Universita degli
Studi di Pavia

Deep Legrning

71 — Deep Reinforcement Learning

Marco Piastra

This presentation can be downloaded at:
http://vision.unipv.it/DL

Deep Learning : 11 - Deep Reinforcement Learning

[1]

http://vision.unipv.it/DL

Basics (Inturtion)

Deep Learning : 11 - Deep Reinforcement Learning [2]

Decp Reinforcement Learning (DRL)

» Reinforcement Learning

Reward

Agent

State

Take

action

Observe state

| Environment

Deep Learning : 11 - Deep Reinforcement Learning

[3]

Deep Reinforcement Learning (DRL)

* Deep Reinforcement Learning

A

Using a deep neural network as the approximator Q(s, a)

! Reward

Take |Environment
action

parameter 6

Observe state

The optimal policy is learnt incrementally by using a deep neural network

Deep Learning : 11 - Deep Reinforcement Learning [4]

Q-Learning

= Q-Learning Algorithm
Initialize Q(s, a) atrandom, put the agent is in a random state s
Repeat:

1) Select the action argmax,Q(s,a) with probability (1 — &)
otherwise, select a at random

2) Theagentis now in state s’ and has received the reward r
3) Update Q(s,a) by

AQ(s,a) = alr + ymaxy Q(s',a') — Q(s, a)]

Deep Learning : 11 - Deep Reinforcement Learning [5]

Deep Reinforcement Learning

= Q-Learning Algorithm
Initialize |@(s, @) at random, put the agent in a random state s
Repeat:

1) Select the action argmax,Q(s,a) with probability (1 — &)
otherwise, select a at random

2) Theagentis now in state s’ and has received the reward r
3) Update Q(s,a) by

AQ(S,G) — OA[T‘ + Y maXe/ QA(Slaa,) - Q(Sa CL)]

Fundamental Idea:

Use a deep neural network to learn the approximator Q(s, a)
from the examples collected while exploring - exploiting

Also replacing the update step with DNN training

Deep Learning : 11 - Deep Reinforcement Learning [6]

Deep Reinforcement Learning

= Q-Learning Algorithm

Initialize Q(s,a) atrandom, put the agent in a random state s
Repeat:

1) Select the action argmax,@(s,a) with probability (1 — &)
otherwise, select a at random

2) Theagentis now in state s’ and has received the reward r
3) Update Q(s,a) by

AQ(s,a) = alr + ymaxy Q(s',a’) — Q(s,a)]

CAREFUL

maximizing Q(s,a) when this is a deep neural network
may be non-trivial...

Deep Learning : 11 - Deep Reinforcement Learning [7]

Reinforcement Learning
Reformulation

Deep Learning : 11 - Deep Reinforcement Learning [8]

Reinforcement Learning Reformulation

Trajectory
T

T 1= ((St;at)) 1o
i.e., a sequence of states and actions.
It can be either finite or infinite, depending on T°

Reward
Reward function:

re = T(Sta at, 3t+1)
Depending on the application, it can be simplified:

re = 1r(Se,ar), T¢:=1r(S)

Return q\
: we will use these forms from now on, for brevity
R(7) := E vy /

t=0
It is discounted when ¥ < 1 or undiscounted, when ¥ = 1 (when trajectories are finite)

Deep Learning : 11 - Deep Reinforcement Learning [9]

Reinforcement Learning Reformulation

Probability of a trajectory
T—1
P(7|m) := P(so) H P(si11]|s¢, ar)m(ag|sy)
o t=0 T

probability of initial states transition probability (i.e. the ‘model’)

Expected return of a policy

I = [PaimR() = E [R(r)

where 7 ~ 7 is the space of all the trajectories distributed as 7(a|s:)

Central RL Problem

7 ;= argmax J ()

i.e. finding the policy with the highest expected return

Deep Learning : 11 - Deep Reinforcement Learning [10]

Reinforcement Learning Reformulation

Value Function (of a policy)

V7(s) :=E[r(S¢) +yr(Six1) +v*r(Sipo) + ... | m, S = 5]
Action-Value function (of a policy)

Q7 (s,a) =) g, . P(Sit1]s,a) - V7 (Si41)

= E[r(Sy) +vr(Si41) +v°1r(Siq2) +...| m, S = s,a; = al

Deep Learning : 11 - Deep Reinforcement Learning [11]

Reinforcement Learning Reformulation

Value Function (of a policy)

V7(s) == E [R(r) | s0=4]

Action-Value function (of a policy)

Q" (s,a) := TIEW (R(T) | s = s,a0 = a]

Optimal Value Function

V*(s):=max E [R(7) | sg = s]

mw TV
Optimal Action-Value Function

Q" (s,a) :=max E [R(7) | so = s,a9 = a

T T

Deep Learning : 11 - Deep Reinforcement Learning [12]

Reinforcement Learning Reformulation

= Connecting Value and Action-Value Functions

V7(s)= E [Q"(s.a)

V*(s) = max [Q" (s, a)]
= Optimal Policy

a*(s) = argmax Q" (s,a)]

a

= Advantage Function
A" (s,a) = Q" (s,a) — V7 (s)

It tells how advantageous (or disadvantageous) is a particular action
w.r.t. what is prescribed by the policy

Deep Learning : 11 - Deep Reinforcement Learning [13]

DON Algorithm

Deep Learning : 11 - Deep Reinforcement Learning [14]

Deep Q-Learning

» Playing Atari with Deep Reinforcement Learning

[2013, V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, |. Antonoglou, D. Wierstra, M. Riedmiller, http://arxiv.org/abs/1312.5602,
see also http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html]

A software system only
Runs on virtually any Linux-based system, it contains optional provisions for GPU

It's open source
https://github.com/kuz/DeepMind-Atari-Deep-Q-Learner

Sophisticated machine-learning techniques

Uses deep reinforcement learning

in combination with convolutional neural networks (CNN)
Same configuration, multiple games

Same configuration applied to arcade games

It learned to play 7 (2013) or 49 (2015) different games
It is autonomous

It learns by itself, it receives no human expertise as input

In many cases, it outperforms human players

(from GitHub)

Deep Learning : 11 - Deep Reinforcement Learning [15]

http://arxiv.org/abs/1312.5602
http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html
http://github.com/kuz/DeepMind-Atari-Deep-Q-Learner

Deep Q-Legrning

. DQNAI orithm [https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf]
)

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory|D to capacity NV
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {x; } and|preprocessed sequenced ¢; = ¢(s1)
fort =1,7T do
With probability € select a random action a;
otherwise select a; = max, Q*(¢p(s;), a;)
Execute action a4 in emulator pnd observe reward r; and image ;1
Set 5411 = S¢, a4, 441 and preprocess ¢y 1 = P(S¢41)
Store transition az,r in D
Sample random minibatch of transitions \¢;, a;, 5, ¢j4+1) from D

Set y; = { T; for terminal ¢4

states are images, which require some preprocessing

rj +ymax, Q(¢;4+1,a’;0) for non-terminal ¢,

Perform a|gradient descent|step on (y; — Q(¢;, a;; 9))2 according to equation 3
end for
end for

Deep Learning : 11 - Deep Reinforcement Learning [16]

Policy Gradient

Deep Learning : 11 - Deep Reinforcement Learning [17]

Policy Gradient

Parametric Policy
A generic policy that depends on parameters 6
o

For instance, in the DQN Algorithm, the Action-Value Function is approximator
is a Deep Neural Network

Q(s,a;0)

Policy Gradient Ascent

At each iteration, improve parameters using expected returns as the loss function:

ok+1) — g(k) + UVQJ(WQ) |9(k)
\

easier said than done ...

Deep Learning : 11 - Deep Reinforcement Learning

[18]

Policy Gradient

1) Probability of a trajectory, given a parametric policy
T—1

P(t|mg) := P(s0) H P(si11]se, ar)mg(ag]st)

2) Log-Derivative

By applying the chain rule:
1

(7]70)

Vo log P(r|mg) = - VoP(r|mp)

It follows:

VoP(r|my) = P(1|m9)Vylog P(1|my)

Deep Learning : 11 - Deep Reinforcement Learning [19]

Policy Gradient

3) Log-Probability

T—1
log P(7|mg) := log P(sg) + Z log P(st+1]¢, ar) + log mo(at|st)]

these terms do NOT depend on 6

4) Gradient of the Log-Probability
T—1

Volog P(r|mg) := Y Vglogms(ayse)
t=0

5) Expectedreturn

Jm) = [Plrim)R(r) = E_ [R(r)

T

Deep Learning : 11 - Deep Reinforcement Learning [20]

Policy Gradient

= Basic Policy Gradient

VoJ(mg) = / VoP(7|m9)R(T)

T~
\ this term does NOT depend on 0

- / P(7|m9) Vg log P(7|m) R(T)

= E [Vylog P(r|me)R(T)]

T~
e i
= T}ETB Z Vo log mg(a¢|s:)R(T)
L t=0 _

This last term is an expectation: it can be estimated from a sample mean

Deep Learning : 11 - Deep Reinforcement Learning [21]

Policy Gradient

= Basic Policy Gradient
S]

VoJ(mg) = E | Vglogm(as)R(7)

T~
| t=0

_ _Y Tvglogﬂe (at|s¢) R(T)
/ NGa

. dataset: a sample of actual trajectories
estimated gradient (mean)

Deep Learning : 11 - Deep Reinforcement Learning [22]

Policy Gradient

= Basic Policy Gradient

T -
VoJ(mg) = E E Vg log mp(at|st) R(T)
L t=0]
an entire trajectory? even in the past?
More precisely:
T—1 T—1]

VoJ(mg) = E Z Vo log mg(as|st) Z r(se,)

T~TT
| t=0 t/ =t / _

reward from t onward
(‘reward-to-go’)

Deep Learning : 11 - Deep Reinforcement Learning [23]

Simple Policy Gradient

= Pseudo-Algorithm

Initialize the weights & of a DNN Q(S,a;) atrandom
Repeat.
1) For M episodes
Start in initial state Sg
For t fromQ to T
play by| a; ~ g (als;)
Collect the episode trajectory 7 = <(St, a,t));rzo and store itin D

How can we ‘sample a policy’ in practice?

2) Sample arandom minibatch B = {(,gz-7 Cta:)} from D

1

Z Vo log mg(a|ss) R(T)

TEB

Deep Learning : 11 - Deep Reinforcement Learning [24]

Sampling a Policy

Problem
Sampling actions from a stochastic policy
a; ~ mo(a|s)

Intended meaning:

To(ai|s) o< Q(ar, 5¢50)
the probability of each action should be proportional to the expected return

Discrete Action Space

A

Consider Q(a,t, St} 9) as the logit of a softmax

A

exp(Q(a¢, s¢; 0))

mo(a¢|se) = -

EaéA(st) exp(Q(a, st;0))

and sample accordingly \ all possible actions in state S

The Continuous Case is a bit more complex ...

Deep Learning : 11 - Deep Reinforcement Learning [25]

Actor-Crrtic

Deep Learning : 11 - Deep Reinforcement Learning [26]

Actor-Critic

EGLP Lemma. Suppose that F is a parameterized probability distribution over a random variable, .

An Aside: Then:
Expected Grad-Log A
Probability LE, [Volog Py(2)] = 0.

(EGLP lemma)

Recall that all probability distributions are normalized:

/xpg(x) 1

Take the gradient of both sides of the normalization condition:

V@/Pg(ﬁﬂ‘) = VQl = 0.

Use the log derivative trick to get:

0=V, f Py(z)

= [VyPy(x)

€T

_ f) Wl e)
0= ;CPPH [Volog Py(z)] .

[image from: https://spinningup.openai.com/en/latest/spinningup/rl_intro3.html]

Deep Learning : 11 - Deep Reinforcement Learning [27]

Actor-Critic

Policy Gradient 1 T_1 .
VoJ(mg) = TETO Z Vo log mo(az|st) Z r(se,)
| t=0 t'=t i

Due to the EGLP lemma:
E [Vglogmg(arlst)b(st)] =0

a+~Tg

for any function b6(s;) that depends on s; only (i.e., b(s;) is constant w.r.t. to a;)

Policy Gradient with Baseline baseline

T 1 T-1 \ .

Vod(mg) = E Z Vo log mg(as|s¢) Z r(se,ap) | — b(sy)

T~YT
L t=0 t'=t

We can subtract term-wise any function b(s:) without altering the expectation

Deep Learning : 11 - Deep Reinforcement Learning [28]

Actor-Critic

Actor-Critic
(typical formulation)

T—1 :
VoJ(mg) = E ZV@ log mo(a|s¢) ((Zfr S, Qhyr) —V’T(st))

T~Tg
| t=0

Note that:
(i r(se, at')) —V7™(st) = (r(se,a0) + V™ (s041)) = V™ (5¢)
t'=t _ QW(St,at)_Vﬂ(St)

it's the advantage function

[29]

Deep Learning : 11 - Deep Reinforcement Learning

Actor-Critic

Actor-Critic
(typical formulation)

T 1
VoJ(mg) = E Z Vollog mg(as|s)|[A™ (s¢, az)
| t=0

Actor’ ‘Critic’
In practice, V'™ (s;) isestimatedvia V' (s;)
namely, another DNN with specific parameters é

A(sy, ap) = (T’(St,at) + V(8t+1;¢)) — V(s4;9)

What are the advantages? “It reduces variance”

Intuitively Q(s, a; 0) depends also on how the action space is explored
whereas V(St; qb) depends only on actual rewards ’r‘(st, at)

Deep Learning : 11 - Deep Reinforcement Learning [30]

Actor -Crrtic

= Pseudo-Algorithm

Initialize the weights 6, ¢ of two DNNs g (als), V(s;¢) atrandom
Repeat.

1) For M episodes
Start in initial state Sg
For t fromQ to T

play by a; ~ mg(als) -
Collect all episode transitions 7, := ((St,at, Tt, 3t+1)>t:0 and store them in D

2) Forarandom minibatch B = {(s;, a;,7;,8;11)} from D
Evaluate

A A

A(si,a;) = (?"z' + V(Si+1;¢)) —V(si,9)
Update weights

X 2
Ap =-—nyVy (A(si, a@-))
AQ = 19VeJ (16) = 19V log g (as|si) A(si, a;)

Deep Learning : 11 - Deep Reinforcement Learning [31]

Actor -Crrtic

= Network Architecture

A bifurcated structure which includes:

* A common part
« AV-head
 AT-head

It follows that part of the weights are shared

Derse ——>1 VIS) | /(s;.0)

CNN CNN CNMN | Flatten

Dense mo(als)

common

[image from: https://adventuresinmachinelearning.com/a2c-advantage-actor-critic-tensorflow-2/]

Deep Learning : 11 - Deep Reinforcement Learning [32]

Normalized Advantage Function
(NAF)

Deep Learning : 11 - Deep Reinforcement Learning [33]

Normalized Advantage Function (NAF) algorithm

Algorithm 1.2 NAF algorithm for continuous ()-learning

S.Gu, T. P. Lillicrap, I. Sutskever, S. Levine.
Continuous deep Q-learning
with model-based acceleration, 2016

Randomly initialize Q(s, H’WERED) g9 = (6*, 07,0

= s - Q o
Initialize the target network with HT AR © HPRED

I[nitialize replay buffer B « 0
for each episode do:
Initialize random process N for action exploration
s + E'nvironment(reset)
fort =0to T do:
p < #(StW%RED} +N;
reé— (8, Qe)
8y+14 Environment(s,, a,)
RB « RBU{(s;,0a;,7;,8;1)}store transition in the replay buffer
Sample at random and normalize the mini batch M B
for each sample i = (s;, @i, 73, 8i4+1) in m
yi=mr; + T?(Si+llﬂ'¥ﬂﬂ}
Compute gradients

2
ﬁ?q (-yf; - (sﬁ ﬂ”'lﬂgRED)) (Loss function L(#%))
Q]
borep — orep 7 (#L09)

o 2 o
en T
end for

end for

Deep Learning : 11 - Deep Reinforcement Learning [34]

Normalized Advantage Function (NAF) algorithm

Algor ithm nghllghts Algorithm 1.2 NAF algorithm for continuous ()-learning

 adeep neural network for Q(s,a) Randomly initialize Q(s, al0F 3_‘. {fq = (6",6.6")
Iﬂlltllalf.ZE the target network with HT AR © HPRED
I[nitialize replay buffer B « 0
for each episode do:
Initialize random process N for action exploration
s + E'nvironment(reset)
fort =0to T do:
p < #(StW%RED} +N;
reé— (8, Qe)
8y+14 Environment(s,, a,)
RB « RBU{(s;,0a;,7;,8;1)}store transition in the replay buffer
Sample at random and normalize the mini batch M B
for each saml::le i = (8i,@ai,Ti,8+1) inm
yi=mr; + T’V(Sﬁllﬂ%;&ﬂ}
Compute gradients

2
ﬁ?q (-yf; - (sﬁ ﬂ”'lﬂgRED)) (Loss function L(#%))
o 5]
E"ERED = PRED ~ 7 (ﬁaﬂf‘?)
f +— 76 +(1+471)0
emi[‘&rlf: PRED TAR
end for

end for

Deep Learning : 11 - Deep Reinforcement Learning [35]

Normalized Advantage Function (NAF) algorithm

Algor ithm nghllghts Algorithm 1.2 NAF algorithm for continuous ()-learning
A e e T = o Q. P aV
* adeep neural network for Q(s, a) Randomly initialize Q{SJWPREB':% {f = (,67.07)
Initialize the target network with # — 0
* two deep networks: —PHMM PRED
one TARget, which is the objective for each episode do:
and one PREDictor for transient Initialize random process N for action exploration

s + E'nvironment(reset)
fort =0to T do:
Ay < #(StW%RED} +N;
reé— (8, Qe)
8y+14 Environment(s,, a,)
RB « RBU{(s;,0a;,7;,8;1)}store transition in the replay buffer
Sample at random and normalize the mini batch M B
for each sample i = (s;, @i, 73, 8i4+1) in m
yi=mr; + T?(Si+llﬂ'¥ﬂﬂ}
Compute gradients

ﬁ?q (-yf; — @) (sﬁ aingRED))E (Loss function L(QQJ}

il a
UprED < PPRED 7 (@L{W})

o 2 o
en T
end for

end for

approximations

Deep Learning : 11 - Deep Reinforcement Learning [36]

Normalized Advantage Function (NAF) algorithm

Algorithm Highlights
* adeep neural network for Q(s, a)

* two deep networks:
one TARget, which is the objective
and one PREDictor for transient
approximations

o careful tensorial formulation

Algorithm 1.2 NAF algorithm for continuous ()-learning

Randomly initialize Q(s, H’WERED) g9 = (6*, 07,0

= s - Q o
Initialize the target network with HT AR © HPRED

I[nitialize replay buffer B « 0

for each episode do:
Initialize random process N for action exploration
s + E'nvironment(reset)
for { =0to T do:

to avoid the argmax step (see after)

Ay < P’*(StW%RED} +N;
reé— (8, Qe)
8y+14 Environment(s,, a,)
RB « RBU{(s;,0a;,7;,8;1)}store transition in the replay buffer
Sample at random and normalize the mini batch M B
for each sample i = (s;, @i, 73, 8i4+1) in m
yi=mr; + T?(Si+llﬂ'¥ﬂﬂ}
Compute gradients

ﬁ?q (-yf; — @) (sﬁ aingRED))E (Loss function L(QQJ}

il a
UprED < PPRED 7 (@L{W})

o 2 o
en T
end for

end for

Deep Learning : 11 - Deep Reinforcement Learning

[37]

Normalized Advantage Function (NAF) algorithm

Algor ithm nghllghts Algorithm 1.2 NAF algorithm for continuous ()-learning
A) Q Q — (gu gP gv
 adeep neural network for Q(s,a) Randomly initialize Q(s, alfpppy) 3_‘. {f = (,67.07)
Initialize the target network with # —
. . TAR PRED
two deep networks. Initialize replay buffer R + 0
one TARget, which is the objective for each episode do:
and one PREDictor for transient Initialize random process N for action exploration
. . s + E'nvironment(reset)
approximations for f— 00T do
* careful tensorial formulation a + p(s|0pppp) + M
to avoid the argmax step (see after) Teé T(s1.0
17— Environment(s,;, a,)
* noise based on a stochastic process RB «+ RBU{(s;,a,.7;, 8 1)}store transition in the replay buffer
(i.e. a random walk, see later) Sample at random and normalize the mini batch M B
forcing exploration for each sample i = (s;, @i, 73, 8i4+1) in m

v =i + 7V (si41107aR)
Compute gradients

ﬁ?q (-yf; — @) (sﬁ aingRED))E (Loss function L(QQJ}

il a
OprED © PPrep ~ 7 (7w L{HQ})

o 2 o
en T
end for

end for

Deep Learning : 11 - Deep Reinforcement Learning [38]

Normalized Advantage Function (NAF) algorithm

Algor ithm nghllghts Algorithm 1.2 NAF algorithm for continuous ()-learning
A e e T = o Q . P aV
 adeep neural network for Q(s,a) Randomly initialize Q(s, alfpppy) 3_‘. {f = (,67.07)
Initialize the target network with # —

. . TAR PRED
two deep networks. Initialize replay buffer R + 0
one TARget, which is the objective for each episode do:
and one PREDictor for transient Initialize random process A for action exploration

. . s + E'nvironment(reset)
approximations for t— 010 T do

* careful tensorial formulation a + p(s|fpppp) + M
to avoid the argmax step (see after) Teé— T(St, e)

8y+14 Environment(s,, a,)

* noise based on a stochastic process RB «+ RBU{(s;,a,.7;, 8 1)}store transition in the replay buffer
(i.e. a random walk, see later) Sample at random and normalize the mini batch M B
forcina exploration for each saml::le i = (8i,@ai,Ti,8+1) inm

g exp Ui =i + V(81110 45)

 replay buffer with random extraction Compute gradients :
of mini-batches to avoid temporal o ('Llri -Q (si? a"lﬂgRED)) (Loss function L(#9))
correlation arising from sequential Q (2

. 9 9 PorED * Pprep ~ 7 (72 L09))
exploration 09 L R +(147)69
&[‘%R PRED TAR
end for
end for
end for

Deep Learning : 11 - Deep Reinforcement Learning [39]

Normalized Advantage Function (NAF) algorithm

Algorithm Highlights

a deep neural network for Q(s, a)

two deep networks:

one TARget, which is the objective
and one PREDictor for transient
approximations

careful tensorial formulation
to avoid the argmax step (see after)

noise based on a stochastic process
(i.e. a random walk, see later)
forcing exploration

replay buffer with random extraction
of mini-batches to avoid temporal
correlation arising from sequential
exploration

Can cope with continuous A and S

Algorithm 1.2 NAF algorithm for continuous ()-learning

Randomly initialize Q(s, ”"HERED) g9 = (6*, 07,0
In:lt:lal:lze the target network with H% AR © H%RED
I[nitialize replay buffer B « 0
for each episode do:
Initialize random process N for action exploration
s + E'nvironment(reset)
fort =0to T do:
p < P’*(StW%RED} +N;
reé— (8, Qe)
8y+14 Environment(s,, a,)
RB «— RB U {(s;,a;,7, ;1) }store transition in the replay buffer
Sample at random and normalize the mini batch M B
for each sam]::le i = (8i,@ai,Ti,8+1) inm
="+ TV(S'E+1|H'¥AR}
Compute gradients

ﬁ‘?q (-yf; — @) (sﬁ aj|HgRED))2 (Loss function L(QQJ}

il a
UprED < PPRED 7 (@L{W})

o 2 o
en T
end for

end for

Deep Learning : 11 - Deep Reinforcement Learning

[40]

Normalized Advantage Function (NAF) algorithm

= A special approximator NOTE: all functions here are continuous
and of vector parameters

From the definition of the Advantage Function
AT (s,a) := Q™ (s,a) — V™ (s)

The NAF approximator becomes:
Q(s,a) := A(s,a;0) — V(s; ¢)

Define: 14, P are ‘Deep Neural Networks’

A(s,a;0) = 5(a — pu(s;0,))" P(s;0p)(a — pu(s; 0,))

.
Then the solution to

0 4 o .
80,@(8’ a) =0 = 5 (s,a;60) =0

a” = p(s;0,)

this is a quadratic form

Deep Learning : 11 - Deep Reinforcement Learning

[41]

