Universita degli
Studi di Pavia

Deep Legrning

12 — Monte Carlo Tree Search (MCTS)

Marco Piastra

This presentation can be downloaded at:
http://vision.unipv.it/DL

Deep Legrning : 12 - Monte Carlo Tree Search

[1]

http://vision.unipv.it/DL

Prologue:
Playing Games better than Humans

Deep Learning : 12 - Monte Carlo Tree Search [2]

Beyond Emulating Humans: AlphaZero (2018)

Image from: https://deepmind.com/blog/article/alphazero-shedding-new-light-grand-games-chess-shogi-and-go

5k T
AlphaGo is heavily reliant)
4
on the experience of human players P .
$-— } w 2k
e Tk
ﬂpthero
? e 160k 288k 388k 480k 588k 660k TBDIk

= AlphaZero learns by itself

[2018, D. Silver, et al. (13 authors), https://science.sciencemag.org/content/362/6419/1140.full]

Basic Knowledge Only

It just knows the basic rules of the games

Learning via Self-Play
Tree Search: Evaluate the MCTS value
It plays against a (frozen) copy of itself of a move by playing out many games

MCTS and DCNN in a closed loop il

/‘\

Heuristic Evaluation: Use DCNN to
choose moves with highest predicted [——»
value within simulated playouts.

Learning: Update DCNN using
new MCTS value for state.

] fmage from: https//nikcheerfa.github.io/deeplearningschool/2018/01/01/AtphaZero-Explained/
Deep Learning : 12 - Monte Carlo Tree Search [3]

https://science.sciencemag.org/content/362/6419/1140.full

Beyond Emulating Humans: AlphaZero (2018)

Image from: https://deepmind.com/blog/article/alphazero-shedding-new-light-grand-games-chess-shogi-and-go

Amount of Search per Decision

Human k State-of-the-Art

Grandmaster AlphaZero Chess Engines
. - .
100's 10,000's 10,000,000's
of moves of moves of moves

» AlphaZero uses much less ‘brute force’ search
When playing, the search process is driven by its neural network

It acts like a memory of past experiences

While training, it learns through a huge amount of self-playing

But it is a faster learner than Alpha Go

Deep Learning : 12 - Monte Carlo Tree Search [4]

Playing Games with Trees

Deep Learning : 12 - Monte Carlo Tree Search [5]

Tree representation

* Game Tree (simplest case): (.

The current state s, attimetis a node with depth ¢ ® 6 O

ag—1

Any admissible action a, is an edge of the tree

(branching factor = number of admissible actions in a state) . . e . ‘ .

y

State s, | obtained from s, after executing a, OO0 O O
is determined by a transition function

T: (Sg,ap) — Spa1 OO O O
(O

Deep Learning : 12 - Monte Carlo Tree Search [6]

Tree representation

* Game Tree (simplest case): ao O

The current state s, attimetis a node with depth ¢)) O

Any admissible action a, is an edge of the tree “
(branching factor = number of admissible actions in a state) @ . . . ‘ .
as

State s, | obtained from s, after executing a, OO OO0 O
is determined by a transition function a

3
T: (Sg,ap) — Spa1 OO @) O
-

A playout is a path <80, ag,S1,---,a7_1, ST> o
from the initial state S, to a terminal state St

A reward 7 is the outcome of a playout

A policyisamap 7 : s — a which selects action a to be executed in state s

Deep Learning : 12 - Monte Carlo Tree Search [7]

Policy optimization

= Goal: finding the best policy 7*

such that the reward 7* of playout
* * * *
<809 Ags S1y-0 o A1, ST)

with a;’;_|_1 = 7" (s;)and 3:4—1 = T(8},0a;)

is maximal

(0)
a3
(O (O (57)
af
OO OO O
a3
OO0 OO &
,r>l<
OO O
O

O

Deep Legrning : 12 - Monte Carlo Tree Search

(8]

“Brute Force”: 3 simple (bad) policy optimization

= Goal: finding the best policy 7*

= “Brute Force”:
1. explore the entire tree by following all possible paths
2. select the path(s) with the best outcome (and randomly choose one of them)

3. play by following the policy associated with that path

Possible problems:

* Huge game tree making full exploration unfeasible
(branching factor in Go is around 200)

* Infinitely many admissible actions

 Intrinsic stochasticity and/or uncertainty of execution

Image from https://thenewstack.io/google-ai-beats-human-champion-complex-game-ever-invented/

Deep Learning : 12 - Monte Carlo Tree Search [9]

Stochasticity and Uncerainty: examples

* Multi-armed bandits e whicharm to play

The reward after each action is stochastic

random variable

\ -
/Q(s,a) = E[R | s,a] = Z rP(r|s,a)

Q-value (expected reward of action a performed in state s)

probability of reward 7 for action a

= Games with two players (White and Black):

White plays action a, in state s,
but her next state s, depends on Black’s next action

Uncertainty of execution:
nondeterministic 7 : (S¢,a¢) > Se41 with P(siy1 | 8¢, aq)

/ \

transition function probability transition distribution

Deep Legrning : 12 - Monte Carlo Tree Search

[10]

Stochasticity and Uncerainty: tree representation

= Simplest case scenario
* deterministic transition

 deterministic reward

= Multi-armed bandits

Actually, this is not a tree!

 deterministic transition ~ _- (but it can be expanded
s)1 and became one)
« stochastic reward ol \ =
N A

= Uncertainty of execution:
* stochastic transition

e either deterministic (White vs Black)
or stochastic reward ’

Deep Learning : 12 - Monte Carlo Tree Search [11]

Monte CaHlo method:
step by step simulations

Deep Learning : 12 - Monte Carlo Tree Search [12]

Monte Carlo (MC) step

= Goal: finding the best policy ™ (avoiding brute-force approach)

It can be done iteratively, by focusing on the single best action a™ =: 7" (s)
in the current state s

* Monte Carlo (MC) step: (Abramson 1990]

{ 1) perform a random playout from current state s
repeat

ntimes | 2) compute and save the reward 7 obtained at the end of the playout

3) for each admissible action a in state s compute the mean of the rewards

estimates —_ |]_

Q(S,CL) Q(S a,) = r. -
9 . § a,t
N(s,a) ’
i=1
/ reward of 7t playout with first action a

number of playouts with first action a

A

4) a” := argmax,_ (s, a) isthe action with the highest mean

Deep Learning : 12 - Monte Carlo Tree Search [13]

Monte Carlo episode

* Monte Carlo episode:

1) sett:=0 @

2) currentstate s:=s, 'f_,i'-)
4 .
)
3) use MCstep to decide a, ‘ 3,
W3
%
4) compute S;11 = T(S¢,) , N
! b
%
5) sett:=t+1 s A
! !
. ! A\
6) repeat2)to 5) until end game /4 "\
') b
J'; ‘\
! A
Fl n
rf b
! %
f" \‘-
))
! A
f b
rf b
J""h. .-"L

—
—
—_— -—
— —
O o ———

Deep Learning : 12 - Monte Carlo Tree Search [14]

Monte Carlo episode

* Monte Carlo episode:

1) sett:=0 @

= .l_.:,".' 0
2) currentstate s:=s, r;)]
)
3) use MCstep to decide a, / 5,
!)
%
4) compute S;11 = T(S¢,) , N
! h,
" L
5) seti:=t+1 II! ‘x‘
! %
. ! %
6) repeat2)to 5) until end game /4 Y
J’f’ K\\
! M
f! ‘\.
! A
f" \‘ﬁ
! L
! A
" %
! %
HH _,".,

=—
—
- -
—-— —
o —

Deep Learning : 12 - Monte Carlo Tree Search [15]

Monte Carlo episode

* Monte Carlo episode:

1) sett:=0 @

2) currentstate s:=s, /
/ \
f A
3) use MC step to decide a, / \
!H; \'\
A
4) compute S;11 = T(S¢,) / "
A
4 b
F
5) seti:=t+1 /! \‘x
£ A
f A
6) repeat2)to 5) until end game ;S N\
ff.l" \\\
.|"F \\
JF! \‘\
f.i‘f \\'t
! "'b.
.:'H“ ;L

—
o
O i
i —

Deep Learning : 12 - Monte Carlo Tree Search [16]

Monte Carlo episode

* Monte Carlo episode:

1) sett:=0 @

2) currentstate s:=s, P
/ \
f]
3) use MC step to decide a, DA N
f 2 A
/ % \
) r %
4) compute S;11 = T(S¢,) / "
i A
/) \
5) sett:=t+1 / \
! L
! %
6) repeat2)to 5) until end game ;S N\
f.-' \\
! %
.|"F \\
JF! \‘\
4 b
ff \'u\
. N\

-
ey — -
S e —

Deep Learning : 12 - Monte Carlo Tree Search [17]

Monte Carlo episode

* Monte Carlo episode:

1) sett:=0
@,
2) 3

current state s:=s, J/ @
/ \
/ \
3) use MCstep to decide a, / BPR N,
,// : \\\
4) compute S;11 = T(S¢,) y | N
/, \\\
5) sett:=t+1 7 \
/ \
. / by
6) repeat2)to 5) until end game K \
/ \
// \\
/ \
/ \
/ \
/ \
/ \
/ \
/ \
/ \
/ \
/ \
/\ /\

-
~ - o o
“ ”

- J—

T ———————

Deep Learning : 12 - Monte Carlo Tree Search [18]

Monte Carlo episode

* Monte Carlo episode:
1) sett:=0

2) currentstate s:=s,
3) use MCstep to decide a,
4) compute S;11 = T(S¢,)

5) sett:=t+1

6) repeat2)to 5) until end game

Deep Learning : 12 - Monte Carlo Tree Search [19]

Monte Carlo episode

* Monte Carlo episode:

1) sett:=0
®,
2) 3

current state s:=s, / @
/ \
/ \
3) use MC step to decide a, .Y
O
4) compute S;11 = T(S¢,) / s %
ra) \
5) seti:=t+1 ,// N \\\
/ \
. / \
6) repeat2)to5)until end game /, < \
/l/ \\\
/ \
//) \\
/, ¢ \\
/ \
/ \
/ \
/ \
/ \
A /\

~ - o o
“ ”
- o -

— — ————

Deep Learning : 12 - Monte Carlo Tree Search [20]

Monte Carlo method

= Monte Carlo method:

* nomemory of past playouts in a single MC step
(only the reward is saved)

* no transfer knowledge between MC steps

* no construction of game subtree

« optimal policy only partially defined

(on actually computed states)

* intrinsically stochastic policy optimization
(the same initial state ’
can give rise to different optimizations) /

* no knowledge transfer /
between MC episodes ’

Deep Learning : 12 - Monte Carlo Tree Search [21]

Monte Carlo Tree Search (MCTS):

simulation + incremental expansion

Deep Learning : 12 - Monte Carlo Tree Search [22]

MCTS episode: basic ideg

= Ateach step (with current state s,):

a subgraph G, with root s, is created

statistics (number of visits and estimate outcomes)
for states and actions in the subgraph are saved

best action a, is decided (accordingly to those statistics)

next state s;11 := 7(s¢, a;) is computed

" - -
= - -
=~ - . -

—-—— -
i ———

Deep Legrning : 12 - Monte Carlo Tree Search

[23]

MCTS episode: basic idez

= Ateach step (with current state s,):

* asubgraph G, with root s, is created

e statistics (number of visits and estimate outcomes)
for states and actions in the subgraph are saved

* bestaction a, is decided (accordingly to those statistics)

e nextstate s;11 := 7(8¢,ar) is computed

= |n the next step (with current state s,):
 the subgraph of G, with root s, ; is expanded
to create G, /
» the statistics are updated and saved ,,f”
* bestactiona, ., is decided

- -
= - -
=~ - -

—-—— -

—— e

* nextstate sy11 := 7(S¢, a;) is computed

Deep Learning : 12 - Monte Carlo Tree Search [24]

MCTS episode: basic ides

= Ateach step (with current state s,):

* asubgraph G, with root s, is created

e statistics (number of visits and estimate outcomes)
for states and actions in the subgraph are saved

* bestaction a, is decided (accordingly to those statistics)

e nextstate s;11 := 7(8¢,ar) is computed

= |n the next step (with current state s,):
 the subgraph of G, with root s, ; is expanded
to create G,
» the statistics are updated and saved
* bestactiona, . is decided RN

- -
~ -
~ -
-~ -
-~ -
-~ -
-~ - - -
e, —— e = =——

* nextstate sy11 := 7(S¢, a;) is computed

Deep Learning : 12 - Monte Carlo Tree Search [25]

Monte Carlo Tree Search (MCTS) step

* Monte Carlo Tree Search (MCTS) step: (coulom 2006]

1) start from current state S (and the —possibly empty— stored tree with root s)

Deep Learning : 12 - Monte Carlo Tree Search [26]

Monte Carlo Tree Search (MCTS) step

* Monte Carlo Tree Search (MCTS) step: (coulom 2006]

1) start from current state S (and the —possibly empty— stored tree with root s)
2) traverse the tree by following the selection policy
ﬂ_sel . St =2 Ay
until encountering a leaf node s; (i.e. a state not stored in the tree)

selection

()
OO
O ONIVO®

() (@)

Deep Learning : 12 - Monte Carlo Tree Search [27]

Monte Carlo Tree Search (MCTS) step

* Monte Carlo Tree Search (MCTS) step: (coulom 2006]

1) start from current state S (and the —possibly empty— stored tree with root s)
2) traverse the tree by following the selection policy
ﬂ_sel . St =2 Ay
until encountering a leaf node s; (i.e. a state not stored in the tree)

3) expand the tree by adding s,

expansion

()
O OEND
O ONIVO®
(D W

Deep Learning : 12 - Monte Carlo Tree Search [28]

Monte Carlo Tree Search (MCTS) step

* Monte Carlo Tree Search (MCTS) step: (coulom 2006]

3)
4)

start from current state S (and the —possibly empty- stored tree with root s)
traverse the tree by following the selection policy

7'('861 . St =2 Ay
until encountering a leaf node s; (i.e. a state not stored in the tree)

expand the tree by adding s,

play one random playout from state s; simulation
by following the simulation policy @
oy St > Q¢

and obtain the reward r @ @ @

O ONIVO®
(D W

1

Deep Legrning : 12 - Monte Carlo Tree Search

[29]

Monte Carlo Tree Search (MCTS) step

* Monte Carlo Tree Search (MCTS) step: (coulom 2006]

1)
2)

3)
4)

5)

start from current state S (and the —possibly empty- stored tree with root s)
traverse the tree by following the selection policy
7'('861 . St =2 Ay

until encountering a leaf node s; (i.e. a state not stored in the tree)

expand the tree by adding s,

play one random playout from state s; backpropagation
by following the simulation policy @
oy St > Q¢

and obtain the reward r @ @ @
backpropagate r (and update the statistics @ @ @ @ @ @

of each encountered state and action)

Deep Legrning : 12 - Monte Carlo Tree Search

[30]

Monte Carlo Tree Search (MCTS) step

* Monte Carlo Tree Search (MCTS) step: (coulom 2006]

1) start from current state S (and the —possibly empty— stored tree with root s)
2) traverse the tree by following the selection policy

7'('861 . St =2 Ay
until encountering a leaf node s; (i.e. a state not stored in the tree)
repeat_ 3) expand the tree by adding s,
m times [4) play one random playout from state s,

by following the simulation policy

repeat) T s ay
n times

and obtain the reward r

5) backpropagate r (and update the statistics
of each encountered state and action)

Deep Learning : 12 - Monte Carlo Tree Search [31]

Monte Carlo Tree Search (MCTS) step

* Monte Carlo Tree Search (MCTS) step: (coulom 2006]

~

repeat y
m times

repeat)
n times

1)
2)

3)

5)

start from current state S (and the —possibly empty- stored tree with root s)
traverse the tree by following the selection policy

7'('861 . St =2 Ay
until encountering a leaf node s; (i.e. a state not stored in the tree)

expand the tree by adding s;

play one random playout from state s;
by following the simulation policy

oy St > Q¢

and obtain the reward r

backpropagate r (and update the statistics
of each encountered state and action)

decide the best action to be performed in s with the greedy policy
¢ s a

Deep Legrning : 12 - Monte Carlo Tree Search

[32]

MCTS statistics: expansion and backpropagation

= MCTS statistics for state s and action a:

N(s) = total number of times state s has been visited

N(s, a) = number of times action a has been selected in state s

A

Q(S, a) = estimated outcome of action a when selected in state s

A

= Expansion initialization: N(s) :=0, N(s,a):=0, Q(s,a):=0

» Backpropagation update after a single playout with reward 7
N(s):=N(s)+1
N(s,a):= N(s,a)+1

~

. o r—Q(s,a)
Q(S,CL) T Q(S,CL) + N(s,a)

Deep Learning : 12 - Monte Carlo Tree Search [33]

MCTS: greedy, selection and simulation policies

. Creedv policy: R
Lreedy poiicy m8¢(s) := argmax (s, a)

N (s,a)>0

= Selection policy: Upper Confidence Bound applied to Trees (UCT)

parameter
(default=1)
A ~ [2log N(s)
m5(s) := 79T () := argmax { Q(s,a) + ¢
N(s,a)>0 / N(87 a)
\
exploitation exploration
of actions of currently suboptimal-looking actions
that look currently the best (no good alternatives are missed

because of early estimation errors)

Convergence [Kocsis 2006]: for the first state s of a single MCTS episode

VT (s) = a* = 7*(s) for n = +o0

Deep Learning : 12 - Monte Carlo Tree Search [34]

MCTS: greedy, selection and simulation policies

. Creedv policy: R
Lreedy poiicy m8¢(s) := argmax (s, a)

N (s,a)>0

= Selection policy: Upper Confidence Bound applied to Trees (UCT)

5 (s) := VT (s) := argmax {Q(s, a) + C\/ZlogN(s) }

N (s,a)>0 N(S,CL)

= Simulation policy: Random Uniform Policy
1
[A(s)

N

™ (s) = a with P(s,a) =

set of admissible actions in state s

Deep Learning : 12 - Monte Carlo Tree Search [35]

Monte Carlo Tree Search (MCTS) step

Algorithm 2 UCT

procedure UCTSEARCH(sq)
while time remaining do
{s0.....s7}, R = SIMULATE(s0)
BACKUP({sq,....s7},)
end while

return argmax ()(so, a)
acA
end procedure

procedure SIMULATE(sq)

t=20
R=0
repeat
if s; € 7 then
a=UCBI(s;)
else
NEWNODE(s;)
a; = DEFAULTPOLICY (s;)
end if

St41 = SAMPLETRANSITION(S;, ay)
rt41 = SAMPLEREWARD(s¢, a4, S¢41)
R = R + re+1
t+=1
until T'erminal(s;)
return {sq.....s:}. R
end procedure

procedure UCB I(s)

a* = argmax ()(s,a) + ¢
a
return a*

end procedure

2log N (s)
N (s.,a)

procedure BACKUP({so, ..., s7}, R)
fort =0to7 —1do

N(St) += 1
N(s¢,a¢) +=1
R— S¢,0¢
Q(se,at) += %
end for

end procedure

procedure NEWNODE(s)

N(s)=20

foralla € A do
N(s.a)=0
Q(s.a) =

end for

T Insert(s)

end procedure

From: D. Silver, Reinforcement Learning and Simulation-Based Search in Computer Go, PhD Thesis, 2009

Deep Legrning : 12 - Monte Carlo Tree Search

[36]

MCTS episode

* Monte Carlo Tree Search episode:

1) sett:=0 @

2) currentstate s:=s, EOOX

, /00
3) use MCTS step to expand the tree and decide a, folololo
4) compute S¢4q = ’T(St, at) ,’f QO

5) sett:=t+1

6) repeat steps 2-5 until end game

—
—
—_— —
— —
e ——

Deep Learning : 12 - Monte Carlo Tree Search [37]

MCTS episode

* Monte Carlo Tree Search episode:

1) sett:=0 @

2) current state s:=s, Foloy

, OO0,
3) use MCTS step to expand the tree and decide a, B000 .
4) compute S¢4q = ’T(St, at) ,’f QO

5) sett:=t+1

6) repeat steps 2-5 until end game

—
—
—_— —
— —
e ——

Deep Learning : 12 - Monte Carlo Tree Search [38]

MCTS episode

* Monte Carlo Tree Search episode:

1) sett:=0 @

2) currentstate s:=S, ;”I
3) use MCTS step to expand the tree and decide a, ;"’ “x\\
4) compute St = T(S¢, Gt) 1;’; x‘\‘
5) sett:=t+1 f,r"f \\x\
6) repeat steps 2-5 until end game :’E x‘\\
_,—; \\‘ﬁ.

—
—
—_— —
— —
e —

Deep Learning : 12 - Monte Carlo Tree Search [39]

MCTS episode

* Monte Carlo Tree Search episode:
1) sett:=0

2) currentstate s:=s, 4
3) use MCTS step to expand the tree and decide a,
4) compute S¢4q = ’T(St, at)

5) sett:=t+1

6) repeat steps 2-5 until end game

Deep Learning : 12 - Monte Carlo Tree Search [40]

MCTS episode

* Monte Carlo Tree Search episode:
1) sett:=0

2) currentstate s:=s, 4
3) use MCTS step to expand the tree and decide a,
4) compute S¢4q = ’T(St, at)

5) sett:=t+1

6) repeat steps 2-5 until end game

Deep Learning : 12 - Monte Carlo Tree Search [41]

MCTS episode

* Monte Carlo Tree Search episode:
1) sett:=0

2) currentstate s:=s,

3) use MCTS step to expand the tree and decide a,

4) compute S¢4q = ’T(St, at) !f
5) sett:=t+1 /
6) repeat steps 2-5 until end game /
f! \‘1

—
—
—_— —
— —
e —

Deep Learning : 12 - Monte Carlo Tree Search [42]

MCTS episode

* Monte Carlo Tree Search episode:

1)
2)
3)
4)
5)
6)

sett:=0

current state s:=s,
use MCTS step to expand the tree and decide a,
compute S¢i1 = T(S¢, at)

sett:=t+1

repeat steps 2-5 until end game ;

—.
o~
- —— i G o
— — —_—— —

Deep Learning : 12 - Monte Carlo Tree Search [43]

Monte Carlo Tree Search (MCTS) method

= Monte Carlo Tree Search method:

* memory of past playouts in a single MCTS step
(collected in the tree statistics)

» knowledge transfer between MCTS steps
(by reusing subtrees already explored)

« optimal policy only partially defined

(on actually computed states)

* intrinsically stochastic policy optimization

(the same initial state
can give rise to different optimizations) ,/
/
* What about knowledge transfer)
. /
between MCTS episodes? /]
transferring the entire MCTS tree S

would rapidly cause its explosive growth...

Deep Learning : 12 - Monte Carlo Tree Search [44]

Dealing with
Stochasticity and Unceréainty

Deep Learning : 12 - Monte Carlo Tree Search [45]

Stochasticity and Uncertainty: general setting

= Stochastic reward:

« immediate reward r(s,, a,) is obtained when performing action a, in state s,

* delayed reward is obtained only at the end of the game

{0 if s; is not a terminal state

r(s:) 1=
(st) r otherwise

possibly with P(r | s,a,) or P(r | s;) respectively

= Stochastic policy:
policy m(s,a):= P(a | s) isaprobability distribution

» Uncertainty of execution:

stochastic transition function T : (St, at) —> St4+1 with P(St_|_1 | St, at)

Deep Legrning : 12 - Monte Carlo Tree Search

[46]

Reinforcement Learning (RL)

= Value function:
VT(s):=E,;[R | sg = 3]

N mean over the trajectories following policy m

Optimal value: V*(s) := max V"™ (s) Vs
T

= Action-value function:
Q" (st,a) :=E R | sp = s,a0 = a]

Optimal action-value: Q™ (s,a) := max Q" (s,a) Vs, a
T

Optimal policy: a™(s) = argmax|[Q" (s, a)]
a

Connection: V™ (s) = E,[Q"(s,a)] and V*(s) = max[Q(s,a)]

a

Deep Learning : 12 - Monte Carlo Tree Search [47]

