positive) or 0 (negative)

Window
Size

Text

Skip-grams

[The wide road shimmered] in the hot sun.

wide, the
wide, road
wide, shimmered

The [wide road shimmered in the] hot sun.

shimmered, wide
shimmered, road
shimmered, in
shimmered, the

The wide road shimmered in [the hot sun].

sun, the
sun, hot

[The wide road shimmered in] the hot sun.

wide, the

wide, road

wide, shimmered
wide, in

[The wide road shimmered in the hot] sun.

shimmered, the
shimmered, wide
shimmered, road
shimmered, in
shimmered, the
shimmered, hot

The wide road shimmered [in the hot sun].

sun, in
sun, the
sun, hot

Deep Legrning : Aside 5 - Word Embedding

[images from https://www.tensorflow.org/tutorials/text/word2vec |

Representing word's

= Skip-gram: loss function

Given the independence conditions, the likelihood of a textual sentence of length T is:

T
H H P(wW) | w®)
t=1jectzt(y)

where ctxt(y) is the context (of fixed length) of word j
Using log probability:

T
Z Z log P(w'9) | w®)
t=1 jectzt(j)

where:

%4
log P(w, | we) =t - ve — log (Z exp(u "’C)>
1=1

Deep Learning : Aside 5 - Word Embedding [7]

Representing word's

= Skip gram: gradient

Deep Learning : Aside 5 - Word Embedding [8]

Representing word's

= Skip-gram: gradient

810gp(wo | wc) — v — eXp(uo ' 'Uc)vc
Ou, © YL exp(u; - ve)
v, — exp(u; - v.) .

Deep Learning : Aside 5 - Word Embedding [9]

Representing word's

* Training and results
1. Have a dataset (text corpus) of sentences

2. Extract skip-grams, both positive and negative
3. Train with the model with a gradient descent variant
4. Obtain vectors V;and W; for each word in the dictionary oy N
5. Usevectors U; as the embedded representation ey RO 0, PR ¢ D00
of corresponding words e ® o aNy s S -
» @erostia olivepies n
luxembourg ’brai'i:l' , \"! .
. .) T oy T
The dictionary VV is now represented M, e A
by vectors whose relative position "‘“f";bu;ga:z el o S
in a d-dimensional space reflects the g 7 gp,agu;»..' ‘
co-occurrence in context O o
€ C g gt
P gitaly

d is an hyperparameter

See http://projector.tensorflow.org/

Deep Learning : Aside 5 - Word Embedding [10]

http://projector.tensorflow.org/

Representing word's

* The Continuous Bag of Words (CBOW) Model

“The man loves his son”

The basic idea is dual to skip-gram: predict center word starting from the context

P(CCloveS” | Céthe”’ C(man”’ “hiS”, CCSOH”)

loves

the man his son

Mathematically, this is slightly more complex, since independence assumptions are in the priors

Once again, the ordering of context words is irrelevant

Deep Learning : Aside 5 - Word Embedding limage from http://d2l.ai/chapter_natural-language-processing-pretraining/word2vec.html [11]

Representing word's

* The Continuous Bag of Words (CBOW) Model
P(“10V€S” | Céthe”, Céman”, “hiS”7 “SOH”)

Conditional probability factors are defined via a different softmax

exp (%uc (Vo + ...+ v,,,))
Zzl exp (%uZ (Vo + ...+ 'vom))

Plwe | woyy. .. w,,,) =

From this point on, the derivation is similar.

Deep Learning : Aside 5 - Word Embedding [12]

Representing words

= word2vec

Word vectors are used to represent words, can also be considered as feature vectors

The technique of mapping words to real vectors is called word embedding

The word2vec tool contains both the skip-gram and continuous bag of words models

The skip-gram model assumes that a word can be used to generate its surrounding words in a text sequence

The continuous bag of words model assumes that a center word is generated based on its surrounding context
words

Skip-gram or CBOW?

According to [Mikolov et al., 2013] Skip-Gram works well with small datasets and can better represent less
frequent words

However, CBOW is considered to train faster than Skip-Gram and better in representing more frequent words

Deep Learning : Aside 5 - Word Embedding [13]

