Universita degli
Studi di Pavia

Deep Learning

13 - AlphaZero

Marco Piastra

This presentation can be downloaded at:

http://vision.unipv.it/DL

Deep Learning : 13-AlphaZero

[1]


http://vision.unipv.it/DL

AlphaZero =MCTS + DNN

Deep Learning : 13-AlphaZero [2]



Monte Carlo Tree Search (MCTS) method

= MCTS method:

* memory of past playouts in a single MCTS step
(collected in the tree statistics)

» knowledge transfer between MCTS steps
(by reusing subtrees already explored)

« optimal policy only partially defined

(on actually computed states)

* intrinsically stochastic policy optimization

(the same initial state
can give rise to different optimizations) ,/
/
* What about knowledge transfer )
. /
between MCTS episodes? /]
transferring the entire MCTS tree S

would rapidly cause its explosive growth...

Deep Learning : 13-AlphaZero [3]



Knowledge transfer between MCTS episodes

* AlphaZero siveretal.2017]

* Monte Carlo Tree Search (MCTS):
improves the policy by focusing on the most promising actions

» Deep Neural Network (DNN):
learns the improved policy and transfers it between MCTS episodes

T ______________________________

Deep Learning : 13-AlphaZero [4]



AlphaZero
* AlphaZero=MCTS + DNN

selection expansion evaluation backpropagation

s
| /
| Pl v
\ O Vo
\ ( } State-value |
\ k Policy Head ] { Head
\ < \
\ f
N\ Common Body
N
N T
~

~
- /
- @ _

Deep Learning : 13-AlphaZero [5]



DNN in AlphaZero

= DNN in AlphaZero
* input: astate s

stochastic policy (a vector of probabilities)

/

 output: a probability distribution 15(8) = [15 (a | 5)]aeA(S)

~ - predicts the expected reward for state s
and a state-value V' (s)

T acts as an actor-critic in the training of parameters 19 of the net

V'is compared with the actual reward r,

[ ] P 1% D A which also impacts on training P
<> < by backpropagating through
Policy Head ] Statezvalue the Common Body
L Head )
- N > “Y" shape
Common Body
<

Deep Learning : 13-AlphaZero [6]



MCTS step in AlphaZero

= MCTS step in AlphaZero

selection

* selection: UCT policy is replaced with PUCT (“Predictor” + UCT)

MCTS estimation of S. a ) for DNN polic
Q(s,a) polcy DNN policy

PUCT ) N o
~PUC (s) := argmax {QWC(S)P(OJ | S)N(Saa)@}

a

1+ N
exploration rate c(s) := log T NV(s) + Coaso + Cinit

(slowly grows with search time) Chase

avoids division by 0

Deep Learning : 13-AlphaZero [7]



MCTS step in AlphaZero

= MCTS step in AlphaZero

expansion

* expansion: initialization of the leaf new node s;:
N(sp):=0 and Vae€ A(sp) N(sp,ar) =0, Q(sp,ar):=4o0

Deep Learning : 13-AlphaZero (8]



MCTS step in AlphaZero

= MCTS step in AlphaZero

evaluation

* expansion: initialization of the leaf new node s;:
N(sp):=0 and Vae€ A(sp) N(sp,ar) =0, Q(sp,ar):=4o0

« evaluation (in place of simulation): expected rewardis V(s

Deep Learning : 13-AlphaZero [9]



MCTS step in AlphaZero

= MCTS step in AlphaZero

backpropagation

* expansion: initialization of the leaf new node s;:
N(sp):=0 and Vae€ A(sy) N(sp,ar) =0, Q(sp,ar):=4o0

O

« evaluation (in place of simulation): expected rewardis V(s

 backpropagation: for each state s and action a visited in selection/expansion:

N(s):= N(s)+1, - A . | 8L| Qsa)
N(s,a):= N(s,a)+1 d Qls,a):=Qfs,a)+ ,a)

Deep Learning : 13-AlphaZero [10]




MCTS step in AlphaZero: policies

= Selection policy: PUCT

Wsel(s) = WPUCT(S) :— argmax {Q(s, a) + c(s)f’(a | s) N (s) }

a

= Qutput policy:
SRR N(s, a)

N(s)

T (5) ~ [P(a [ 5) =

acA(s)

taking frequencies as probabilities
(in place of their argmax as output action)

ensures exploration

(the simulation policy does not exist anymore)

Deep Learning : 13-AlphaZero [11]



DNN training in AlphaZero

* Data items from a single MCTS episode:
After an MCTS episode £ := (80, agp,S1s--.,a7-_1, ST>
with actual reward V¢ = r(srt):

» for each non-terminal state s; (i =0...7T —1)in &
N (si, a)} ,
N(SZ) acA(s;)

Ps) = Pla]s) =

vector of frequencies

* the output of & is

dataitem

Deep Learning : 13-AlphaZero [12]



DNN training in AlphaZero

= [teration:
K | 1) play one MCTS episode & ;
times | 2) collect data items D%

3) train the parameters of the DNN by using as dataset

K
D:UD%
j=1

= |n the limit of infinite iterations:

PNN(s) := argmax P(a | s) — 7*(s) Vs

acA(s)

7

Deep Learning : 13-AlphaZero [13]



» AlphaZero: MCTS

* memory of past playouts in a single MCTS step
(collected in the tree statistics)

* knowledge transfer between MCTS steps
(by reusing subtrees already explored)

* knowledge transfer between MCTS episodes
(provided by DNN)

» deterministic policy optimization
with policy defined for all states s

A

PN () := argmax P(a | 5)
a€A(s)

DNN

Deep Learning : 13-AlphaZero [14]



AlphaZero

in Continuous Spaces

Deep Learning : 13-AlphaZero [15]



Continuous Action Spaces

= What happens when the space A(s) of admissible actions is continuous?

* How to compute the deterministic policy optimization in practice?

mPNN(5) =(argmax)P(a | 5)
aE/A(s)

it could be
a high-dimensional space

continuous and analytic,
butin general
with a lot of (local) maxima

* How to initialize (and deal with) a new node s in the MCTS expansion phase?

Standard initialization requires:

(Va € A(SD N(s,a):=0, Q(s,a):=+o0

/ AN

each admissible action each admissible action
is initialized will be evaluated at least once

Deep Learning : 13-AlphaZero [16]



Cross-Entropy Maximization (CEM)

= CEM Method:

1) choose at random initial values p, o0 € R?

2) sample m actions from

mean
/ variances (diagonal matrix)

 N(p, diag(o))

normal probability distribution

m

3) evaluate {P(a,,; | 3)},_1

Deep Learning : 13-AlphaZero [17]



Cross-Entropy Maximization (CEM)

= CEM Method:

1) choose at random initial values p, o0 € R?

2) sample m actions from

mean

/ P variances (diagonal matrix)

normal probability distribution - .
N (1, diag(o))
A
- m
3) evaluate {P(a,,; | 3)}
=1

4) select k < m actions with highest probability

Deep Learning : 13-AlphaZero [18]



Cross-Entropy Maximization (CEM)

= CEM Method:

1) choose at random initial values p, o0 € R?

2) sample m actions from

mean
variances (diagonal matrix)

normal probability distribution /

N (u, diag(o))

3) evaluate {15(&7; | 8)}m

1=1
4) select k < m actions with highest probability

5) fitnew p, 0

6) if terminated, return ¢+ otherwise go to 2)

Deep Learning : 13-AlphaZero [19]



Progressive Widening (PW)

» Progressive Widening (PW) of action space A(s) [Chaslot etal, 2007]:

* Forany newnode s created in the MCTS expansion phase

1. initialize A(s) :={a1,...,ar} with k£ admissible actions
by sampling the probability P(a | s) (given by the DNN)
2. initialize the statistics for each action a € A(s) as usual:

A

N(s,a):=0, Q(s,a):= 400

Deep Learning : 13-AlphaZero [20]



Progressive Widening (PW)

» Progressive Widening (PW) of action space A(s) [Chaslot etal, 2007]:

* Forany newnode s created in the MCTS expansion phase

1. initialize A(s) :={a1,...,ar} with k£ admissible actions
by sampling the probability P(a | s) (given by the DNN)
2. initialize the statistics for each action a € A(s) as usual:

N(s,a):=0, Q(s,a):=+o0
* Before any selection phase in state s,
compare number of actions |A(s)| and number of visits N (s):
1. if |A(s)]> < N(s) add a new action o’ by sampling the probability P(a | s)
/

not enough actions, a lot of visits a’ will be the next selected action

A

/
A(s) := A(s)U{a'} with N(s,d'):=0, Q(s,a’):=+oo

2. proceed with the usual selection phase

Deep Learning : 13-AlphaZero [21]



Sampling DNN probability

» How to sample the DNN probability P(a | s) ?

» Probability P(a | s) could be the normalization of a function such as

vector representing action a

/
plass) =w-g(WHg(--- g(Wla +b) + - ) + bl + 6
— | |

non-linear continuous function \
depending on state s

@F: v
* Probability P(a | s) is computable < <>
given the state s and the action a @D[ ] [ ]
< i
« What about sampling P(a | s) ? [ ]
<>

®

Deep Learning : 13-AlphaZero [22]




Advanced methods:
Neural Importance Sampling

Deep Learning : 13-AlphaZero [23]



Neural Importance Sampling

= How to sample the DNN probability P (a|s)? gp
we can use the Importance Sampling! @DL — )
* Neural Importance Sampling L >

1) choose a suitable bijector T
2) sample y € [0,1]% with uniform probability distribution u

3) apply 7 andcompute the (vector representing the) action

a:=Ty]|s)

Then

Deep Learning : 13-AlphaZero [24]



Neural Importance Sampling

* [raining: gﬁ
* minimize a suitable /oss: @D ]
i
Liw(P||P) := Es[log(P(a| 5)) — log (P(a ‘ =
e . ®
e.g. Kullback-Leibler (KL) . 1 P
divergence - f (a ‘ S) 108 ( 15 )

/

it can be approximated
by a discrete sum

* over the dataset

D/ = {(aj,si,p(aj | 31»}

Deep Learning : 13-AlphaZero [25]



